JPS60162458A - Permanent magnet type rotary electric machine and manufacture thereof - Google Patents

Permanent magnet type rotary electric machine and manufacture thereof

Info

Publication number
JPS60162458A
JPS60162458A JP1748984A JP1748984A JPS60162458A JP S60162458 A JPS60162458 A JP S60162458A JP 1748984 A JP1748984 A JP 1748984A JP 1748984 A JP1748984 A JP 1748984A JP S60162458 A JPS60162458 A JP S60162458A
Authority
JP
Japan
Prior art keywords
yoke
magnet
magnetizing
magnets
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1748984A
Other languages
Japanese (ja)
Other versions
JPH0530141B2 (en
Inventor
Toshio Ishikawa
石川 祀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1748984A priority Critical patent/JPS60162458A/en
Publication of JPS60162458A publication Critical patent/JPS60162458A/en
Publication of JPH0530141B2 publication Critical patent/JPH0530141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To readily magnetize by disposing an armature inside a high energy magnet mounted on the inner periphery of the first yoke when magnetizing, magnetizing it and then engaging the second yoke with the outer periphery of the armature. CONSTITUTION:A magnetizing coil 5 which flows a magnetic flux 9 is wound on a U-shaped magnetizing core 4, and a magnetizing power source 6 is connected through a switch 7. The first yoke 2b is inserted into the hole end of the core 4, two arcuate magnets 1a of high energy magnets are mounted on the inner periphery of the yoke, and an armature 3 on which an armature winding 3a is wound is disposed in the space between the magnets 1a. A motor 8 is formed of the yokes 2b, the magnet 1 and the armature 3. After the switch 7 is closed to magnetize the magnets 1a, the yoke 2a in which the magnets 1a are secured to the inner periphery is removed together with the armature 3. A cylindrical yoke 15 is engaged fixedly in coincidence with the magnets 1a with the outer periphery of the yoke 2b to manufacture a motor 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1角エネルギー磁石を利用しようとする発電機
、電動機に用いられる永久磁石式回転電機の改良構造お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improved structure of a permanent magnet rotating electric machine used in a generator or electric motor that utilizes a uniangular energy magnet, and a method for manufacturing the same.

〔従来技術〕[Prior art]

従来のものは第1図に示すように、着磁コア4に磁束9
を流ず着磁コイル5が巻かれ、この着磁コイル5にはス
イッチ7を介して着磁電源6が接続されている装置があ
り、この装置の着磁コア4内に、ヨーク2の内周に円弧
状の磁石1が固着され、これら磁石1の間に電機子巻線
3aを巻いた電機子3を挿入する。そして磁石1、ヨー
ク2および電機子3でモータ8を形成してから、スイッ
チ7を介して着磁電源6から電流を供給することで磁石
1を着磁する。
As shown in Fig. 1, the conventional type has a magnetic flux 9 in the magnetized core 4.
There is a device in which a magnetizing coil 5 is wound without flowing current, and a magnetizing power source 6 is connected to the magnetizing coil 5 via a switch 7. An arc-shaped magnet 1 is fixed to the periphery, and an armature 3 having an armature winding 3a wound thereon is inserted between these magnets 1. After forming a motor 8 with the magnet 1, yoke 2, and armature 3, the magnet 1 is magnetized by supplying current from the magnetizing power source 6 via the switch 7.

