JPS60160896A - Measuring method of activity of gamma-glutamyl- transpeptidase - Google Patents

Measuring method of activity of gamma-glutamyl- transpeptidase

Info

Publication number
JPS60160896A
JPS60160896A JP1658984A JP1658984A JPS60160896A JP S60160896 A JPS60160896 A JP S60160896A JP 1658984 A JP1658984 A JP 1658984A JP 1658984 A JP1658984 A JP 1658984A JP S60160896 A JPS60160896 A JP S60160896A
Authority
JP
Japan
Prior art keywords
substrate
glutamyl
gamma
nitroanilide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1658984A
Other languages
Japanese (ja)
Other versions
JPH0516837B2 (en
Inventor
Fujio Yamasato
山里 藤男
Seiji Morii
森井 政二
Kazuhiko Samejima
鮫島 和彦
Masami Ishihara
正巳 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP1658984A priority Critical patent/JPS60160896A/en
Publication of JPS60160896A publication Critical patent/JPS60160896A/en
Publication of JPH0516837B2 publication Critical patent/JPH0516837B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure easily and quantitatively enzymatic activity of gamma-glutamyltranspeptidase, by adding a modified cyclodextrin to a measurement system so that water solubility of a substrate, L-gamma-glutamyl-p-nitronilide, is extremely improved. CONSTITUTION:In measuring enzymatic activity of gamma-glutamyl-transpeptidase by using L-gamma-nitroanilide as a substrate, a modified cyclodextrin shown by the formula beta-CD(-OH)21-m(-OH)m [CD is cyclodextrin residue; X is NO2, PO3H, SO3H, -(CH2)nY; Y is -SO3H, or -CO2H; m is 1-5, n is 1-4 integer] such as beta-CD (-OH)21-2(NO2)2 is added to a measurement system.

Description

【発明の詳細な説明】 本発明は、基質としてL−r−グルタミル−p−ニトロ
アニリドを用いる、r−グルタミルトランスペプチダー
ゼ活性の測定方法に関するOr−グルタミルトランスベ
プチターーゼ(以下、γ−GTPと略称する。)の酵素
活性の測定は、臨床的には肝胆道疾患の診断、アルコー
ル飲用者のスクリーニングなどに広く利用され、種々の
方法が発表されているが、L−γ−lルタミルーp−ニ
トロアニリドを基質とする反応速凝測定法が最も一般的
であり、現在も盛んに行なわれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring r-glutamyl transpeptidase activity using L-r-glutamyl-p-nitroanilide as a substrate. Measurement of the enzyme activity of L-γ-l ruta protein is widely used clinically for diagnosis of hepatobiliary tract diseases, screening of alcohol drinkers, etc., and various methods have been published. -The reaction rate coagulation method using nitroanilide as a substrate is the most common and is still actively used.

しかしながら、基質のL−γ−グルタミルーp−ニトロ
アニリド(以下、本基質という。)は、基質安定化及び
酵素反応の至適PHである中性付近(pH=約8.3)
に於て極めて溶解性が悪く、そのため溶解度が比較的高
い低PH域で予め基質を充分に溶解し2ておき、使用時
、中性付近(PH=約8.5)の緩衝液と混合して使用
する酸溶解法が一般的な使用方法である。
However, the substrate L-γ-glutamyl-p-nitroanilide (hereinafter referred to as the present substrate) has a pH around neutrality (pH = approximately 8.3), which is the optimum pH for substrate stabilization and enzyme reaction.
Therefore, the substrate should be sufficiently dissolved in advance in a low pH range where solubility is relatively high, and then mixed with a buffer solution near neutrality (PH = about 8.5) before use. The acid dissolution method is commonly used.

このため、本基質は、溶解した強酸により加水分解をう
けて、ブランク値が徐々に上昇し、その製剤の有効期間
は調液後約5時間程度である。
Therefore, the substrate is hydrolyzed by the dissolved strong acid, and the blank value gradually increases, and the shelf life of the preparation is about 5 hours after preparation.

そこで、本基質の溶解性の改善が種々試みられており、
次の(1)〜(3)の方法が夫々提案され、実用化され
て、いる。
Therefore, various attempts have been made to improve the solubility of this substrate.
The following methods (1) to (3) have been proposed and put into practical use.

