JPS6016204A - Deaerator - Google Patents

Deaerator

Info

Publication number
JPS6016204A
JPS6016204A JP12230683A JP12230683A JPS6016204A JP S6016204 A JPS6016204 A JP S6016204A JP 12230683 A JP12230683 A JP 12230683A JP 12230683 A JP12230683 A JP 12230683A JP S6016204 A JPS6016204 A JP S6016204A
Authority
JP
Japan
Prior art keywords
pressure
deaerator
steam
turbine
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12230683A
Other languages
Japanese (ja)
Other versions
JPH0446322B2 (en
Inventor
仲田 和郎
荘野 尚志
英昭 鈴木
耕治 桑原
剛 吉岡
栄一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Kansai Electric Power Co Inc, Kyushu Electric Power Co Inc, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP12230683A priority Critical patent/JPS6016204A/en
Publication of JPS6016204A publication Critical patent/JPS6016204A/en
Publication of JPH0446322B2 publication Critical patent/JPH0446322B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Saccharide Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は蒸気発電プラント等に使用する脱気器の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in deaerators used in steam power plants and the like.

従来の脱気器を第1図により説明すると、(1)は復水
供給管、(2)は脱気器、(2′)は貯水タンク、(3
)は給水ポンプ、(4)は蒸気発生設備、(5)はター
ビン、(6)は脱気器用加熱蒸気流量制御弁で、脱気器
(2)は復水供給管(1)から流入する復水なタービン
(5)の抽気蒸気により飽和温度まで加熱して脱気する
。また給、7にポンプ(3)は脱気した水を蒸気発生設
備(4)へ送るようになっている。
To explain a conventional deaerator using Fig. 1, (1) is a condensate supply pipe, (2) is a deaerator, (2') is a water storage tank, and (3) is a deaerator.
) is the water supply pump, (4) is the steam generation equipment, (5) is the turbine, (6) is the heating steam flow rate control valve for the deaerator, and the deaerator (2) is supplied with condensate from the condensate supply pipe (1). It is heated to saturation temperature and degassed by steam extracted from the condensate turbine (5). In addition, a pump (3) in the supply port 7 sends deaerated water to the steam generation equipment (4).

前記脱気器(2)を含む系において、タービン(5)を
通過するタービン通過蒸気流量が急激に減少すると、加
熱蒸気源であるタービン(5)の抽気点(7)の圧力が
急激に減少するため、チェック弁(8)が閉じて、抽気
蒸気が流れなくなる。このとき、脱気器(2)では加熱
が行なわれないため、脱気器(2)および貯水タンク(
2′)の圧力も低下する。脱気器圧力が急速に低下する
と、給水ポンプ(3)に有効圧吸込水頭(NPSH)の
不足が生じる。次に有効圧吸込水頭が低下する理由を説
明する。前記脱気器(2)を含む系におい、て、貯水タ
ンク(2′)の水は、飽和状態にあるので、貯水タンク
(2′)の出口温度はタンク圧力Pに対応する飽和温度
になっており、タンク圧力が一定値で安定しているとき
は、タンク出口とポンプ入口との高低差H分に相当する
温度だけポンプ入口はサブクール状態になっている。タ
ンク圧力が変化するときは、水がタンクからポンプまで
の配管を流れる流動遅れにより、タンク温度とポンプ入
口温度との間に温度差が生ずる。
In the system including the deaerator (2), when the flow rate of steam passing through the turbine (5) suddenly decreases, the pressure at the extraction point (7) of the turbine (5), which is the heating steam source, decreases rapidly. Therefore, the check valve (8) closes and no bleed steam flows. At this time, since heating is not performed in the deaerator (2), the deaerator (2) and the water storage tank (
2') pressure also decreases. A rapid drop in deaerator pressure results in a lack of effective pressure suction head (NPSH) in the feedwater pump (3). Next, the reason why the effective pressure suction head decreases will be explained. In the system including the deaerator (2), the water in the water storage tank (2') is in a saturated state, so the outlet temperature of the water storage tank (2') becomes the saturation temperature corresponding to the tank pressure P. When the tank pressure is stable at a constant value, the pump inlet is in a subcooled state by a temperature corresponding to the height difference H between the tank outlet and the pump inlet. When the tank pressure changes, a temperature difference occurs between the tank temperature and the pump inlet temperature due to the flow delay as water flows through the piping from the tank to the pump.