ところが、上述した従来のものでは、磁石1に従来使用
されている例えばフェライト磁石の代わりに小型、軽■
でかつ強力な磁力を保持できる高エネルギー磁石を用い
ると、高エネルギー磁石の磁力が強いために第3図に示
すようにヨーク2aの厚さを従来よりも厚くして電動機
を構成する必要があり、かつ第2図のB−11曲線図に
示すように、従来のフェライト磁石の着磁状態を示す曲
線13におりるフェライト磁石を100%着磁する着磁
磁界よりも高エネルギー磁石の着磁状態を示す曲線14
におりる高エネルギー磁石を100%着磁する着磁磁界
の方が多く必要であるので、磁石1aを着磁しようとす
る際に、第3図に示ずように着磁電源6をスイッチ7を
介してコイル5に接続すると磁束9が着磁コア4内を流
れ、モータ8内ではヨーク2aを流れ通路11と磁石1
a、電機子3および磁石1aを流れる通路12とに分流
して流れるが、コーク2aの幅へが大きくなったため通
路11に流れる漏れ磁束が比較的多くなり、磁石1aに
磁束が流れに<<、磁石1aを十分に着磁しようとする
ときわめて容量の大きい着磁装置が必要であり、着磁し
にくいという欠点がある。又、高エネルギー磁石を使用
しているため、この磁石1aから出る磁束および電)幾
子3がら出る磁束を流すために充分な磁路断面債をもつ
ヨーり2aが必要となるが、これによりヨーク2aの容
量が人となり軽量化が困難であった。
However, in the conventional magnet 1 described above, instead of the conventionally used ferrite magnet, for example, a small and light magnet is used.
When using a high-energy magnet that can hold a large and strong magnetic force, it is necessary to construct an electric motor by making the yoke 2a thicker than before, as shown in Fig. 3, because the magnetic force of the high-energy magnet is strong. , and as shown in the B-11 curve diagram in Figure 2, the magnetization of the magnet is higher energy than the magnetization field that magnetizes the ferrite magnet 100%, which is curve 13 showing the magnetization state of the conventional ferrite magnet. Curve 14 showing the state
Since a larger magnetizing magnetic field is required to 100% magnetize the high-energy magnet that falls, when trying to magnetize the magnet 1a, the magnetizing power source 6 is switched to When connected to the coil 5 through
a, the flow is divided into the passage 12 flowing through the armature 3 and the magnet 1a, but since the width of the coke 2a has become larger, the leakage magnetic flux flowing into the passage 11 becomes relatively large, and the magnetic flux flows through the magnet 1a. However, in order to sufficiently magnetize the magnet 1a, a magnetizing device with an extremely large capacity is required, which has the drawback that magnetization is difficult. In addition, since a high-energy magnet is used, a yaw 2a with a sufficient magnetic path cross section is required to flow the magnetic flux emitted from the magnet 1a and the magnetic flux emitted from the electric wire 3. The capacity of 2a was large, making it difficult to reduce the weight.

〔発明の目的〕[Purpose of the invention]

本発明は、軽量な構造を有し、又、高エネルギー磁石を
使用しても十分にかつ容易に着磁することのできる永久
磁石式回転電機の構造およびその製造方法を提供するこ
とを目的とする。
An object of the present invention is to provide a structure of a permanent magnet rotating electric machine that has a lightweight structure and can be sufficiently and easily magnetized even when using high-energy magnets, and a method for manufacturing the same. do.

(発明の概要) このため、本発明は第1のヨークと第2のヨークを自し
、高エネルギー磁石を着磁する際には、第1のヨークの
内周に装着した高エネルギー磁石の内側に電機子を配置
し、着磁した後に、第1のり−りの外周に第2のヨーク
を嵌合するものである。
(Summary of the Invention) For this reason, the present invention includes a first yoke and a second yoke, and when magnetizing a high-energy magnet, the inside of the high-energy magnet attached to the inner circumference of the first yoke is After arranging the armature and magnetizing it, the second yoke is fitted around the outer periphery of the first beam.

〔実施例」 以T;4C発明を図に示す実施例について説明する。〔Example" Hereinafter, embodiments of the 4C invention shown in the drawings will be described.

