JPS60161069A - Numerically controlled grinding machine for working multi-step work - Google Patents

Numerically controlled grinding machine for working multi-step work

Info

Publication number
JPS60161069A
JPS60161069A JP1793484A JP1793484A JPS60161069A JP S60161069 A JPS60161069 A JP S60161069A JP 1793484 A JP1793484 A JP 1793484A JP 1793484 A JP1793484 A JP 1793484A JP S60161069 A JPS60161069 A JP S60161069A
Authority
JP
Japan
Prior art keywords
feed
grinding
semi
machining
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1793484A
Other languages
Japanese (ja)
Other versions
JPH0513785B2 (en
Inventor
Hitoshi Akaha
赤羽 仁史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP1793484A priority Critical patent/JPS60161069A/en
Publication of JPS60161069A publication Critical patent/JPS60161069A/en
Publication of JPH0513785B2 publication Critical patent/JPH0513785B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To reduce the cycle time by advancing a grinding wheel at a quick feed up to the grind feeding starting position of a place having the smallest diameter of worked places. CONSTITUTION:Feed distances S1-S3 from a clearing position Pi where a work in indexed in correspondence with places to be worked W1-W3 to grind feeding starting positions PS1-PS3 are stored in A as semiquick feed distances. A reading-out unit B reads out the semiquick feed distance S1 of the place W1 having the smallest diameter of the places which have been worked and a semiquick feed distance Sn of the place to be newly worked. The difference Si-Sn of these feed distances is calculated to obtain a semiquick feed distance Sr. A feed controlling unit D advances a grinding wheel at a quick feed by the semiquick feed distance S1 of the worked place W1 and then advances it at a semiquick feed by Sr.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多段工作物の研削加工を行う数値制御研削盤
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a numerically controlled grinding machine for grinding a multi-stage workpiece.

〈従来技術〉 近年、砥石台の暴走により、砥石車が早送り速度もしく
はそれ以上の速度で工作物に衝突することを防止するた
めに、第4図に示すようなシリンダ装置を用いた保安装
置が採用されている。
<Prior art> In recent years, in order to prevent the grinding wheel from colliding with the workpiece at rapid traverse speed or higher speed due to runaway of the grinding wheel head, a safety device using a cylinder device as shown in Fig. 4 has been developed. It has been adopted.

かかる保安装置を備えたものにおいては、シリンダ21
に嵌装されたピストン22のピストンロッド23に固着
された係合部材29がヘット上の固定部材28に当接す
るまでは砥石台17を早送り速度で移動できるものの、
保合部材29が固定部材28に当接した後は絞り25の
開度によって決まる安全速度以下の準急連送りでしか砥
石台17を移動できず、係合部材29が固定部材28に
当接する前に早送りを終了する必要がある。このため、
従来においては、第1図に示されるように、保合部材2
9が固定部材28に当接する前でかつ最大径の箇所WO
より後方の位置をクリア位置Piしとし、加工原位置P
oからこのクリア位置1)iまでは砥石車Gを早送り速
度で移動させ、各加工箇所の加工時においては、このク
リア位置Piから各加工[箇所に対応した研削送り開始
位置P sl、Ps2.Ps3まで準急連送りで砥石車
Gを前進させるようにしていた。したがって、加工径の
小さな加工箇所においては、早送り速度よりもかなり遅
い準急連送りの量が増大し、サイクルタイムが長くなる
問題があった。
In a device equipped with such a safety device, the cylinder 21
Although the grindstone head 17 can be moved at a rapid traverse speed until the engaging member 29 fixed to the piston rod 23 of the piston 22 fitted in the head comes into contact with the fixing member 28 on the head,
After the retaining member 29 comes into contact with the fixed member 28, the grinding wheel head 17 can only be moved by semi-rapid continuous feeding at a speed lower than the safe speed determined by the opening degree of the throttle 25, and before the engaging member 29 contacts the fixed member 28. You need to end fast forwarding. For this reason,
Conventionally, as shown in FIG.
9 is in front of the fixing member 28 and has the maximum diameter WO
The rear position is set as the clear position Pi, and the processing original position P
The grinding wheel G is moved at a rapid traverse speed from o to this clear position 1)i, and when machining each machining location, from this clear position Pi to the grinding feed start position P sl, Ps2 . Until Ps3, the grinding wheel G was advanced in a semi-rapid manner. Therefore, in a machining location where the machining diameter is small, the amount of semi-quick continuous feed, which is much slower than the rapid feed rate, increases, resulting in a problem that the cycle time becomes longer.

すなわち、かかる保安機構を備えたものにおいては、準
急連送りの開始後において係合部材29が固定部材28
に当接すると、シリンダ装置21のピストン22が相対
的に後退し、この状態は砥石車Gがクリア位置Piまで
後退されても維持されるため、保合部材29が固定部材
28に当接す−る位置は前の加工箇所の仕上げ径に応じ
て変化する。したがって、第1図に示すように、大径側
から順番に加工を行う場合には、少なくとも、前の加工
箇所の研削送り開始位置までは早送りできることになる
が、従来においては、この部分においても準急連送りを
行っていたため、加工のサイクルタイムが長くなってい
た。
That is, in a device equipped with such a security mechanism, the engaging member 29 is connected to the fixed member 28 after the start of semi-urgent continuous feeding.
, the piston 22 of the cylinder device 21 relatively retreats, and this state is maintained even when the grinding wheel G is retreated to the clear position Pi, so that the retaining member 29 abuts the fixed member 28. - The position changes depending on the finished diameter of the previous machined area. Therefore, as shown in Fig. 1, when machining is performed in order from the large diameter side, it is possible to perform rapid traverse at least up to the grinding feed start position of the previous machining location, but conventionally, even in this part, The machining cycle time was becoming longer due to semi-urgent continuous feeding.