(1) カチオン系界面活性剤又はアニオン系界面活性
剤を添加して基質の水に対する溶解性を改善し、これら
イオン系界面活性剤の酵素反応阻害作用をノニオン系界
面活性剤で緩和する方法。
(1) A method of improving the solubility of a substrate in water by adding a cationic surfactant or anionic surfactant, and alleviating the enzymatic reaction inhibition effect of these ionic surfactants with a nonionic surfactant.

(2)本基質の−N02基の〇−位に−C02H基、−
8o3H基などの水溶性基を付与し、基質の水に対する
溶解性を改善する方法。
(2) -C02H group at the -N02 group 〇-position of this substrate, -
A method of improving the solubility of a substrate in water by adding a water-soluble group such as an 8o3H group.

(3ン シクロデキストリンの包接力を利用して基質の
水に対する溶解性を改善する方法。
(A method for improving the solubility of a substrate in water by utilizing the inclusion power of cyclodextrin.

しかしながら、これら従来の方法にも種々の欠点が存在
する。
However, these conventional methods also have various drawbacks.

例えば、(1)の界面活性剤を用いる方法では、イオン
系界面活性剤の酵素阻害力が非常に強く、ノニオン系界
面活性剤を添加しても、その回復率は約70〜80%で
ある上、界面活性剤の添加によりヘモグロビンの吸収が
経時的に変化し、p−ニトロアニリ/の生成速度を追跡
する410nmでのヘモグロビンの吸収が経時的に減少
するため、結果的に、γ−GTPの酵素活性測定値に負
誤差を与え、(2)の水溶性基を付与する方法では、γ
−GTPの酵素活性測定値が高く測定されること及び基
質剤調液後数日で基質が変質し、γ−〇TPの酵素活性
測定値の低下が観測され、場合によっては変質による沈
殿が析出する等の間1題を生じ、又、(3)のシフロブ
キストリ/の包接力を利用する方法では、ヘモクロビ/
の影響やγ−GTPの酵素活性測定値の変動の問題はな
いが、肝心の水に対する溶解性の改善が充分ではなく、
特に、シフロブキストリ/の基質包接化合物を凍結乾燥
する場合は、最終使用数濃度の製剤乃至はその二倍程庫
の龜縮液の製剤の調製が限界でらシ、これら(1)〜(
3)のいずれの方法も、到底、充分に改善された満足す
べき測定方法であるとはいえない現状にある0 かかる状況に於て、本発明者らは、本基質L−r−グル
タミルーp−ニトロアニリドの水溶性を充分満足すべき
程度に改善する方法として、水溶性基で修飾されたシク
ロデキストリンの使用に着目した。
For example, in the method (1) using a surfactant, the ionic surfactant has a very strong enzyme inhibiting power, and even if a nonionic surfactant is added, the recovery rate is about 70 to 80%. Above, the addition of a surfactant changes the absorption of hemoglobin over time, and the absorption of hemoglobin at 410 nm, which tracks the production rate of p-nitroanili/, decreases over time, resulting in the decrease of γ-GTP. In the method (2) of adding a water-soluble group by giving a negative error to the enzyme activity measurement value, γ
-GTP enzyme activity measurements are high, and the substrate deteriorates in a few days after preparing the substrate agent, and a decrease in γ-〇TP enzyme activity measurements is observed, and in some cases, precipitates are deposited due to the alteration. In addition, in the method (3) using the inclusion force of cyphrobacterium, hemoclobi
Although there are no problems with the effects of γ-GTP or fluctuations in the measured enzyme activity of γ-GTP, the important improvement in water solubility is not sufficient.
In particular, when freeze-drying substrate clathrates of Schiflobuchis trifolium, it is difficult to prepare a preparation at the final concentration of use or from a condensate solution that is about twice that concentration.
At present, none of the methods described in 3) can be said to be a sufficiently improved and satisfactory measurement method. In such a situation, the present inventors have determined that the present substrate L-r-glutamyl p - As a method for improving the water solubility of nitroanilide to a sufficiently satisfactory degree, we focused on the use of cyclodextrin modified with a water-soluble group.

