JPS60161684A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS60161684A
JPS60161684A JP59018139A JP1813984A JPS60161684A JP S60161684 A JPS60161684 A JP S60161684A JP 59018139 A JP59018139 A JP 59018139A JP 1813984 A JP1813984 A JP 1813984A JP S60161684 A JPS60161684 A JP S60161684A
Authority
JP
Japan
Prior art keywords
lens
light emitting
projections
substrate
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59018139A
Other languages
Japanese (ja)
Other versions
JPH0634410B2 (en
Inventor
Hiroshi Okuda
奥田 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1813984A priority Critical patent/JPH0634410B2/en
Publication of JPS60161684A publication Critical patent/JPS60161684A/en
Publication of JPH0634410B2 publication Critical patent/JPH0634410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To facilitate the alignment and to realize reproducibly a high coupling coefficient against an optical fiber, by providing with a spherical or semi-spherical lens which contacts a semiconductor device substrate and three or more projections formed so as to contact the lens and which is bonded to them with an adhesive. CONSTITUTION:On a light emitting diode substrate 1, three or more projections 9 are formed with spaces away from one another and a lens 2 is positioned by the projections 9 and bonded to them. The center among the projections 9 is caused to coincide with the center of the light emitting area. The projections 9 which are rectangular parallelepipeds contact lens 2 so that the lens 2 can contact the LED substrate 1. Since wide gaps are being defined between each of projections 9, the adhesive 4 flows out of the gaps in every direction, when the lens 2 is pushed against the LED substrate 1. In this way, the lens 2 can contact the LED substrate 1 at the point A. Except the point A, the adhesive 4 is being interlaid between the lens 2 and the substrate 1, but the adhesive layer is thin.

Description

【発明の詳細な説明】 ゛ (ア) 技術分野 この発明は、半導体発光素子の構造に関する。[Detailed description of the invention] ゛ (A) Technical field The present invention relates to the structure of a semiconductor light emitting device.

半導体発光素子は、GaAs系、GaP系、InP系の
ものがある。また、発光ダイオード(LED)とレーザ
ダイオード(LD)がある。
There are GaAs-based, GaP-based, and InP-based semiconductor light emitting devices. There are also light emitting diodes (LEDs) and laser diodes (LDs).

これらの発光素子は、光通信、光計測の光源として用い
られることが多い。このような場合、光ファイバの中へ
効率よく、光を入射させなければならない。
These light emitting elements are often used as light sources for optical communication and optical measurement. In such cases, it is necessary to efficiently introduce light into the optical fiber.

(イ) 従来技術とその問題点 従来、半導体発光素子、特に発光ダイオードの・光を、
光フアイバ端面に入射させるため、球状レンズ、又は半
球状レンズを発光領域上に装荷して、光の指向性を高め
、大部分の光を光ファイバへ入射させるようにしている
(b) Conventional technology and its problems Conventionally, the light of semiconductor light emitting devices, especially light emitting diodes,
In order to make the light incident on the end face of the optical fiber, a spherical lens or a hemispherical lens is loaded on the light emitting region to increase the directivity of the light and make most of the light incident on the optical fiber.

従来の、レンズ装荷構造は、平坦なLED基板上へその
まま、又はLED基板に嵌合凹部を設けてそ(7)上へ
レンズを接着1〜ていた。
In the conventional lens loading structure, a lens is attached directly onto a flat LED board, or after a fitting recess is provided on the LED board (7).

第7図〜第11図は従来のレンズ装荷構造を説明する。7 to 11 illustrate a conventional lens loading structure.

第7図に示すものは、LED基板1の平坦な面の上に、
直接、球レンズ2を接着剤4によって固定したものであ
る。発光領域7から生じた光は拡散する光であ込が、球
しンそ2によって光路が中央二寄シに曲げられ、収束光
となる。
In the case shown in FIG. 7, on the flat surface of the LED board 1,
A ball lens 2 is directly fixed with an adhesive 4. The light emitted from the light emitting region 7 is diffused and concentrated, but the optical path is bent toward the center by the bulb 2 and becomes convergent light.

第8図に示すものは、球レンズ2のかわりに半球レンズ
3を、平坦なLED基板1の上に接着したものである。
In the device shown in FIG. 8, a hemispherical lens 3 instead of the spherical lens 2 is bonded onto a flat LED substrate 1.