〈発明の目的〉 そこで本発明は、加工済加工箇所の内、最も径の小さな
加工箇所の研削送り開始位置まで砥石車を早送り前進さ
せることにより、サイクルタイムの短縮を計ることを目
的とするものである。
<Object of the Invention> Therefore, the object of the present invention is to shorten the cycle time by rapidly moving the grinding wheel forward to the grinding feed start position of the processing part with the smallest diameter among the processed parts. It is.

また、本発明の別の目的は、加工済の加工箇所に対応す
る移動データから次の加工箇所の早送り前進端の位置を
自動決定するようにして、データ入力の容易化をaする
ことを目的とするものである。
Another object of the present invention is to facilitate data input by automatically determining the position of the rapid forward end of the next machining location from the movement data corresponding to the machining location that has already been machined. That is.

〈発明の構成〉 第2図は本発明を明示するための全体構成図である。記
憶手段へには、各加工箇所W1〜W3のれぞれに対応し
て、工作物の割出しを行うクリア位置Piから研削送り
開始位置ps1〜Ps3までの送り量81〜S3が準急
連送り量として記憶されており、続出手段Bば、記憶手
段Aから加工が完了した加工箇所の内、最も径の小さな
加工箇所の準急連送り1isiと新たに加工する加工箇
所の準急連送り量Snとを読出ず。また、演算手段Cは
、両送り量の偏差5i−3nを演算して準急連送り量S
rを演算する。そして、送り制御手段゛ Dば、加工済
加工箇所の準急連送り量Siだけ砥石車Gを早送り速度
で前進させ、ごの後演算された準急連送り量Srだけ砥
石車Gを準急連送りさせて砥石車Gを研削送り開始位置
P s nに移動し、この後、研削送りを行う。
<Configuration of the Invention> FIG. 2 is an overall configuration diagram for clearly demonstrating the present invention. In the storage means, feed amounts 81 to S3 from the clear position Pi for indexing the workpiece to the grinding feed start positions ps1 to Ps3 are stored as semi-quick continuous feeds corresponding to each of the machining locations W1 to W3. The continuous feed amount 1isi of the machining location with the smallest diameter among the machining locations that have been completed and the semi-urgent continuous feed amount Sn of the machining location to be newly machined are stored as quantities, and the successive means B stores the semi-urgent continuous feed amount 1isi of the machining location with the smallest diameter among the machining locations that have been completed from the storage device A. is not read. Further, the calculation means C calculates the deviation 5i-3n between the two feed amounts and calculates the semi-urgent continuous feed amount S.
Calculate r. Then, the feed control means ゛D advances the grinding wheel G at a rapid feed speed by the semi-rapid continuous feed amount Si of the processed part, and then advances the grinding wheel G by the calculated semi-rapid continuous feed amount Sr. The grinding wheel G is moved to the grinding feed start position Psn, and thereafter, the grinding feed is performed.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第3図はアンギュラ形の数値制御研削盤を示すもので、
主軸台IOと心押台11とによって工作物Wを回転可能
に支持するインデックステーブル12が、工作物軸線に
沿ってベッド13上に形成された案内面14に移動可能
に支持され、ベッド1−3に固着されたサーボモータ1
5によりねじ送り機構を介して送り制御される。砥石車
Gを軸承した砥石台17は」工作物軸線と鋭角θをなし
て交差する方向に沿ってヘッドI3上に形成された案内
面18に進退可能に支持され、ヘッド13に固着された
サーボモータ19によりねし送り機構を介して送り制御
される。かかるねじ送り機構はサーボモータ19が指令
パルスに換算してNパルス分回転すると、砥石台17が
案内面18に沿ってN×Δd/sinθ(但しΔdは1
パルス当りの工作物直径方向への設定移動量)だけ移動
するように構成されており、従って砥石台17の移動指
令は工作物直径方向の移動量1こて指令される。なお、
20はヘット13上に配設された端面位置測定装置であ
る。
Figure 3 shows an angular type numerically controlled grinding machine.
An index table 12 that rotatably supports a workpiece W by a headstock IO and a tailstock 11 is movably supported on a guide surface 14 formed on a bed 13 along the workpiece axis. Servo motor 1 fixed to 3
5, the feed is controlled via a screw feed mechanism. The grinding wheel head 17 bearing the grinding wheel G is movably supported by a guide surface 18 formed on the head I3 along a direction intersecting the workpiece axis at an acute angle θ, and is supported by a servo fixed to the head 13. The feed is controlled by the motor 19 via a screw feed mechanism. In such a screw feeding mechanism, when the servo motor 19 rotates by N pulses in terms of command pulses, the grindstone head 17 moves along the guide surface 18 by N×Δd/sinθ (where Δd is 1
Therefore, the movement command for the grinding wheel head 17 is a command for moving the grindstone head 17 by one movement amount in the workpiece diameter direction per pulse. In addition,
20 is an end face position measuring device disposed on the head 13.