第4図において、コの字型の着磁コア4に磁束9を流す
着磁コイル5が巻かれ、この着磁コイル5には開閉スイ
ッチ7を介して着磁電源6が接続され−でいる装置があ
る。そしてこの装置の着磁コア4の開口端に、第1のヨ
ークであるヨーク2bの内周に高エネルギー研石である
2つの円弧状の磁石1aを装着し、これら磁石1aの間
の空間に電機子巻線3aを巻いた電機子3を配置した上
で、ヨーク2bを着磁コア4の開口端に1ift大して
いる。
In FIG. 4, a magnetizing coil 5 for flowing a magnetic flux 9 is wound around a U-shaped magnetizing core 4, and a magnetizing power source 6 is connected to this magnetizing coil 5 via an on/off switch 7. There is a device. Two arc-shaped magnets 1a, which are high-energy abrasive stones, are attached to the inner circumference of a yoke 2b, which is a first yoke, at the open end of the magnetized core 4 of this device, and the space between these magnets 1a is The armature 3 having the armature winding 3a wound thereon is arranged, and the yoke 2b is extended by 1ift to the open end of the magnetized core 4.

そしてヨーク2b、磁石1および電機子3でモータ8を
形成しCいる。またこのヨーク2bの厚さBは、第4図
の如く磁石laG着磁しているときと着磁を終rしでコ
ア4からモータ8を抜き出したときでバーミアニス係数
が極端に減少しないことを考慮の一ヒで、すなわち、コ
ア4からモータ8を1友き出したときに減磁される量を
考1急の上でヨーク2bの厚さB:@:最小でかつ充分
な値に設定している。
The yoke 2b, the magnet 1, and the armature 3 form a motor 8. In addition, the thickness B of this yoke 2b is determined so that the Vermian anis coefficient does not decrease excessively when the magnet laG is magnetized and when the motor 8 is extracted from the core 4 after magnetization. After considering the amount of demagnetization when one motor 8 is pulled out from the core 4, set the thickness B of the yoke 2b to a minimum and sufficient value. are doing.

次に1−記措成においζその作動を説明する。開閉スイ
、チアを閉じ゛ζ着磁電源6からコイル5に電流を供給
すると、着磁コア4に磁束9が流れ、この磁束9はモー
タ8内ではヨーク2bを流れる通路11と磁石1a、電
機イ3および磁石1aを流れる通路12とに分流して流
れる。そしてヨーク2bO)厚さB+:最小でかつ充分
な値に設定しているため、コーク2bを流れる通路11
はすぐに飽和しζしまい、磁束9はほとんど通路10を
流れて、磁石1aの着磁を確実に充分に行なうことがで
きる。
Next, the operation will be explained in 1-Section ζ. When the opening/closing switch and the chia are closed, a current is supplied from the magnetizing power source 6 to the coil 5, magnetic flux 9 flows through the magnetizing core 4, and within the motor 8, this magnetic flux 9 flows through the path 11 flowing through the yoke 2b, the magnet 1a, and the electric machine. 3 and the passage 12 which flows through the magnet 1a. And yoke 2bO) Thickness B+: Since it is set to the minimum and sufficient value, the passage 11 flowing through the cork 2b
is quickly saturated and ζ, and most of the magnetic flux 9 flows through the path 10, ensuring sufficient magnetization of the magnet 1a.

そして、磁石1aを着磁した後に、磁石laを内周に固
着しであるヨーク2bを電機子3と一緒に取り出す。次
に第5図、第6図にしめすように第1のヨークであるヨ
ーク2bの外周に、磁石1aの軸方向の長さとほぼ同し
寸法である軸方向の長さを持つ第2のヨークとなる円筒
状の田−り15を磁石1aに一致させ、すなわち重なる
ように嵌合し、固定している。また、ヨーク15の半径
方向の厚さCつまり磁路の幅を変化させることにより、
モータとして働くときの磁束の調整が出来、かつ磁石1
aの軸方向の長さと同じ寸法である軸方向の長さを持つ
ヨーク15を磁石1aと対応して嵌合し、固定しCいる
ため、第2のヨークを小さく構成でき軽量化が達成でき
る。
After the magnet 1a is magnetized, the yoke 2b with the magnet la fixed to its inner periphery is taken out together with the armature 3. Next, as shown in FIGS. 5 and 6, a second yoke having an axial length that is approximately the same as the axial length of the magnet 1a is attached to the outer periphery of the first yoke 2b. A cylindrical field 15 is fitted and fixed in alignment with the magnet 1a, that is, in an overlapping manner. Also, by changing the radial thickness C of the yoke 15, that is, the width of the magnetic path,
Magnetic flux can be adjusted when working as a motor, and magnet 1
Since the yoke 15, which has the same axial length as the axial length of magnet a, is fitted and fixed in correspondence with the magnet 1a, the second yoke can be made smaller and lighter. .