これらは、簡単な構造であるが、狭い発光領域7の中心
とレンズ2.3の中心とを面に対して直角な軸上に並ぶ
よう位置合わせしなければならない。軸カ合っていない
と、レンズから出た光は、基板1の面に対−して直角で
はなく、斜めに進み、光ファイバとの結合効率が低いも
のになる。ところが、発光領域の中心は、外観だけから
は分りに<<、位置合わせが難しい。なんの突起物もな
いからである。
Although these have a simple structure, they must be aligned so that the center of the narrow light emitting region 7 and the center of the lens 2.3 are aligned on an axis perpendicular to the plane. If the axes are not aligned, the light emitted from the lens will travel obliquely rather than at right angles to the surface of the substrate 1, resulting in low coupling efficiency with the optical fiber. However, it is difficult to align the center of the light-emitting region, as it is obvious from just the appearance. This is because there are no protrusions.

そこで、発光領域7に合致するよう、予め嵌合四部6を
設けておく、という構成が発明された(特願昭51−7
8764、特公UIe57−29067、三便電機■)
。第9図〜第11図に示している。
Therefore, a structure was invented in which the four fitting parts 6 were provided in advance so as to match the light emitting area 7 (Japanese Patent Application No. 1986-7
8764, Special public UIe57-29067, Sanbin Electric ■)
. It is shown in FIGS. 9 to 11.

球レンズを装荷したものが、第9図、第10図の例でb
る。LED基板1の上に、発光領域7と中心が合致する
よう円形の嵌合凹部6をフォトリングラフイーによって
エツチングして形成【−ておく。
In the example shown in Figures 9 and 10, the one loaded with a ball lens is b.
Ru. A circular fitting recess 6 is formed on the LED substrate 1 by etching using photophosphorography so that its center coincides with the light emitting region 7.

球レンズ2を(支)合凹部6へ嵌まシこむように置いて
接着する。
The ball lens 2 is placed so as to fit into the (support) matching recess 6 and bonded.

第11図は半球状レンズ3を用いた例を示す。FIG. 11 shows an example using a hemispherical lens 3.

いずれにしても、レンズ2.3の位置合わせは精密に行
うことができる。
In any case, the lens 2.3 can be precisely aligned.

しかし、反面、嵌合四部6にたまった接着剤4は外部に
出にくい。このため、LED基板1とレンズ2.3が接
触せず、中間に接着剤層が形成されることになる。さら
に、接着剤層の厚みがバラつくから、光線5の収束点が
異なってくる。特に第11図に示す半球状レンズ3の場
合に、接着剤層の厚みのバラつきが著しくなる。このた
めは、光ファイバとの結合パワーがばらついて、歩留り
を下げる原因になっている。
However, on the other hand, the adhesive 4 accumulated in the four fitting parts 6 is difficult to come out. Therefore, the LED substrate 1 and the lens 2.3 do not come into contact with each other, and an adhesive layer is formed in between. Furthermore, since the thickness of the adhesive layer varies, the convergence point of the light ray 5 differs. Particularly in the case of the hemispherical lens 3 shown in FIG. 11, variations in the thickness of the adhesive layer become significant. For this reason, the coupling power with the optical fiber varies, causing a decrease in yield.

接着剤の粘度を下げれば良いわけであるが、接着の安定
性、速さから、あまシ低粘度の接着剤は使用できない。
It would be fine to lower the viscosity of the adhesive, but due to the stability and speed of adhesion, low-viscosity adhesives cannot be used.

むしろ、一般に、基板1とレンズを接着するのはシリコ
ン樹脂など、粘度の高Cものを用いる事が多い。
Rather, in general, a material with high viscosity C, such as silicone resin, is often used to bond the substrate 1 and the lens.

(つ) 目 的 レンズの位置合せが容易で、しかも接着剤層が薄く、し
かも厚みのバラつきの少ないレンズの装荷構造を与え、
光ファイバとの結合効率の高い半導体発光素子を提供す
る。
(1) Purpose: To provide a lens loading structure that allows easy lens alignment, has a thin adhesive layer, and has less variation in thickness;
A semiconductor light emitting device having high coupling efficiency with an optical fiber is provided.

(1) 発明の構成 LED基板上に、互に離隔した3つ以上の突起物を形成
し、突起物によってレンズの位置を定めて、接着する。
(1) Configuration of the Invention Three or more protrusions spaced apart from each other are formed on the LED board, and the lens is positioned by the protrusions and bonded.

もちろん、突起物の中心を、発光領域。Of course, the center of the protrusion is the light emitting area.

の中心に、一致させる。Match the center of the.