即ち、貯水タンク(2′)の圧力が第2図(イ)に示す
ように減少したときには、タンク出口温度とポンプ入口
温度との変化が第2図03)のようになる。配管容積を
V(♂)とし、ポンプ流量をQ Cm”/5=C)とす
ると、配管での遅れ時間τは、(1)式により表わされ
る。
That is, when the pressure in the water storage tank (2') decreases as shown in FIG. 2(a), the change in the tank outlet temperature and pump inlet temperature becomes as shown in FIG. 2(03). When the pipe volume is V(♂) and the pump flow rate is Q Cm''/5=C), the delay time τ in the pipe is expressed by equation (1).

τ= V/Q (lee) ・・・・・・・・・・・・
・・・(1)式により表わされる。
τ= V/Q (lee) ・・・・・・・・・・・・
... is expressed by equation (1).

a’r、 = (dT )・互 ・・・・・・・・・(
2)dt dP dt dT なお(j「)は水の物性値として決まる定数である。
a'r, = (dT)・mutual ・・・・・・・・・(
2) dt dP dt dT Note that (j') is a constant determined as a physical property value of water.

タンク出口温度が雪の速度で変化した場合、dt この変化がτだけ遅れズポンプ入口に到達するので、タ
ンク出口温度とポンプ入口温度との温度差ΔTは、(3
)式により得られる。
When the tank outlet temperature changes at the speed of snow, dt This change reaches the pump inlet with a delay of τ, so the temperature difference ΔT between the tank outlet temperature and the pump inlet temperature is (3
) is obtained by the formula.

dT dP V ΔT=A1・τ=<−)−X・−・・・・・・・・・(
3)(1tdP clt Q。
dT dP V ΔT=A1・τ=<−)−X・−・・・・・・・・・・・・(
3) (1tdP clt Q.

第2図但)に示したように温度差が生じたときのポンプ
入ロサブクール度、すなわち、ポンプ入口圧力の飽和温
度−ポンプ入口温度は第2図(C1に示すように変化す
る。圧力変化がないときは、貯水タンク(2′)からポ
ンプ(3)入口までの静水頭による加圧が行なわれるの
で、加圧量は、(4)式により表わされる。
As shown in Figure 2 (C1), when a temperature difference occurs, the pump inlet subcooling degree, that is, the saturation temperature of the pump inlet pressure - the pump inlet temperature changes as shown in Figure 2 (C1). If not, pressurization is performed by the static water head from the water storage tank (2') to the inlet of the pump (3), so the amount of pressurization is expressed by equation (4).

ΔP = H/ v x 10−’ (kIF/cTr
L” ) ・−=・・・・・・・・・(4)ただし、H
:高さくml、−:水の比容積(slAII)。
ΔP = H/v x 10-' (kIF/cTr
L") ・-=・・・・・・・・・(4) However, H
: Height in ml, -: Specific volume of water (slAII).

ポンプ入口圧力PPはPT+ΔPであり、ポンプ入口圧
力の飽和温度Tsatは(5)式により得られる。
The pump inlet pressure PP is PT+ΔP, and the saturation temperature Tsat of the pump inlet pressure is obtained from equation (5).

dT ・・・・−・・・・・・・・・・(5)=TT”
dPΔP ただし、TT:タンクの温度* fT(Pl”圧力から
飽和温度をめる関数。
dT・・・・−・・・・・・・・・・(5)=TT”
dPΔP However, TT: Tank temperature * fT (Pl) A function that calculates the saturation temperature from the pressure.