前記工作物Wば複数の段部を有する多段工作物で、−例
とし°ζ左端部に最大径部WOを有し、右端部からその
最大径部WOに向かって直径が順次増大する複数の研削
加工箇所Wl、W2.W3を有するもので示しである。
The workpiece W is a multi-stage workpiece having a plurality of step parts, and for example, the maximum diameter part WO is at the left end part, and the workpiece W is a multi-stage workpiece having a plurality of step parts, and has a maximum diameter part WO at the left end part, and a plurality of workpieces whose diameter increases sequentially from the right end part toward the maximum diameter part WO. Grinding parts Wl, W2. The one with W3 is shown.

また砥石車Gは前記各研削加工箇所Wl、W2.W3の
円筒面と端面にそれぞれ平行な2つの加工面Gl、G2
を有し、前記砥石台17にその進退方向に対し直角な軸
線のまわりに回転可能に軸承されている。
Further, the grinding wheel G is used for each of the grinding locations Wl, W2. Two machining surfaces Gl and G2 parallel to the cylindrical surface and end surface of W3, respectively.
, and is rotatably supported on the grindstone head 17 about an axis perpendicular to its advancing and retreating direction.

また、前記砥石台17の後端部側面には軸線を砥石台1
7の移動方向に一致させたシリンダ21が配設されてお
り、このシリンダ21内に摺動可能に嵌装したピストン
22にはピストンロッド23が連結されているとともに
、ピストン22で区画されるシリンダ室21a、21b
間をピストン22とシリンダ21の相対的移動速度を砥
石台17の早送り速度より充分小さな安全速度以下に制
限する絞り25を介して接続し、かつこの絞り25には
シリンダ21の後退動作時に開かれるチェック弁26を
並列に接続せしめ、さらにシリンダ室21a側には砥石
台17上に設置した補助用の油タンク27がチェック弁
24を介して接続されている。また、上記ピストンロッ
ド23は上記ベッド13の後部」二に立設した固定部材
28に貫通され、このピストンロッド23の貫通先端に
は固定部材28に待i合することによりピストン22の
前進移動を規制する係合部材29が固着され、そして砥
石台17が加工原位置Poにあるときの係合部材29と
固定部材28間の距N11は加工原位置Poとクリア位
置Piとの間の距離よりも所定量だけ長い値に設定され
ている。また、上記ピストンロッド23には固定部材2
8の内側面に衝合することでピストン22の後退移動を
規制する係合部材30が固着されている。
In addition, an axis line is attached to the side surface of the rear end of the whetstone head 17.
A cylinder 21 is arranged to match the movement direction of the cylinder 7, and a piston rod 23 is connected to a piston 22 slidably fitted in the cylinder 21. Chambers 21a, 21b
The piston 22 and the cylinder 21 are connected to each other through a throttle 25 that limits the relative movement speed of the cylinder 21 to a safe speed or less, which is sufficiently smaller than the rapid traverse speed of the grinding wheel head 17, and the throttle 25 is opened when the cylinder 21 moves backward. Check valves 26 are connected in parallel, and an auxiliary oil tank 27 installed on the grindstone head 17 is connected to the cylinder chamber 21a via the check valve 24. Further, the piston rod 23 is passed through a fixed member 28 erected at the rear portion of the bed 13, and the forward movement of the piston 22 is prevented by engaging the fixed member 28 at the penetrating end of the piston rod 23. The distance N11 between the engaging member 29 and the fixing member 28 when the regulating engaging member 29 is fixed and the grindstone head 17 is at the original machining position Po is greater than the distance between the original machining position Po and the clear position Pi. is also set to a value that is a predetermined length. Further, a fixing member 2 is attached to the piston rod 23.
An engaging member 30 that restricts the backward movement of the piston 22 by abutting against the inner surface of the piston 8 is fixed.

次に制御回路について説明すると、第3図においてI)
UX、DLJZは前記サーボモータ19.15をそれぞ
れ駆動する駆動回路、31は数値制御装置であり、この
数値制御装置31は、演算処理装置cpu、メモリME
M、データ書込装置MDIにて構成されている。
Next, to explain the control circuit, in Fig. 3 I)
UX and DLJZ are drive circuits that respectively drive the servo motors 19 and 15, and 31 is a numerical control device, which includes an arithmetic processing unit CPU, a memory ME
M and a data writing device MDI.

前記メモリM E Mには、第5図に示されるように各
加工箇所W1〜W3のそれぞれに対応する記憶エリアD
AI〜DA3が形成され、これらの記憶エリアには研削
に必要な送り量及び送り速度のデータが記憶されいる外
、各加工箇所W1〜W3の加工順序のデータ1〜3、各
加工箇所W1〜−3に対応したインデックステーブルI
2の割出位置21〜Z3および、準急連送り量31〜S
3が記憶されている。なおこの準急連送り量81〜S3
は第7図に示されており、クリア位置1〕iから各加工
箇所Wl−W3における加工開始位置Psl〜Ps3ま
での直径方向の距離である。
The memory MEM has storage areas D corresponding to each of the processing locations W1 to W3, as shown in FIG.
AI to DA3 are formed, and these storage areas store data on the feed amount and feed rate necessary for grinding, as well as data 1 to 3 on the machining order of each machining location W1 to W3, and data on each machining location W1 to W3. - Index table I corresponding to 3
2 index positions 21 to Z3 and semi-urgent continuous feed amount 31 to S
3 is memorized. In addition, this semi-express continuous feed amount 81 to S3
is shown in FIG. 7, and is the distance in the diametrical direction from the clear position 1]i to the processing start positions Psl to Ps3 at each processing location Wl-W3.