また、第8図の磁石の特性図において、MAは商エネル
ギー磁石、MI3はフェライト磁石のそれぞれの減磁特
性曲線を示している。これから判明することは、高エネ
ルギー磁石(例えば住友特殊金属(イ1)の商品名1’
 N[0flAX−35J等の希土類磁石)は残留磁束
密度−13が大きいばかりではなく抗磁力−IIがきわ
めて大きい。
In the magnet characteristic diagram of FIG. 8, MA indicates the demagnetization characteristic curve of the quotient energy magnet, and MI3 indicates the demagnetization characteristic curve of the ferrite magnet. What will become clear from this is that high-energy magnets (for example, Sumitomo Special Metals (I1) product name 1'
N [rare earth magnets such as 0flAX-35J) not only has a large residual magnetic flux density of -13 but also has an extremely large coercive force -II.

従っ一ζ、第4図の如く第1のヨーク2bのままご2′
6俳した後に、ごのモータ8を着磁コア4から取り出し
た時に、磁石1aから見たときの磁路のパーミアンス係
数が減少しても極端に残留磁束密度Bが低F(減磁)す
ることがない。
Therefore, as shown in Fig. 4, the first yoke 2b remains 2'.
When the motor 8 is taken out from the magnetized core 4 after 6 hours, the residual magnetic flux density B becomes extremely low (demagnetized) even though the permeance coefficient of the magnetic path as seen from the magnet 1a decreases. Never.

〔その他の実施1ダ11) 上述した一実施例のものでは、第2のヨークであるヨー
クj5を円筒状としているが、第7図に示すように磁石
に対応した形状の円弧状の第2のヨーク15aとL5b
を製作して、これをヨーク2b1.に取イ]リバンドや
接着剤等を利用してヨーク2bの外周に固着してもよい
[Other Embodiments 1/11] In the embodiment described above, the second yoke j5 is cylindrical, but as shown in FIG. Yoke 15a and L5b
Fabricate this and attach it to yoke 2b1. It may also be fixed to the outer periphery of the yoke 2b using a ribbon, adhesive, or the like.

なお、本発明でいう高エネルギー磁石とは残留磁束密度
と保持力の大きい例えば希土類を使用した磁石をいう。
Note that the term "high energy magnet" as used in the present invention refers to a magnet using, for example, a rare earth element, which has a large residual magnetic flux density and a large coercive force.

又特に希土類磁石のうちでも減磁曲線が第8図のMAの
如く略−直線状になるものが通ずる。
In particular, among rare earth magnets, those whose demagnetization curve is approximately linear like MA in FIG. 8 are common.

〔発明の効果〕〔Effect of the invention〕

以上述べたように第1番目の発明においては、高エネル
ギー磁石を内周に装着し、がっ着磁時に(すこ用される
第1のヨークと、この第1のヨークの外周に高エネルギ
ー磁石の軸方向の長さとほぼ等しい寸法である軸方向の
長さをもち、がっ着磁後に組立てられる第2のヨークを
嵌合し、第1のヨークと第2のヨークとの2重構造をも
つ回転電機としたから、第2のヨークは第1のヨークに
比べて刈法長さが小さくて済むために軽量化することが
でき、かつ第2のヨークの半径方向の厚さを変えるのみ
で回転電機を流れる磁束を調整することができ、かつ、
高エネルギー磁石の特長を充分に発揮さ・lるごとがで
きる回転電機を提供できるという効果がある。
As described above, in the first invention, a high-energy magnet is mounted on the inner periphery, and a high-energy magnet is attached to the first yoke (which is used slightly during magnetization) and the high-energy magnet is attached to the outer periphery of this first yoke. The second yoke, which has an axial length approximately equal to the axial length of the first yoke and is assembled after being magnetized, is fitted to form a double structure of the first yoke and the second yoke. Since the rotating electric machine has a rotary electric machine, the second yoke has a shorter cutting length than the first yoke, making it lighter in weight, and only changing the thickness of the second yoke in the radial direction. can adjust the magnetic flux flowing through the rotating electric machine, and
This has the effect of providing a rotating electrical machine that fully utilizes the features of high-energy magnets and that can be used throughout the day.