圧力変化がない場合、ポンプ入口温度はタンク温度に等
しいからポンプ入ロサブクール度Tsubは、(6)式
になる。
When there is no pressure change, the pump inlet temperature is equal to the tank temperature, so the pump inlet subcooling degree Tsub is expressed by equation (6).

dT dTH−4 Tsub = dPΔP=7.xlo ・・−・−・−
(6)圧力変化がある場合は、タンク出口温度とポンプ
入口温度との間に(3)式の温度差が生じるので、ポン
プ入ロサブクール度Tsubは(6)式に(3)式の温
度差ΔTを加えたものになる。
dT dTH-4 Tsub = dPΔP=7. xlo ・・−・−・−
(6) When there is a pressure change, there will be a temperature difference between the tank outlet temperature and the pump inlet temperature as shown in equation (3). It becomes the sum of ΔT.

NPSHはポンプ入口圧力とポンプ入口温度の飽和圧力
との差を水頭に換算したもので、(8)式により与えら
れる。
NPSH is the difference between the pump inlet pressure and the saturation pressure at the pump inlet temperature converted into a water head, and is given by equation (8).

NPSH=(Pp−Psat)vxlo −−−−・−
−−−−−・(8ン差圧”P ”satは(9)式で近
似される。
NPSH=(Pp−Psat)vxlo −−−−・−
-------·(8) The differential pressure "P"sat is approximated by equation (9).

dP PP−Psat ” 67 Tsub ”−・・・=・
・・(9)(9)式のTsubに(7)式を代入し、さ
らに(8)式に(9)式を代入すると、有効圧吸込水頭
(NPSH)は、a1式に近似することになる。
dP PP-Psat ” 67 Tsub ”−・・・=・
...(9) By substituting equation (7) into Tsub in equation (9) and further substituting equation (9) into equation (8), the effective pressure suction head (NPSH) will be approximated by equation a1. Become.

NPSH= H−」晒’−νx104 ・・・・・・・
・・・・・翰t Q 第2図の)は、有効圧吸込水頭の変化の様子を示してい
る。(10)式であきらかなようにNPSHは、減圧速
度にほぼ比例して低下する。が、従来は。
NPSH=H-'-vx104...
・・・・・・Kan t Q) in Figure 2 shows the changes in the effective pressure suction head. As is clear from equation (10), NPSH decreases approximately in proportion to the rate of pressure reduction. But conventionally.

脱気器(2)の急激な圧力低下を防止するために、ター
ビン蒸気流量が大巾に減少するときにだけ、蒸気流量制
御弁(6)を自動的に全開にして加熱蒸気を送るように
、また運転員が運転状態を監視しながら蒸気流量制御弁
(6)を閉じるようにしている。
In order to prevent a sudden pressure drop in the deaerator (2), the steam flow control valve (6) is automatically fully opened to send heated steam only when the turbine steam flow rate decreases significantly. Also, the operator closes the steam flow control valve (6) while monitoring the operating state.

しかし前記蒸気流量制御弁(6)のON・OFF 制御
では、同蒸気流量制御弁(6)を経て脱気器(2)へ導
く加熱蒸気の導入量を脱気器圧力の変動に応じて変える
という制御が不可能で、加熱蒸気導入量が多すぎたり、
少なすぎたりする。また蒸気流量制御弁(6)を急速に
閉じると、脱気圧力が再び急激に低下するので、運転員
は運転状態を監視しながら蒸気流量制御弁(6)を慎重
に操作して閉じ°る必要があり、運転員に大きな負担を
かけるという問題があった。
However, in the ON/OFF control of the steam flow control valve (6), the amount of heated steam introduced to the deaerator (2) via the steam flow control valve (6) is changed in accordance with fluctuations in the deaerator pressure. It is impossible to control this, and the amount of heated steam introduced is too large.
Maybe too little. Also, if the steam flow control valve (6) is closed rapidly, the degassing pressure will drop again rapidly, so the operator must carefully operate and close the steam flow control valve (6) while monitoring the operating status. However, there was a problem in that it placed a heavy burden on the operator.