また、各加工箇所Wl〜W3のデータを記憶するコニリ
アとは別のエリアDΔ01.DΔ02には全加工段数を
表すテーク3と、加工原位置POからクリア位置Piま
での早送り前進量XOのデータが予め記憶されており、
さらに準急連送りの最大値Siを記1.aするエリアD
AO3もメモリMEM上に形成されている。
Furthermore, an area DΔ01. DΔ02 stores in advance the data of take 3 representing the total number of machining stages and the rapid forward advance amount XO from the machining original position PO to the clear position Pi.
Furthermore, the maximum value Si of semi-express continuous feed is written in 1. Area D
AO3 is also formed on the memory MEM.

次に第6図のフローチャー1−に基づいて研削加工中に
おりる演算処理装置CPUの動作について説明する。
Next, the operation of the arithmetic processing unit CPU during the grinding process will be explained based on the flowchart 1- in FIG.

今、数値制御装置31に起動信号が与えられると、演算
処理装置CPUはまず最初に記憶エリアDAO3に記憶
された準急連送りの最大値シイを零にセントするととも
に、研削順序カウンタGOCを1にセットしく50)、
この後、砥石車Gを加−工原位置Poからクリア位置P
iまで早送りするべく、X軸に111送り速度で正のパ
ルスを分配する(51m、これにより、砥石台17は固
定部材28が係合部祠29に当接する直前の位置まで早
送り速度で移動される。
Now, when a start signal is given to the numerical control device 31, the arithmetic processing unit CPU first sets the maximum value of the semi-express continuous feed stored in the storage area DAO3 to zero, and also sets the grinding order counter GOC to 1. Set 50),
After this, the grinding wheel G is moved from the machining original position Po to the clear position P.
In order to rapidly advance to i, a positive pulse is distributed to the X axis at a feed rate of 111 m (51 m).As a result, the grindstone head 17 is moved at a rapid rate to the position immediately before the fixed member 28 comes into contact with the engagement portion grinding hole 29. Ru.

この後、演算処理装置CP[Jは研削順序カウンタGO
Cの計数値に対応する研削順序1が書込まれている加工
箇所を選択する(52)。本実施例においては、第7図
において左側から順番に加工が行われるように加工順序
が設定されているので、上記の動作により、最大径を有
する加工箇所W1が選択される。そして、演算処理装置
cpuはこれに続いて選択された加工箇所W1に対応す
る記1.1エリアDAIから割出位置のデータZ1を続
出し、これに従ってZ軸にパルス分配を行って加工箇所
W1を加工位置に割出す(53)。
After this, the arithmetic processing unit CP [J is the grinding order counter GO
The machining location where grinding order 1 corresponding to the count value of C is written is selected (52). In this embodiment, since the machining order is set such that machining is performed sequentially from the left side in FIG. 7, the machining location W1 having the maximum diameter is selected by the above operation. Then, the arithmetic processing unit cpu successively outputs the index position data Z1 from area DAI in 1.1 corresponding to the selected machining location W1, and distributes pulses on the Z axis in accordance with this data to determine the machining location W1. is indexed to the processing position (53).

このように、割出し動作が完了すると、演算処 ゛理装
置CPUは加工箇所W1の準急連送り貝S1が零にセッ
トされた準急連送りの最大値3iよりも大きいことを判
別しく54) 、5r=Sn−3i、!7)演算を行っ
て準急連送り量Srを演算する(55)。なお、準急連
送り量Snは各加工箇所に対応して記憶されているプロ
グラム上での準急連送り量で、この場合はSlである。
In this way, when the indexing operation is completed, the processing unit CPU determines that the semi-urgent continuous feed shell S1 of the processing location W1 is larger than the maximum value 3i of the semi-urgent continuous feed set to zero54). 5r=Sn-3i,! 7) Perform calculation to calculate the semi-urgent continuous feed amount Sr (55). Note that the semi-urgent continuous feed amount Sn is the semi-urgent continuous feed amount on the program stored corresponding to each processing location, and in this case is Sl.

そして、前記の準急連送りの最大値Siに応じた正のパ
ルスをX軸に分配して砥石台17を早送り前進させた後
(56)、演算された準急連送り量Srに応した数の正
パルスを早送り速度に比べて充分小さな準急連送りでX
軸に分配し、砥石台17を準急連送りする(57)。
Then, after the positive pulses corresponding to the maximum value Si of the above-mentioned semi-urgent continuous feed are distributed to the X-axis to rapidly advance the grinding wheel head 17 (56), the number of pulses corresponding to the calculated semi-urgent continuous feed amount Sr is The positive pulse is sent in a semi-quick continuous feed that is sufficiently small compared to the rapid feed speed.
The grinding wheel head 17 is sent semi-quickly (57).