シクロデキストリン(以下、CDと略称する0)は、D
−グルコビラノースがα−1,4−グルコシド結合によ
シ環状に結合した環状オリゴ糖同族体であり、結合した
D−グルコビラノースが、6.7及び8個の、α−CD
、β−CD及びγ−CD、の三種のものがよく知られて
いる。
Cyclodextrin (hereinafter abbreviated as CD) is D
- A cyclic oligosaccharide homolog in which glucobylanose is linked in a cycyclic manner through an α-1,4-glucosidic bond, and the linked D-glucobylanose has 6.7 and 8 α-CD
Three types are well known: , β-CD and γ-CD.

これら、一連のCDは、水溶液中で有機化合物と混合す
ると速やかに包接体を形成し、製剤の安定化、溶解性の
調節、液状薬品の粉末化、刺激性や悪臭などのマスク、
或いは揮発性の調節等に優れた効果を有する為に、これ
らの用途に広く利用され、その構造は、CD空洞の一端
の開口部にグルコビラノースの2−及び3−位の−OH
を有し、他端の開口部に6−位の−OHを有する、疎水
性CD空洞を有する環状構造でおることが、そのX線解
析の結果などから推定されている。
These series of CDs quickly form inclusion bodies when mixed with organic compounds in an aqueous solution, which can be used to stabilize formulations, adjust solubility, turn liquid drugs into powder, mask irritation and bad odors, etc.
Alternatively, it is widely used for these purposes because it has an excellent effect on regulating volatility, etc., and its structure is that -OH at the 2- and 3-positions of glucobylanose is placed at the opening at one end of the CD cavity.
It is estimated from the results of its X-ray analysis that it has a cyclic structure with a hydrophobic CD cavity, which has -OH at the 6-position in the opening at the other end.

このCDは、でん粉或いはでん粉の加水分解物にB M
A (Bacillus macerans arny
lase )を作用させると、α−2β−1γ−の混合
物として得られるが、近年は、β−CDのみを高収率で
与えるCD生成酵素がBacillus megate
riumやBacillus属の好アルカリ性菌のある
種のものから見出され、β−CDが安価に製造されるよ
うになった為、研究対象としては溶解性が高いα−CD
を扱ったものが多いが、実用的には、製造、分離精製の
容易なβ−CDが一般に用いられるようになっている。
This CD contains starch or starch hydrolyzate.
A (Bacillus macerans arny
When a mixture of α-2β-1γ- is produced by the action of Bacillus megate
Since β-CD is found in certain alkalophilic bacteria of the genus Bacillus and Bacillus and can be produced at low cost, α-CD, which is highly soluble, is the subject of research.
However, in practice, β-CD is generally used because it is easy to produce, separate and purify.

β−CDの水に対する溶解りは、α−CD、γ−CDの
溶解度に比べて著しく低く、例えば、α−CDが0.5
℃に於て6.8%、γ−CDは同温度に於て91%溶解
するのに対し、β−CDは僅かに08%溶解するにすぎ
ず、又、70℃に於てもα−CDが87.6%、γ−C
Dは実に163.7%溶解するのに対し、β−CDは僅
かに15.3%溶解するにすきない。
The solubility of β-CD in water is significantly lower than that of α-CD and γ-CD, for example, α-CD is 0.5
6.8% at 70°C, and γ-CD dissolves at 91% at the same temperature, whereas β-CD only dissolves at 0.8%, and even at 70°C, α-CD dissolves at 91%. CD is 87.6%, γ-C
D actually dissolves at 163.7%, whereas β-CD dissolves at only 15.3%.