第1図は球し゛ンズを用いた本発明の一例を示す斜視図
、第2図は断面図である。
FIG. 1 is a perspective view showing an example of the present invention using a spherical lens, and FIG. 2 is a sectional view.

ここでは、4個の突起物9を、その中心が発光領域7の
中心に一致するよう設けている。この突起物9は直方体
形状である。
Here, four protrusions 9 are provided so that their centers coincide with the center of the light emitting region 7. This protrusion 9 has a rectangular parallelepiped shape.

突起物9はレンズ2と接触[2、レンズ2はLED基板
1に接触するようにする。
The protrusion 9 is brought into contact with the lens 2 [2, the lens 2 is brought into contact with the LED board 1].

このためには、次のように寸法を決める。For this purpose, determine the dimensions as follows.

球レンズ2の中心をO1発光ff[7の中心をMとする
。LED基板1の上面Sと、直線OMの交点をAとする
。位置合わせをしているので、OMは、面Sに直角であ
る。OAは、A点に立てだ面Sの法線である。
Let the center of the spherical lens 2 be the center of the O1 light emission ff [7]. Let A be the intersection of the upper surface S of the LED board 1 and the straight line OM. Due to alignment, OM is perpendicular to plane S. OA is the normal line of the erected surface S to the point A.

突起物9の中心側の上辺の中心点をB点とすると、B点
に於て球レンズ2が接触すべきである。
Assuming that the center point of the upper side of the protrusion 9 on the center side is a point B, the ball lens 2 should come into contact with the point B.

突起物の高さをh、球レンズ2の半径f、(r、A点か
らの突起物9の中心側の辺までの距1!−e(d/2)
とする。直線OMの円Oとの反対側の交点?、Cとし、
直径ACへB点から下した垂線の足をDとする。 A 
D = h 、CD = 2 r −h 、B D =
 d/2 テあり、かつ AD、AC=BD2 (1+ であるから、 。
The height of the protrusion is h, the radius of the spherical lens 2 is f, (r, the distance from point A to the center side of the protrusion 9 is 1!-e(d/2)
shall be. The intersection of the straight line OM and the circle O on the opposite side? , C,
Let D be the foot of the perpendicular line drawn from point B to diameter AC. A
D = h, CD = 2r - h, B D =
d/2 There is TE, and AD, AC=BD2 (1+, so .

である。It is.

第1図から分るように、突起物9、・−の聞には、広い
隙間があって、接着剤4は、レンズ2をLED基板1へ
押しつけると、隙間から四周へ流れ出る。
As can be seen from FIG. 1, there are wide gaps between the protrusions 9, .

このため、レンズはA点でLED基板1に接触できる。Therefore, the lens can contact the LED board 1 at point A.

、A点以外では、レンズ2と基板1の間に瞭盾剤4が介
在するが、従来の嵌合凹部を用いるものに比して、接着
層は薄い。
, except for point A, the shielding agent 4 is interposed between the lens 2 and the substrate 1, but the adhesive layer is thinner than in the conventional case using a fitting recess.

第3図、第4図は半球状レンズの場合を示している。突
起物9の全てにレンズ3が接触して安定な位置が決まる
ようにしである。
3 and 4 show the case of a hemispherical lens. The lens 3 is designed to come into contact with all of the protrusions 9 to determine a stable position.

断面を見れば、第11図の構成と似ている。しかし、突
起物9が嵌合四部のような閉じられた空間を形成するの
ではない。斜視図に見るように突起物90間には、間隙
がある。このため、接着剤4は、シリコン樹脂のように
粘度の高いものであっても、側方にはみ出るから、半球
レンズ30大国面10は、LED基板1の上面に密着す
ることができる。
If you look at the cross section, it looks similar to the configuration shown in FIG. 11. However, the protrusions 9 do not form a closed space like the four fitting parts. As seen in the perspective view, there are gaps between the protrusions 90. Therefore, even if the adhesive 4 is of high viscosity such as silicone resin, it protrudes to the side, so that the hemispherical lens 30 and the main surface 10 can be in close contact with the upper surface of the LED substrate 1.

突起物の中心Aが、半球レンズ3の中心に一致しており
、発光領JIJi7の中心Mと、基板1の上下方向で合
致している。
The center A of the protrusion coincides with the center of the hemispherical lens 3, and coincides with the center M of the light emitting region JIJi7 in the vertical direction of the substrate 1.