この場合には準急連送りの最大値Siが零であるので、
上記の処理により、砥石車Gはクリア位置Piから研削
送り開始位置pslまでの間準急連送りで移動されるこ
とになる。このようにして準急連送りが行われると、そ
の途中の位置において係合部材29が固定部材28に当
接し、シリンダ21内のピストン22は相対的に後方に
移動することになる。
In this case, the maximum value Si of semi-express continuous feed is zero, so
Through the above process, the grinding wheel G is moved in a semi-quick continuous manner from the clear position Pi to the grinding feed start position psl. When the semi-quick continuous feeding is performed in this way, the engaging member 29 comes into contact with the fixed member 28 at an intermediate position, and the piston 22 in the cylinder 21 moves relatively backward.

この後、演算処理装置cpuは準急連送り量S1の値を
準急連送りの最大値Stとして記憶エリアDAO3に記
憶した後、所定の研削パターンに従って砥石車Gを前進
させるべくX軸に正パルスを分配しく60)、これによ
り、加工箇所W1が研削加工される。
After that, the arithmetic processing unit CPU stores the value of the semi-urgent continuous feed amount S1 as the maximum value St of the semi-urgent continuous feed in the storage area DAO3, and then applies a positive pulse to the X axis to advance the grinding wheel G according to a predetermined grinding pattern. 60), whereby the processing location W1 is ground.

この研削加工中においても、ピストン22が相対移動を
続け、ピストン22は加工箇所W1の仕上げ径に応じた
位置まで相対移動される。これにより、加工箇所W1に
引続いて加工箇所Wlよりも小径の加工箇所W2を加工
する場合には、砥石車Gを加工箇所W1に対応した研削
送り開始位置Pslまで移動させても、保合部材29が
固定部材28に当接しない状態となり、この研削送り開
始位置pslまでは砥石車Gを早送り速度で移動させる
ことが可能となる。
Even during this grinding process, the piston 22 continues to move relative to each other, and the piston 22 is relatively moved to a position corresponding to the finished diameter of the processing location W1. As a result, when machining a machining spot W2 that has a smaller diameter than the machining spot Wl subsequent to the machining spot W1, even if the grinding wheel G is moved to the grinding feed start position Psl corresponding to the machining spot W1, the The member 29 does not come into contact with the fixed member 28, and the grinding wheel G can be moved at a rapid speed until this grinding feed start position psl.

上記のようにして加工箇所W1の研削加工を完了すると
、演算処理装置cpuは研削順序カウンタGOCの計数
値lと加工段数3を比較することによって最終加工箇所
でないことを判別しく61)、砥石車Gを早送り速度で
クリア位置Piに戻すべくX軸に負パルスを分配した後
(62)、研削順序カウンタGOCを歩進させ(63)
、(52)へ戻る。
When the grinding of the machining point W1 is completed as described above, the arithmetic processing unit cpu determines that it is not the final machining point by comparing the count value l of the grinding order counter GOC with the number of machining stages 3 (61), and the grinding wheel After distributing a negative pulse to the X axis to return G to the clear position Pi at a rapid traverse speed (62), the grinding order counter GOC is incremented (63).
, return to (52).

これにより、加工順序が2となっている中央の加工箇所
W2が選ばれ(52)、この加工箇所W2が加工位置に
割出された後(53)、上記の場合と同様の処理が行わ
れる。
As a result, the central machining location W2 whose machining order is 2 is selected (52), and after this machining location W2 is indexed to the machining position (53), the same processing as in the above case is performed. .

この場合には、準急連送りの最大値3iの値が、加工箇
所W1の準急連送り量S1に更新されているが、加工箇
所W2の準急連送り量S2は第7図にも示されるように
準急連送り量S1よりも人きいため、演算処理装置cp
uは、これを(54)で判別し、上記の場合と同様に(
55)以降の処理を行う。
In this case, the value of the maximum value 3i of the semi-urgent continuous feed is updated to the semi-urgent continuous feed amount S1 of the machining location W1, but the semi-urgent continuous feed amount S2 of the machining location W2 is changed as shown in FIG. is more sensitive than the semi-urgent continuous feed amount S1, so the arithmetic processing unit cp
u determines this using (54), and similarly to the above case, (
55) Perform the following processing.

これにより、S2 Si、ずなわち、S2 Slの値を
準急連送り量Srとし“ζ演算するとともに(55)、
この後、記憶位置DAO1に最大値Siとして記憶され
ている加工箇所W1の準急連送り量S、たり砥石車Gを
早送りするためのノ〈ルス分配を行い(56)、さらに
、演算された準急連送り1lsrだけ砥石車Gを準急連
送りするためのパルス分配を行う(57)。これにより
、加工箇所W1の研削送り開始位置pslまでは砥石車
Gが早送りで移動され、準急連送りの距離が大幅に短縮
される。また、この後、加工箇所W2の準急連送り量S
2を準急連送りの最大値Siとして記憶エリアDAO3
に記憶する(60)。
As a result, the value of S2 Si, that is, S2 Sl is set as the semi-urgent continuous feed amount Sr, and ζ calculation is performed (55).
After that, the semi-urgent continuous feed amount S of the machining location W1 stored as the maximum value Si in the memory location DAO1, and the pulse distribution for rapidly feeding the grinding wheel G are performed (56). Pulse distribution is performed to continuously feed the grinding wheel G semi-quickly by 1 lsr (57). As a result, the grinding wheel G is moved rapidly to the grinding feed start position psl of the processing location W1, and the distance of semi-rapid continuous feeding is significantly shortened. Also, after this, the semi-urgent continuous feed amount S of the processing location W2
2 as the maximum value Si of semi-express continuous sending in the storage area DAO3.
(60).