第2番1」の発明においては、高エネルギー磁石を内周
に装着したmlのヨークと、高エネルギー磁石の内側に
配置した電機子を一体として、高エネルギー磁石を磁化
させた後に、第1のヨークの外周に第2のヨークを嵌合
する方法としたから、高エネルギー磁石を容易に着磁で
き、高エネルギー磁石を使用した回転電機を小型化出来
、また高エネルギー磁石を着磁する着磁装置を小型化出
来るという優れた効果がある。
In the invention No. 2, No. 1, a ml yoke with a high-energy magnet attached to its inner periphery and an armature placed inside the high-energy magnet are integrated, and after magnetizing the high-energy magnet, the first Since the second yoke is fitted to the outer periphery of the yoke, high-energy magnets can be easily magnetized, rotating electric machines using high-energy magnets can be downsized, and magnetization for magnetizing high-energy magnets is also possible. This has the excellent effect of making the device smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁石を用いた回転電機と″4磁装置の正
面図、第2図はフェライト磁イjおよび101エネルギ
ー磁石の磁界の強さに対する磁束密度の特性図、第3図
は高エネルギー磁石を用いた従来の回転電機と着磁装置
の内の磁束の流れを示す正面模式図、第4図は本発明の
一実施例に係わる高エネルギー磁石を用いた回転電機と
着磁装置および磁束の流れを示す正面模式図、第5図は
本発明の一実施例におりる回転電機の第1のヨークに第
2のヨークを嵌合する時の分解斜視図、第6図は本発明
の一実施例における高エネルギー磁石を用いた回転電機
の完成後の正面から見た断面図、第7図は本発明のその
他の実施例における第2のヨークを示す斜視図、第8図
はフェライト磁石および10iエネルギー磁石の逆磁界
に対する磁束密度の特性図である。 1a・・・高エネルギー磁石、2b・・・第1のヨーク
、3・・・電機子、15.15a、15b=−第2のヨ
ーク。 代理人弁理士 岡 部 隆 TM 1円 8 第2図 第4図 ・115図 ノ 第 71゛4 r、il 8図
Figure 1 is a front view of a rotating electric machine using conventional magnets and a four-magnetic device, Figure 2 is a characteristic diagram of magnetic flux density versus magnetic field strength for ferrite magnets and 101 energy magnets, and Figure 3 is a FIG. 4 is a schematic front view showing the flow of magnetic flux in a conventional rotating electrical machine and magnetizing device using energy magnets, and FIG. FIG. 5 is an exploded perspective view when the second yoke is fitted to the first yoke of a rotating electrical machine according to an embodiment of the present invention, and FIG. 6 is a schematic front view showing the flow of magnetic flux. FIG. 7 is a perspective view showing a second yoke in another embodiment of the present invention, and FIG. It is a characteristic diagram of magnetic flux density with respect to a reverse magnetic field of a magnet and a 10i energy magnet. 1a... High energy magnet, 2b... First yoke, 3... Armature, 15.15a, 15b=-second Yoke of. Agent Patent Attorney Takashi Okabe TM 1 yen 8 Figure 2 Figure 4, Figure 115, Figure 71゛4 r, il Figure 8

Claims (1)