突起物の高さは、球レンズの場合のような厳密な制限が
ない。高さば、5μIn以上で、レンズ3の高さ以下で
あれば良い。
The height of the protrusion is not subject to strict limitations as in the case of a spherical lens. The height may be 5 μIn or more and not more than the height of the lens 3.

突起物9の個数は、3個以上であればよく、中心の位置
が確定すればよいのである。
The number of protrusions 9 may be three or more, and the position of the center may be determined.

第5図は突起物9の個数が3個である例を示す斜視図で
ある。
FIG. 5 is a perspective view showing an example in which the number of protrusions 9 is three.

逆に、突起物の数は5.6、・・・など5以上でも差支
えない。突起物の間に隙間があり、しかも、内側の端辺
が球レンズ、半球レンズに接触するようになっていれば
良い。
Conversely, the number of protrusions may be 5 or more, such as 5.6, . . . . It is sufficient that there is a gap between the protrusions, and that the inner edges are in contact with the spherical lens or hemispherical lens.

(オ) 突起物の形成方法 (11LED基板の上へ、ウェハプロセスに於て、所定
の位置に、金などの金属を厚くメッキして突起物を形成
する。
(e) Method for forming protrusions (11) Protrusions are formed by thickly plating a metal such as gold at predetermined positions on the LED substrate in a wafer process.

この場合は、基板と突起物は異なる物質である。In this case, the substrate and the protrusions are different materials.

(2) エツチングにより基板の一部を除去して突起物
を形成する。
(2) Part of the substrate is removed by etching to form protrusions.

GaAs基板の場合は、H3PO4系エツチング液でエ
ツチングし、ホトリソグラフィ技術を用いて突起物を形
成する。
In the case of a GaAs substrate, it is etched with an H3PO4-based etching solution, and protrusions are formed using photolithography.

InP基板の場合は、HC1系エツチング液で、同様に
突起物を形成できる。
In the case of an InP substrate, protrusions can be similarly formed using an HC1-based etching solution.

(力) 効 果 (1) レンズが、球状レンズ、半球状レンズのいずれ
の場合でも、発光領域の中心M部上にレンズの中心部を
取ね合わせる位置合わせが容易である。
(Force) Effects (1) Regardless of whether the lens is a spherical lens or a hemispherical lens, it is easy to align the center of the lens over the center M of the light emitting region.

レンズを突起物に接触させた状f島で固定するためであ
る。
This is to fix the lens with the f-island in contact with the protrusion.

(2) 球状レンズ、半球状レンズどちらの場合でも、
レンズとLED基板の間の接着剤層の厚みは、嵌合四部
構造のものに比して薄く、ばらつきも少い。
(2) Regardless of whether it is a spherical lens or a hemispherical lens,
The thickness of the adhesive layer between the lens and the LED substrate is thinner and less variable than in a four-part structure.

レンズを固定するものが突起物のみであり、これらには
隙間があって、接着剤が、レンズ下部から外部へ極めて
簡単にはみ出すことができるからである。
This is because the only thing that fixes the lens is the protrusions, and there are gaps between them, so that the adhesive can very easily leak out from the bottom of the lens.

このため、光ファイバへの高い結合効率が、再現性良く
実現される。
Therefore, high coupling efficiency to the optical fiber can be achieved with good reproducibility.

第6図は本発明の発光素子(第1図、第2図に示す球レ
ンズを用いるもの)と、従来例の発光素子(第7図に示
す球レンズを用いるもの)の、光=7アイバとの結合効
率C%)の頻度分布を示すグラフである。横軸は結合効
率で、縦軸は、そのような結合効率の素子が製造される
頻度を相対値で示している。
FIG. 6 shows the light-emitting device of the present invention (using the ball lens shown in FIGS. 1 and 2) and the conventional light-emitting device (using the ball lens shown in FIG. It is a graph which shows the frequency distribution of the coupling efficiency (C%) with. The horizontal axis represents the coupling efficiency, and the vertical axis represents the relative frequency with which elements with such a coupling efficiency are manufactured.

本発明のものは、結合効率の頻度のピークが15.5%
にあり、従来例のものは、14%にある。また、ピーク
を与える効率の頻度が、本発明の方が2倍近く大きい。
In the case of the present invention, the frequency peak of binding efficiency is 15.5%.
In the conventional example, it is 14%. Furthermore, the frequency of efficiency that gives a peak is nearly twice as high in the present invention.