前記したように加工箇所W1の加工中においてシリンダ
21内のピストン22が相対移動しているため、加工箇
所Wlの研削送り開始位置pslまで砥石車Gを早送り
速度で移動させても、その工程で係合部材29が固定部
材28に当接することはなく、サーボモータに許容以上
の負荷が加わってサーボ異常となることが防止される。
As described above, since the piston 22 in the cylinder 21 is relatively moving during machining of the machining location W1, even if the grinding wheel G is moved at a rapid traverse speed to the grinding feed start position psl of the machining location W1, the The engaging member 29 does not come into contact with the fixing member 28, thereby preventing servo abnormality from being applied to the servo motor due to an excessive load.

そして、準急連送りが開始されると、その途中で係合部
材29が固定部+A28に再び当接し、研削送りが完了
するまでの間、ピストン22が相対移動する。これによ
り、加工箇所W2の研削送り開始位置PS2まで砥石車
Gを早送りすること力く可能となる。
Then, when the semi-quick continuous feed is started, the engaging member 29 comes into contact with the fixed part +A28 again in the middle, and the piston 22 moves relatively until the grinding feed is completed. This makes it possible to rapidly feed the grinding wheel G to the grinding feed start position PS2 of the processing location W2.

加工箇所W2の加工が完了すると、砥石車Gをクリア位
置P iに戻した後、研削順序カウンタGOCを歩進し
て3としく63)、(52)へ戻る。
When the machining of the machining location W2 is completed, the grinding wheel G is returned to the clear position P i, and then the grinding order counter GOC is incremented to 3 and the process returns to 63) and (52).

これにより、右端の加工箇所W3の加工のための送りが
開始されるが、この場合においては、S2−33が準急
連送り1istとして演算され(55)、クリア位置P
iから準急連送り量S2まで砥石車Gが早送りで前進さ
れた後、この演算された準急連送り量Srだけ砥石車G
が4!=急速送りされる。したがって、この加工箇所W
3の加工時においても準急連送り量を減少できる。
As a result, the feed for machining the rightmost machining location W3 is started, but in this case, S2-33 is calculated as semi-urgent continuous feed 1ist (55), and the clear position P
After the grinding wheel G is advanced in rapid traverse from i to the semi-urgent continuous feed amount S2, the grinding wheel G is moved forward by the calculated semi-urgent continuous feed amount Sr.
4! = Rapid feed. Therefore, this processing location W
The amount of semi-urgent continuous feed can be reduced even during machining in step 3.

そして、これに続いて研削送りを行って加工箇所W3の
加工を完了し、この後、加工箇所W3が最終加工箇所で
あることを判別すると(61)、砥石車Gを加工原位置
Poへ復帰させて加工サイクルを完了する。
Subsequently, grinding feed is performed to complete the machining of the machining location W3, and after this, when it is determined that the machining location W3 is the final machining location (61), the grinding wheel G is returned to the machining original position Po. to complete the machining cycle.

なお、加工箇所W1〜W3をWl、W3.W2の順で加
工を行う場合においては、加工箇所W2の加工時に砥石
車Gがクリア位置Piから研削にり開始位置Ps2まで
全て早送りで移動される。
Note that the processing locations W1 to W3 are designated as Wl, W3. When machining is performed in the order of W2, the grinding wheel G is moved in rapid traverse from the clear position Pi to the grinding start position Ps2 when machining the machining location W2.

すなわち、加工箇所W3を加工する場合に準急連送り量
S3がff1(I!急速連送の最大値Stとして記憶さ
れるため、加工箇所W2を加工する場合には、準急連送
り量S2が準急連送りの最大値Siよりも小さくなり、
これにより演算処理装置CPUは(58)へ移行し、砥
石車Gをプログラムされた急速送り量S2に対応した量
だけ早送り速度で移動させるためのパルス分配を行う。
That is, when machining the machining point W3, the semi-urgent continuous feed amount S3 is stored as ff1 (I! Maximum value St of rapid continuous feed, so when machining the machining point W2, the semi-urgent continuous feed amount S2 is It becomes smaller than the maximum continuous feed value Si,
As a result, the arithmetic processing unit CPU moves to (58) and distributes pulses to move the grinding wheel G at a rapid feed speed by an amount corresponding to the programmed rapid feed amount S2.

この結果、クリア位置Piから研削送り開始位置ps2
まで砥石車Gが早送り速度で移動される。
As a result, from the clear position Pi to the grinding feed start position ps2
The grinding wheel G is moved at a rapid traverse speed until .

このように、新たに加工する加工箇所の急速送り量Sn
が、記1.aエリアDAO3に記憶された最大値Siよ
りも小さい場合には、準急連送りの前進端位置まで砥石
車Gを移動させても、保合部材29が固定部材28に当
接することがないため、プログラム上の準急連送り工程
の全てを早送り工程とすることができる。
In this way, the rapid feed amount Sn of the newly machined part
However, note 1. If it is smaller than the maximum value Si stored in the a area DAO3, even if the grinding wheel G is moved to the forward end position of the semi-urgent continuous feed, the retaining member 29 will not come into contact with the fixed member 28. All of the semi-quick continuous feed steps on the program can be made into fast feed steps.