本発明は前記の問題点に対処するもので、流入する復水
なタービン通過蒸気により飽和温度まで加熱して脱気す
る脱気器において、前記タービン通過蒸気の流量が急減
するときにタービンな経スに脱気器へ導く加熱蒸気の導
入量を油気点圧力と脱気器圧力との差圧に比例して変化
させるように加熱蒸気流量制御弁を介して制御する加熱
蒸気制御装置を具えていることを特徴とした脱気器に係
り、その目的とする処は、加熱蒸気を運転員の操作を必
要とせずに蒸気流量制御弁を経て脱気器へ脱気器圧力の
変動に対応するよ5IC導入できる改良された脱気器を
供する点にある。
The present invention deals with the above-mentioned problem, and in a deaerator that heats the inflowing condensed turbine-passing steam to a saturation temperature and degass the turbine-passing steam, when the flow rate of the turbine-passing steam suddenly decreases, the turbine The system is equipped with a heated steam control device that controls the amount of heated steam introduced to the deaerator in proportion to the differential pressure between the oil point pressure and the deaerator pressure via a heated steam flow rate control valve. The purpose of this deaerator is to supply heated steam to the deaerator through a steam flow rate control valve without requiring operator operation to accommodate fluctuations in deaerator pressure. The purpose of this invention is to provide an improved deaerator that can be equipped with 5 ICs.

次に本発明の脱気器を第3.4図に示す一実施例により
説明すると、第3図の(2)は脱気器、(2/)は貯水
タンク、(5)はタービン、(6)は加熱蒸気流量制御
弁、(7)はタービン(5)の抽気点、(8)はチェッ
ク弁、(10)は抽気点と脱気器との差圧を検出する検
出器で、同検出器(10)により検出された差圧は加熱
蒸気制御装置(11)への入力となる。このとき、同加
熱蒸気制御装置(11)は、加熱蒸気流量制御弁(6)
の開度指令信号を発信する。第4図に加熱蒸気制御装置
(11)の詳細を示した。検出された差圧は加減算器(
20)の加算側入力となる。また加減算器(20)の減
算側入力は積分器(22)の出力Xである。
Next, the deaerator of the present invention will be explained using an embodiment shown in Fig. 3.4. In Fig. 3, (2) is the deaerator, (2/) is the water storage tank, (5) is the turbine, ( 6) is a heating steam flow rate control valve, (7) is the bleed point of the turbine (5), (8) is a check valve, and (10) is a detector that detects the differential pressure between the bleed point and the deaerator. The differential pressure detected by the detector (10) becomes an input to the heating steam control device (11). At this time, the heating steam control device (11) controls the heating steam flow rate control valve (6).
Sends an opening command signal. FIG. 4 shows details of the heating steam control device (11). The detected differential pressure is added to the adder/subtractor (
20) is the addition side input. Further, the subtraction side input of the adder/subtractor (20) is the output X of the integrator (22).

また加減算器(20)の出力εは速度制限器(21)に
入力され、εが大となったときは内部で設定された最大
速度tLr、Laxで制限される。速度制限器(21)
の出力Uは積分器(22)の入力となり、積分器(22
)は次式の積分を行なって、Xを出力する。
Further, the output ε of the adder/subtractor (20) is input to the speed limiter (21), and when ε becomes large, it is limited by the internally set maximum speed tLr, Lax. Speed limiter (21)
The output U of the integrator (22) becomes the input of the integrator (22).
) performs the integration of the following equation and outputs X.

x = / udt 積分器(22)の出力は弁開度指令制限器(23)の入
力となり、同弁開度指令制限器(23)では内部設定さ
れたy1□にその出力を制限する。弁開度指令制限器(
23)の出力は加熱蒸気制御装置(11)の出力でもあ
り、同加熱蒸気制御装置(11)の出力が加熱蒸気流量
制御弁(6)の開度指令となる。
x = / udt The output of the integrator (22) becomes an input to the valve opening command limiter (23), which limits its output to the internally set y1□. Valve opening command limiter (
The output of 23) is also the output of the heating steam control device (11), and the output of the heating steam control device (11) becomes the opening degree command of the heating steam flow rate control valve (6).