つまり、バラつきが少い。従っで、例えば、結合効率が
14%以上のものを合格品とすれば、本発明のものの方
が歩留りが極めてよい、という事が分る。
In other words, there is little variation. Therefore, for example, if a product with a coupling efficiency of 14% or more is considered to be an acceptable product, it can be seen that the product of the present invention has an extremely high yield.

(キ) 用 途 本発明は、球状レンズ、半球状レンズを装荷する半導体
発光素子に広く適用できる。
(g) Applications The present invention can be widely applied to semiconductor light emitting devices loaded with spherical lenses and hemispherical lenses.

+1j 面発光型のGaAs系、InP系、GaP系の
発光ダイオード (2)面発光型のGaAs系、InP系レーザダイオー
+1j Surface-emitting type GaAs-based, InP-based, and GaP-based light emitting diodes (2) Surface-emitting type GaAs-based and InP-based laser diodes

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す半導体発光素子の斜視図
。球レンズを用いる例である。 第2図は第1図のものの縦断面図。 第3図は本発明の他の実施例を示す発光素子の縦断面図
。半球レンズを用いる例である。 第4図は半球レンズの例を示す斜視図。 第5図は突起物の数が3個で半球レンズを用いた実施例
を示す斜視図。 第6図は本発明の発光素子と、従来の発光素子の、光フ
ァイバへの結合効率C%)の分布を示すグラフ。横軸は
光ファイバと発光素子の結合効率(%)で、縦軸はその
結合効率を持つ発光素子が得られる頻度の相対値を示す
。 第7図は球レンズを用いた従来例の発光素子の縦断面図
。 第8図は半球レンズを用いた従来例の発光素子の縦断面
図。 第9図はLED基板に嵌合四部を形成し球レンズを接着
し、た従来例の兄ソC1素子の斜視図。 第10図は第9図の縦断面図。 第]−1図はLED基板に表金凹部7形成し2半球レン
ズを接着した従来例の発光素子の縦断面図。 1 ・・・・・・LED基板 2・・・・・・・・球状レンズ 3 ・・・半球状レンズ 4・・・接着剤 5−・・・光 線 6・・・・嵌合四部 7・・・・発光@域 9・・・・突起物 発 明 者 奥 1) 寛 特許出願人 住友電気工業株式会社 第2図 第31図 第7図 第8図 第10図 第11図
FIG. 1 is a perspective view of a semiconductor light emitting device showing an embodiment of the present invention. This is an example using a spherical lens. FIG. 2 is a longitudinal sectional view of the one shown in FIG. FIG. 3 is a longitudinal sectional view of a light emitting device showing another embodiment of the present invention. This is an example using a hemispherical lens. FIG. 4 is a perspective view showing an example of a hemispherical lens. FIG. 5 is a perspective view showing an example in which the number of protrusions is three and a hemispherical lens is used. FIG. 6 is a graph showing the distribution of coupling efficiency (C%) to optical fibers of the light emitting device of the present invention and the conventional light emitting device. The horizontal axis shows the coupling efficiency (%) between the optical fiber and the light emitting element, and the vertical axis shows the relative value of the frequency at which a light emitting element having the coupling efficiency is obtained. FIG. 7 is a longitudinal sectional view of a conventional light emitting element using a ball lens. FIG. 8 is a longitudinal sectional view of a conventional light emitting element using a hemispherical lens. FIG. 9 is a perspective view of a conventional C1 element in which four fitting parts are formed on an LED board and a ball lens is bonded to the LED board. FIG. 10 is a longitudinal sectional view of FIG. 9. Fig.]-1 is a vertical cross-sectional view of a conventional light emitting element in which a surface metal concave portion 7 is formed on an LED substrate and two hemispherical lenses are bonded. 1 ... LED board 2 ... Spherical lens 3 ... Hemispherical lens 4 ... Adhesive 5 - ... Light ray 6 ... Four fitting parts 7 ...Emission @ Area 9... Protrusion Inventor Back 1) Hiro Patent Applicant Sumitomo Electric Industries, Ltd. Figure 2 Figure 31 Figure 7 Figure 8 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 発光領域7を有する半導体発光素子基板1と、半導体発
光素子基板1の上に、その中心Aが発光領域7の中心M
と素子基板の面に対し垂直方向で合致I−かつレンズと
接触するように形成された3個以上の突起物9.9、・
・と、半導体素子基板1に接触しかし接着剤4によりこ
れらに接着された球状レンズ2又は半球状レンズ3とよ
!ll構成される事を特徴とする半導体発光素子。
A semiconductor light emitting element substrate 1 having a light emitting region 7 and a center A of the semiconductor light emitting element substrate 1 on the semiconductor light emitting element substrate 1 having a center M of the light emitting region 7.
and three or more protrusions 9.9, which are formed so as to be aligned perpendicularly to the surface of the element substrate I- and to be in contact with the lens.
・The spherical lens 2 or the hemispherical lens 3 is in contact with the semiconductor element substrate 1 but is bonded thereto by the adhesive 4! 1. A semiconductor light emitting device characterized in that it is configured as follows.
JP1813984A 1984-02-02 1984-02-02 Semiconductor light emitting element Expired - Lifetime JPH0634410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1813984A JPH0634410B2 (en) 1984-02-02 1984-02-02 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1813984A JPH0634410B2 (en) 1984-02-02 1984-02-02 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS60161684A true JPS60161684A (en) 1985-08-23
JPH0634410B2 JPH0634410B2 (en) 1994-05-02