上記のように、加工が完了した加工箇所の準急連送り量
の大きなものを準急連送りの最大値Stとして記憶し、
プログラムで指定された準急連送り量が準急連送りの最
大値Stよりも大きな場合には準急連送りの最大値Si
に応した距a1tを早送り速度で移動させることができ
、また、プログラムで措定された準急連送り氾が準急連
送りの最大値Siよりも小さな場合には、研削送り開始
位置まで砥石車Gを早送り速度で移動させることができ
るため、研削に関与しない無駄時間を大幅に短縮して加
工のサイクルタイムを短縮できる。
As mentioned above, the large amount of semi-urgent continuous feed at the machining location where processing has been completed is stored as the maximum value St of the semi-urgent continuous feed,
If the semi-urgent continuous feed amount specified in the program is larger than the maximum value St of semi-urgent continuous feed, the maximum value of semi-urgent continuous feed Si
The grinding wheel G can be moved at a rapid traverse speed by a distance a1t corresponding to Since it can be moved at a rapid traverse speed, wasted time that is not involved in grinding can be significantly reduced, reducing machining cycle time.

なお、上記実施例は、シリンダ装置を用いた保安機構を
備えた数値制御研削盤に本発明を通用したものであるが
、本発明はかかる保安機構を在しない数値制御研削盤に
も適用できるもの−Cある。
Note that although the above embodiments are applicable to a numerically controlled grinding machine equipped with a safety mechanism using a cylinder device, the present invention can also be applied to a numerically controlled grinding machine that does not have such a safety mechanism. -There is C.

すなわち、本発明においては、加工済加工箇所の準急連
送り量に基づいて次の加二り箇所における早送り前進端
の位置を自動決定j゛るようにしているので、各加工箇
所において早送りの後、準急連送りを行うようにした場
合には、かかる早送りから準急連送りへの切換点の位置
を自動決定でき、かかる切換点のデータは最初の加工箇
所を除いて特別に入力する必要がなくなる効果がある。
That is, in the present invention, the position of the forward end of rapid traverse at the next addition point is automatically determined based on the semi-rapid continuous feed amount of the already machined section, so that , When semi-urgent continuous feeding is performed, the position of the switching point from rapid traverse to semi-urgent continuous feeding can be automatically determined, and there is no need to specially input the data of this switching point except for the first machining location. effective.

また、上記実施例においては、加工済加工箇所前送り前
進端の位置を更新記憶し、この記憶された研削送り前進
端まで砥石車を早送り速度で前進させるようにしてもよ
い。
Further, in the above embodiment, the position of the forward feed end of the machined part may be updated and stored, and the grinding wheel may be advanced at a rapid forward speed to the stored grinding feed forward end.

〈発明の効果〉 以上述べたように本発明においては、各加工箇所におい
て、加工済の加工箇所に対応する研削送り開始位置もし
くは研削送り前進端までは砥石車を早送り速度で移動さ
せるようにしたので、研削加工に関与しない無駄時間を
削減でき、加工のサイクルタイムを大幅に短縮できる利
点がある。
<Effects of the Invention> As described above, in the present invention, at each processing location, the grinding wheel is moved at a rapid traverse speed until it reaches the grinding feed start position or the grinding feed forward end corresponding to the processed processing location. Therefore, it is possible to reduce wasted time that is not involved in the grinding process, and has the advantage of significantly shortening the machining cycle time.