次に前記脱気器の作用を説明する。タービン通過蒸気流
量が急減して、抽気点(7)の圧力が低下したとき、脱
気器圧力の方が高くなり、逆止弁(8)Icよって蒸気
の流れが阻止される。第5図(aバ句に油気点(7)の
圧力と脱気器圧力の代表的な時間変化の様子を示した。
Next, the operation of the deaerator will be explained. When the steam flow rate passing through the turbine suddenly decreases and the pressure at the extraction point (7) decreases, the deaerator pressure becomes higher and the flow of steam is blocked by the check valve (8) Ic. Figure 5 (a) shows typical changes over time in the pressure at the oil point (7) and the deaerator pressure.

このとき、差圧検出器(10)は第5図(CJに示す差
圧信号を送出する。この第5図(C)の差圧信号に対す
る制御装置(11)の出力を第5図(d)に示した。抽
気点圧力が低下した直後は、差圧が大きいので、減算器
(20)の出力εは大となり、速度制限器(21)は最
大速度”7FLaMを出力する。積分器(22)はu1
□を時間積分するので、その出力Xは傾きが”ffLa
□の直線状に増加する。この状態が第5図(cL)の区
間1に対応している。差圧が大きい場合、Xはそれに応
じた大きさまで変化するが、弁開度制限器(23)の作
用により、最大弁開度y、□で制限される。この状態が
第5図(d)の区間2に対応している。脱気器圧力が減
少し、重圧が小さくなると、減算器(20)の出力εは
負となり、速度制限器(21)の出力Uも負となり、積
分器(22)の出力Xは低下し始める。差圧がさらに小
さくなり、はぼ0になると、積分器(22)の出力2も
ほぼ0となり、制御器出力yもはば0となる。この状態
が区間6である。加熱蒸気は制御出力にほぼ比例した量
となり、区間1では直線的に増加し、区間2では最大流
量となり、区間6で徐々に減少してほぼ0になる。
At this time, the differential pressure detector (10) sends out a differential pressure signal shown in FIG. 5 (CJ). The output of the control device (11) in response to this differential pressure signal in FIG. ). Immediately after the bleed point pressure decreases, the differential pressure is large, so the output ε of the subtractor (20) becomes large, and the speed limiter (21) outputs the maximum speed "7FLaM." 22) is u1
Since □ is integrated over time, the slope of the output X is “ffLa”
□ increases linearly. This state corresponds to section 1 in FIG. 5(cL). When the differential pressure is large, X changes to a corresponding magnitude, but is limited to the maximum valve opening y, □ by the action of the valve opening limiter (23). This state corresponds to section 2 in FIG. 5(d). When the deaerator pressure decreases and the heavy pressure becomes smaller, the output ε of the subtractor (20) becomes negative, the output U of the speed limiter (21) also becomes negative, and the output X of the integrator (22) begins to decrease. . When the differential pressure becomes even smaller and reaches almost 0, the output 2 of the integrator (22) also becomes almost 0, and the controller output y also becomes almost 0. This state is section 6. The amount of heating steam is almost proportional to the control output, increases linearly in section 1, reaches the maximum flow rate in section 2, and gradually decreases to almost zero in section 6.

次に、本発明の脱気器の効果を説明する。第6図の(3
0)は、加熱蒸気を導入しないときの脱気器圧力の過渡
変化を示している。すでに述べたように、給水ポンプの
NPSHは減圧速度にほぼ比例して減少するため、最大
減圧速度を最小にすることが重要である。この点、抽気
点(7)の圧力低下と同時に加熱蒸気流量制御弁(6)
を全開にする場合、脱気器圧力は第6図の(31)に示
すような過渡変化をする。即ち、加熱蒸気量が一定であ
るため、圧力は全体にもち上るが、最大減圧速度はほと
んど変わらない。しかし本発明の場合には、速度制限器
(21)の作用により、加熱蒸気量を徐々に増加させて
、最大減圧速度となる頃に最大蒸気量を加えることがで
きるので、第6図の(32)に示すように最大減圧速度
を小さくすることが可能になって、給水ポンプのNFS
Hを太き(できる。油気点圧力の変化中が大きいほど加
熱蒸気を多量に必要とし、変化中が小さいときは加熱蒸
気量は少量でよい。
Next, the effects of the deaerator of the present invention will be explained. (3) in Figure 6
0) shows the transient change in deaerator pressure when no heating steam is introduced. As previously mentioned, the NPSH of the feed water pump decreases approximately in proportion to the rate of pressure reduction, so it is important to minimize the maximum rate of pressure reduction. At this point, at the same time as the pressure at the bleed point (7) decreases, the heated steam flow rate control valve (6)
When fully opened, the deaerator pressure undergoes a transient change as shown in (31) in FIG. That is, since the amount of heated steam is constant, the pressure rises throughout, but the maximum decompression rate remains almost unchanged. However, in the case of the present invention, the amount of heating steam can be gradually increased by the action of the speed limiter (21), and the maximum amount of steam can be added around the time when the maximum decompression speed is reached. As shown in 32), it has become possible to reduce the maximum decompression speed, and the NFS of the water supply pump
The larger the change in oil point pressure, the more heating steam is required, and the smaller the change in oil point pressure, the smaller the amount of heating steam is required.