Family

ID=11963266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1813984A Expired - Lifetime JPH0634410B2 (en) 1984-02-02 1984-02-02 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0634410B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403773A (en) * 1992-07-10 1995-04-04 Sumimoto Electric Industries, Ltd. Method for producing a semiconductor light emitting device
EP0662723A1 (en) * 1994-01-07 1995-07-12 Sumitomo Electric Industries, Limited Method and apparatus of mounting a lens
EP1345059A1 (en) * 2002-03-16 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) Integrated micro-optical elements
JP2006106746A (en) * 2004-10-07 2006-04-20 Agilent Technol Inc Opto-electronics module having high coupling efficiency
US8172434B1 (en) 2007-02-23 2012-05-08 DeepSea Power and Light, Inc. Submersible multi-color LED illumination system
JP2016122731A (en) * 2014-12-25 2016-07-07 ローム株式会社 Optical semiconductor device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160182A (en) * 1981-03-27 1982-10-02 Fujitsu Ltd Photosemiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160182A (en) * 1981-03-27 1982-10-02 Fujitsu Ltd Photosemiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403773A (en) * 1992-07-10 1995-04-04 Sumimoto Electric Industries, Ltd. Method for producing a semiconductor light emitting device
EP0662723A1 (en) * 1994-01-07 1995-07-12 Sumitomo Electric Industries, Limited Method and apparatus of mounting a lens
US5578156A (en) * 1994-01-07 1996-11-26 Sumitomo Electric Industries, Ltd. Method of mounting a lens on a light emitting diode
EP1345059A1 (en) * 2002-03-16 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) Integrated micro-optical elements
US6751376B2 (en) 2002-03-16 2004-06-15 Agilent Technologies, Inc. Integrated micro-optical elements
JP2006106746A (en) * 2004-10-07 2006-04-20 Agilent Technol Inc Opto-electronics module having high coupling efficiency
US8172434B1 (en) 2007-02-23 2012-05-08 DeepSea Power and Light, Inc. Submersible multi-color LED illumination system
JP2016122731A (en) * 2014-12-25 2016-07-07 ローム株式会社 Optical semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0634410B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US9435970B2 (en) Optical connector
US8165432B2 (en) Internal-reflection optical path changing member
US4897711A (en) Subassembly for optoelectronic devices
US20040183081A1 (en) Light emitting diode package with self dosing feature and methods of forming same
US4945400A (en) Subassembly for optoelectronic devices
US5384471A (en) Opto-electronic component with narrow aperture angle
US8942525B2 (en) Photoelectric conversion device and optical fiber coupling connector
JPH0395510A (en) Optical assembly with optical fiber coupling means
US6799901B2 (en) Optical semiconductor module
CN110573920B (en) Photonic assembly and manufacturing method thereof
US20150192745A1 (en) Optical fiber connecter and optical communication module
JPS60161684A (en) Semiconductor light emitting device
JP2001324649A (en) Active optical connector for large diameter optical fiber
GB2332956A (en) Arrangement platform for connecting optical fibers to optical waveguide
TW201345004A (en) LED module
JPH01183606A (en) Photodetecting device
JPH01183605A (en) Photodetecting device
JP7381174B2 (en) optical module
JP3090335B2 (en) Optical semiconductor module
WO2018180786A1 (en) Optical component and optical connector and optical module comprising same
JPH04243179A (en) Connector attachment/detachment type semiconductor laser module
JPS60188913A (en) Optical circuit device
US6805495B2 (en) Optical communication module
JPH03286574A (en) Light emitting device
JPH09318845A (en) Optical transmission module