また、加工済加工箇所の移動データに基づいて早送り量
を算出するようにしているので、かかる早送り量を特別
にプログラムする必要がなくなり、データ人力が容易に
なる利点もある。
Furthermore, since the rapid feed amount is calculated based on the movement data of the processed location, there is no need to specially program the rapid feed amount, which has the advantage of facilitating data manual labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の送りサイクルを示す図、第2図は本発明
を明示するための全体構成図、 第3図〜第7図は本発
明の実施例を示すもので第3図は研削盤の概略平面図に
制御回路を示すブロック図を併記した図、第4図は保安
装置の構成を示す拡大断面図、第5図は第3図における
メモリMEMの記憶内容を示す図、第6図は第3図にお
り演算処理装置CP、Uの動作を示すフローチャート、
第7図は本発明にかかる送りザイクルを示す図である。 12・・・インデックステーブル、17・・・砥石台、
19・・・サーボモータ、21・・・シリンダ、22・
・・ピストン、23・・・ピストンロンド、28・・・
固定部材、29・・・係合部材、31・・・数値制御装
置、cpu・・・演算処理装置、G・・・砥石車、ME
M・・・メモリ、81〜S3・・・・準急連送り量、w
i−w3・・・加工箇所。 特許出願人 豊田工機株式会社
Fig. 1 is a diagram showing a conventional feed cycle, Fig. 2 is an overall configuration diagram to clarify the present invention, Figs. 3 to 7 show embodiments of the present invention, and Fig. 3 is a grinding machine. FIG. 4 is an enlarged sectional view showing the configuration of the security device; FIG. 5 is a diagram showing the contents of the memory MEM in FIG. 3; FIG. 3 is a flowchart showing the operation of the arithmetic processing units CP and U,
FIG. 7 is a diagram showing a feed cycle according to the present invention. 12... Index table, 17... Grindstone stand,
19... Servo motor, 21... Cylinder, 22...
...Piston, 23...Piston Rondo, 28...
Fixed member, 29... Engaging member, 31... Numerical control device, CPU... Arithmetic processing unit, G... Grinding wheel, ME
M...Memory, 81-S3...Semi-urgent continuous feed amount, w
i-w3...Processing location. Patent applicant Toyota Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)径の異なる複数の加工箇所を加工位置へ順次割出
して研削加工を行うようにした多段工作物加工用数値制
御研削盤において、砥石車を研削送り開始位置まで移動
させた後研削送りを行う移動データを前記複数の加工箇
所のそれぞれに対応して記憶する記憶手段と、加工位置
に割出した加工箇所に対応する前記移動データと加工済
加工箇所の内、最も小径の加工箇所に対応した前記移動
データを前記記憶手段から読出ず読出手段と、この読出
手段によって読出された両移動データに基づいて加工済
加工箇所の径に応じた準急連送り完了点を表すデータを
演算する演算手段と、前記続出手段によって読出された
加工済加工箇所の移動データに基づいて前記砥石車を早
送り速度で前進させた後、前記演算手段によって演算さ
れた準急°連送り完了点まで、前記早送り速度よりも遅
い準急連送りで砥石車を前進させ、この後砥石車の研削
送りを行う送り制御手段とを設けたことを特徴とする多
段工作物加工用数値制御研削盤。
(1) In a numerically controlled grinding machine for multi-stage workpiece processing that performs grinding by sequentially indexing multiple processing points with different diameters to processing positions, the grinding wheel is moved to the grinding feed start position and then the grinding feed is performed. storage means for storing movement data corresponding to each of the plurality of machining locations; and a storage means for storing movement data corresponding to each of the plurality of machining locations; A reading means for reading out the corresponding movement data from the storage means, and an operation for calculating data representing a semi-urgent continuous feed completion point according to the diameter of the machined part based on both movement data read by the reading means. and the grinding wheel is advanced at a rapid traverse speed based on the movement data of the machined part read by the continuous processing means, and then the rapid traverse speed is increased until the semi-rapid continuous feeding completion point calculated by the calculation means is reached. 1. A numerically controlled grinding machine for machining a multi-stage workpiece, characterized in that the grinding wheel is advanced by a semi-quick continuous feed slower than the grinding wheel, and is further provided with a feed control means for feeding the grinding wheel for grinding.
JP1793484A 1984-02-01 1984-02-01 Numerically controlled grinding machine for working multi-step work Granted JPS60161069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1793484A JPS60161069A (en) 1984-02-01 1984-02-01 Numerically controlled grinding machine for working multi-step work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1793484A JPS60161069A (en) 1984-02-01 1984-02-01 Numerically controlled grinding machine for working multi-step work

Publications (2)

Publication Number Publication Date
JPS60161069A true JPS60161069A (en) 1985-08-22
JPH0513785B2 JPH0513785B2 (en) 1993-02-23

Family

ID=11957599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1793484A Granted JPS60161069A (en) 1984-02-01 1984-02-01 Numerically controlled grinding machine for working multi-step work

Country Status (1)

Country Link
JP (1) JPS60161069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261561U (en) * 1988-10-20 1990-05-08
JP2006167872A (en) * 2004-12-16 2006-06-29 Jtekt Corp Grinding method and grinder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524289A (en) * 1978-07-28 1980-02-21 Lucas Industries Ltd Friction pad assembly
JPS56126575A (en) * 1980-02-28 1981-10-03 Okuma Mach Works Ltd Machining method in numerical control (nc) machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524289A (en) * 1978-07-28 1980-02-21 Lucas Industries Ltd Friction pad assembly
JPS56126575A (en) * 1980-02-28 1981-10-03 Okuma Mach Works Ltd Machining method in numerical control (nc) machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261561U (en) * 1988-10-20 1990-05-08
JP2006167872A (en) * 2004-12-16 2006-06-29 Jtekt Corp Grinding method and grinder

Also Published As

Publication number Publication date
JPH0513785B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4815000A (en) Numerical controller with operation halting function for data revision
US4498259A (en) Numerical controller for a grinding machine
US4604705A (en) Numerical control machining method and system therefor
JP2637488B2 (en) Numerically controlled grinding machine
US4550378A (en) Method of numerical control and device therefor
US4490946A (en) Grinding wheel feeder in grinding machines
US4942611A (en) Method of correcting misalignment of a workpiece on numerically controlled machine tool
DE3886138T2 (en) Numerically controlled machine tool.
US4294045A (en) Grinding machine with a sizing device
JPS62228359A (en) Angular grinder
JPH0236047A (en) Numerical value control device for working non-cylindrical work
JPS60161069A (en) Numerically controlled grinding machine for working multi-step work
JPS6355431B2 (en)
JP3286689B2 (en) Processing device and processing method
JP2772450B2 (en) Non-circular workpiece machining method
JPH0325299B2 (en)
JPS5862702A (en) Numerical controlling method
JPS6147652B2 (en)
JP3009216B2 (en) Automatic grinding wheel correction device for numerically controlled grinding machines
JPH0627322Y2 (en) Numerical control grinder
JPH10143229A (en) Machine tool controller
JPS6114801A (en) Fixed cycle method of combined shape in numerically controlled lathe
JPH05158515A (en) Offset correcting method for nc cutting machine with tool turning shaft
JPS60228056A (en) Method of control for determining tool approach position in milling work
JPS60201852A (en) Control method of automatic tool replacing position in machining center