差圧変化中が小さいときは、減算器(20)速度制限器
(21)、積分器(22)の作用により、2も小さくな
り、制御器出力yの値も小さくなるので、加熱蒸気型が
少量となり、適切な蒸気量の制御が可能になって、従来
の欠点が解消される。また脱気器圧力が低下して、抽出
点圧力に近づくと、減算器(2o)、速度制限器(21
)、積分器(22)の作用によト加熱蒸気流量制御弁(
6)が徐々に絞られるので、運転員の操作が不用で、こ
の点でも従来の欠点が解消される。
When the differential pressure is changing small, 2 becomes small due to the actions of the subtractor (20), speed limiter (21), and integrator (22), and the value of the controller output y also becomes small, so the heating steam type is The amount is small, and the amount of steam can be appropriately controlled, eliminating the drawbacks of the conventional method. Also, when the deaerator pressure decreases and approaches the extraction point pressure, the subtractor (2o) and speed limiter (21
), the heating steam flow rate control valve (
6) is gradually narrowed down, so no operation by the operator is required, and in this respect too, the drawbacks of the conventional method are solved.

以上本発明を実施例につい【説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種種の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の脱気器を示す系統図、第2回位)(BJ
(G)(至)は給水ポンプの有効正吸込水頭が低下する
理由の説明図、第3図は本発明に係る脱気器の一実施例
を示す系統図、第4図は加熱蒸気制御装置の系統図、第
5.6図はその作用説明図である。 (1)・・・復水供給管、(2)・・・脱気器、(5)
・・・タービン、(6)・・・加熱蒸気流量制御弁、(
11)・・・加熱蒸気制御装置。 復代理人 弁理士 岡 本 重 文 外3名 供そ礼)かL!l:1伏 明腰 χ、)トベDド傅−)翅 揶叡雷委そ冨第3図 第4図 第5図 時 間 第1頁の続き 0発 明 者 山本栄− 高砂市荒井町新浜二丁目1番1 号三菱重工業株式会社高砂製作 所内 ■出 願 人 関西電力株式会社 大阪市北区中之島3丁目3番22 号 ■出 願 人 四国電力株式会社 高松市丸の内2番5号 @出 願 人 九州電力株式会社 福岡市中央区渡辺通2丁目1番 82号 ■出 願 人 日本原子力発電株式会社東京都千代田区
大手町1丁目6 番1号 ■出 願 人 三菱重工業株式会社 東京都千代田区丸の内2丁目5 番1号
Figure 1 is a system diagram showing a conventional deaerator, Part 2) (BJ
(G) (to) is an explanatory diagram of the reason why the effective positive suction head of the water supply pump decreases, Fig. 3 is a system diagram showing an embodiment of the deaerator according to the present invention, and Fig. 4 is a heating steam control device. The system diagram, Figure 5.6, is an explanatory diagram of its operation. (1)... Condensate supply pipe, (2)... Deaerator, (5)
... Turbine, (6) ... Heating steam flow rate control valve, (
11)... Heating steam control device. Sub-Agent Patent Attorney Shige Okamoto 3 persons) or L! 1: 1, 1, 2, 2, 2, 2, 2, 3, 4, 5, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, No. 1-1 Mitsubishi Heavy Industries, Ltd. Takasago Works ■Applicant Kansai Electric Power Co., Inc. 3-3-22 Nakanoshima, Kita-ku, Osaka ■Applicant Shikoku Electric Power Co., Inc. 2-5 Marunouchi, Takamatsu City @Applicant Kyushu Electric Power Co., Ltd. 2-1-82 Watanabe-dori, Chuo-ku, Fukuoka ■Applicant Japan Atomic Power Co., Ltd. 1-6-1 Otemachi, Chiyoda-ku, Tokyo ■Applicant Mitsubishi Heavy Industries, Ltd. Marunouchi, Chiyoda-ku, Tokyo 2-5-1