【特許請求の範囲】 (11高エネルギー磁石を内周に装着した第1のヨーク
と、前記第1のヨークの外周に前記高エネルギー磁石の
軸方向の長さと略等しい軸方向の長さをもつ第2のヨー
クを嵌合し、前記第1のヨークと前記第2のヨークとの
2重構造のヨークとし、かつ、第1のヨークは前記高エ
ネルギー磁石の着磁に使用され、前記第2のヨークは着
磁終了後の磁束通路として使用されることを特徴とする
永久磁石式回転電機。 (2)高エネルギー磁石を内周に装着した第1のヨーク
と、前記高エネルギー磁石の内側に配置した電機子を一
体として、前記高エネルギー磁石を磁化させた後に、前
記第1のヨークの外周に前記第2のヨークを嵌合するこ
とを特徴とした永久磁石式回転電機の製造方法。
[Scope of Claims] (11) A first yoke having a high-energy magnet attached to its inner circumference; and an outer circumference of the first yoke having an axial length that is approximately equal to the axial length of the high-energy magnet. A second yoke is fitted to form a double-structured yoke of the first yoke and the second yoke, and the first yoke is used for magnetizing the high-energy magnet, and the second yoke is A permanent magnet rotating electric machine characterized in that the yoke is used as a magnetic flux path after magnetization. (2) A first yoke with a high-energy magnet attached to its inner circumference, and a first yoke with a high-energy magnet attached to the inner circumference, and A method for manufacturing a permanent magnet rotating electrical machine, comprising: integrating the arranged armatures and magnetizing the high-energy magnet; and then fitting the second yoke to the outer periphery of the first yoke.
JP1748984A 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof Granted JPS60162458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1748984A JPS60162458A (en) 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1748984A JPS60162458A (en) 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60162458A true JPS60162458A (en) 1985-08-24
JPH0530141B2 JPH0530141B2 (en) 1993-05-07

Family

ID=11945413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1748984A Granted JPS60162458A (en) 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60162458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136014A (en) * 2000-10-24 2002-05-10 Toshiba Corp Rotor for motor and manufacturing method for the rotor
JP2003289654A (en) * 2002-03-28 2003-10-10 Mitsuba Corp Assembling method for motor
JP2017135966A (en) * 2016-01-21 2017-08-03 アスモ株式会社 Stator and manufacturing method of stator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136014A (en) * 2000-10-24 2002-05-10 Toshiba Corp Rotor for motor and manufacturing method for the rotor
JP2003289654A (en) * 2002-03-28 2003-10-10 Mitsuba Corp Assembling method for motor
JP2017135966A (en) * 2016-01-21 2017-08-03 アスモ株式会社 Stator and manufacturing method of stator

Also Published As

Publication number Publication date
JPH0530141B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
EP1193724B1 (en) Eddy current retarder comprising a magnet consisting of an electromagnet and a permanent magnet
US4727273A (en) Permanent magnet type electric motor
EP0215441A2 (en) Miniature electric rotating machine
JPS60162458A (en) Permanent magnet type rotary electric machine and manufacture thereof
JPS5989560A (en) Permanent magnet field type dc machine
JP7267024B2 (en) Halbach array rotor, motor, electric compressor, and manufacturing method thereof
GB2303255A (en) Magnetic reluctance motor
JP2734540B2 (en) Ignition coil
JP2002136086A (en) Compound magnet of electromagnet and permanent magnet
JPH03195343A (en) Magnetizer for step motor
JP3664271B2 (en) Multipolar magnetizing yoke
JPH06165448A (en) Method of magnetizing field iron core fitted with claw
JPS5915244Y2 (en) Stator of rotating electric machine
JPS592555A (en) Permanent magnet field dc machine
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JPS60219951A (en) Magnet type motor
JP2000040616A (en) Orienting device for annular permanent magnet and polarizing device for the same
JPH0246707A (en) Electromagnet
JPH02266859A (en) Stator for dc machine
JPS642539Y2 (en)
JPS6311893Y2 (en)
JPS5869454A (en) Permanent magnet type rotary electric machine
JPH0638413A (en) Motor
JPH1118387A (en) Method for reduction of reverse turn force of generator