Claims (1)

【特許請求の範囲】[Claims] 流入する復水をタービン通過蒸気により飽和温度まで加
熱して脱気する脱気器において、前記タービン通過蒸気
の流量が急減するときにタービンな経ずに脱気器へ導く
加熱蒸気の導入量を抽気点圧力と脱気器圧力との差圧に
比例して変化させるように加熱蒸気流量制御弁を介して
制御する加熱蒸気制御装置を具えていることが特徴とし
だ脱気器。
In a deaerator that heats incoming condensate to a saturation temperature using turbine-passing steam and degasses it, when the flow rate of the turbine-passing steam suddenly decreases, the amount of heated steam introduced to the deaerator without passing through the turbine can be adjusted. A deaerator characterized by comprising a heating steam control device that is controlled via a heating steam flow rate control valve so as to change the pressure in proportion to the difference between the bleed point pressure and the deaerator pressure.
JP12230683A 1983-07-07 1983-07-07 Deaerator Granted JPS6016204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12230683A JPS6016204A (en) 1983-07-07 1983-07-07 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12230683A JPS6016204A (en) 1983-07-07 1983-07-07 Deaerator

Publications (2)

Publication Number Publication Date
JPS6016204A true JPS6016204A (en) 1985-01-28
JPH0446322B2 JPH0446322B2 (en) 1992-07-29

Family

ID=14832688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12230683A Granted JPS6016204A (en) 1983-07-07 1983-07-07 Deaerator

Country Status (1)

Country Link
JP (1) JPS6016204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659994A (en) * 1995-11-29 1997-08-26 Berkley, Inc. Braided flyline

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101101U (en) * 1977-01-20 1978-08-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101101U (en) * 1977-01-20 1978-08-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659994A (en) * 1995-11-29 1997-08-26 Berkley, Inc. Braided flyline

Also Published As

Publication number Publication date
JPH0446322B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
JP2801998B2 (en) Electronic equipment cooling device
US4552099A (en) Anticipatory boiler feedpump suction head controller system
JPS6016204A (en) Deaerator
JP2737884B2 (en) Steam turbine generator
JP2619066B2 (en) Deaerator water level control device
JPS5981402A (en) Controller for water level of deaerator
JPS6016203A (en) Deaerator
JPH0694208A (en) Water level controller for deaerator
JP2765637B2 (en) Steam turbine power generation equipment
JPH02161202A (en) Deaerator pressure control device in stram turbine
JP2692056B2 (en) Steam turbine equipment
JPS6112196B2 (en)
JP2504939Y2 (en) Boiler level controller
JPH0146684B2 (en)
JPS582505A (en) Controller for water level of deaerator
JPS58133503A (en) Controller for steam generating facility
JP2965607B2 (en) Steam turbine controller
JPS5924102A (en) Controller for internal water level of steam generator
JPS63169406A (en) Deaerator for steam turbine
JPS59110810A (en) Water level control device for steam turbine degasifier
JPS6242128B2 (en)
JPS62204194A (en) Pressure controller for drain tank of feedwater heater
JPS5954707A (en) Control method and device for steam turbine having turbine bypath system
JPS61138007A (en) Controller for water level and pressure of deaerator
JPS6066004A (en) Cooling system of power generator