このようなβ−CDの水に対する溶解度をモル濃度に換
算すると、0,5°Cに於て7mM、70°Cに於て1
35mMとなり、ホスト分子β〜CDによって包接され
た水難溶性ゲスト分子の水溶解性は、当然、とのβ−C
Dの溶解度以下に限られる〇一方、本基質L−γ−グル
タミル−p−二トロアニリドはCDによって色抜され、
本基質単独では、水又は緩衝液に対して、精々4 m 
Mまでの溶解性しか示さなかったのに対し、CD 0.
3%(vj/V)の添加で16mM(4倍以上)という
本基質単独の場合と比べれば、比較的高い溶解度を得る
ことができることが知られている。(特開昭57−74
099号公報。) しかしながら、この程度の溶解度では水浴性の改善は充
分ではなく、特に、CD本基質包接化合物を凍結乾燥す
る場合は、最終使用液濃度の製剤乃至はその二倍程度の
濃縮液の製剤の調製が限界であり、列置、満足すべきも
のではないことは、既に述べたとおりである。
When the solubility of β-CD in water is converted into molar concentration, it is 7mM at 0.5°C and 1mM at 70°C.
35mM, and the water solubility of the poorly water-soluble guest molecule clathrated by the host molecule β~CD is naturally
On the other hand, the color of this substrate L-γ-glutamyl-p-nitroanilide is removed by CD,
This substrate alone can be used at most 4 m in water or buffer.
It showed solubility only up to CD 0.
It is known that a relatively high solubility of 16 mM (more than 4 times) can be obtained by adding 3% (vj/V) compared to the case of using the present substrate alone. (Unexamined Japanese Patent Publication No. 57-74
Publication No. 099. ) However, this level of solubility is not sufficient to improve water bathability, and in particular, when freeze-drying CD substrate clathrates, it is necessary to prepare a formulation at the final concentration of the final use solution or a concentrated solution at about twice that concentration. As already mentioned, the preparation is limited and the arrangement is not satisfactory.

そこで、CDに一8O3H基、−C02H基のような水
溶性基を導入し、CDの水溶解性を改善することが考え
られる。
Therefore, it is possible to improve the water solubility of CD by introducing a water-soluble group such as -8O3H group or -C02H group into CD.

しかしながら、本基質L−γ−グルタミルーp−ニトロ
アニリドがCDによって包接されたからといって、CD
に一803H基や一〇〇2H基のような水溶性基を導入
した修飾CDが、本基質を効果的に包接するとはいえな
い。
However, even though the present substrate L-γ-glutamyl-p-nitroanilide was included by CD, CD
It cannot be said that a modified CD into which a water-soluble group such as a 1803H group or a 1002H group is introduced effectively includes the present substrate.

即ち、包接体形成機構に関しては、従来から種々の分子
間力の関与が提唱され、CD包接体形成には分散力、双
極子開力、水素結合、疎水結合、電荷移動力等種々の分
子間力の一部またはすべてが関与している可能性があり
、それ故分子の化学構造か相違すれば、当然、その包接
体形成機構も相違し、又、たとえ包接体が形成されたと
しても、ゲスト分子である本基質り一γ−グルタミルー
p−ニトロアニリド全体が、或いはγ−GTPとの酵素
反F6活性部位が、ホスト分子であるCD空洞内に包接
され、酵素反応が抑制されてしまうおそれが存在する。
That is, regarding the inclusion body formation mechanism, it has been proposed that various intermolecular forces are involved, and various intermolecular forces such as dispersion force, dipole opening force, hydrogen bond, hydrophobic bond, charge transfer force, etc. are involved in CD inclusion body formation. Some or all of the intermolecular forces may be involved, and therefore, if the chemical structure of the molecules is different, the mechanism of inclusion formation will naturally be different, and even if an inclusion body is not formed, Even if the entire guest molecule, γ-glutamyl-p-nitroanilide, or the enzyme anti-F6 active site with γ-GTP is included in the CD cavity, which is the host molecule, the enzymatic reaction cannot occur. There is a risk that it will be suppressed.

(有機合成化学 第35巻第2号119(37)頁及び
123(41)頁(1977)。) このような状況に於て、β−CD (OH)21−m(
−0X)m[:但し、CDはシクロデキストリン残基を
、XViN02、PO3H,803H1又は式−(CH
2)nY (Ytl−803H基又は−C02H基を示
し、n = 1〜4の整数を示す。)で表わされる基を
示し、m=1〜5を示す。〕なる特定の修飾CDが、本
基質L−γ−グルタミルーp−ニトロアニリドを効果的
に包接し、且つ包接された本基質に対するγ−GTPの
酵素活性は何ら抑制されることなく、従ってこのような
特定の修飾CDの存在下に、本基質り一γ−グルタミル
ーp−ニトロアニリドを基質として用いると、本基質の
水溶性か飛躍的に改善されるばかシでなく、γ−GTP
O酵素活性を容易に定量的に測定することができること
か判明した。
(Organic Synthetic Chemistry Vol. 35, No. 2, pp. 119 (37) and 123 (41) (1977).) In this situation, β-CD (OH) 21-m (
-0X)m[: However, CD represents a cyclodextrin residue,
2) Indicates a group represented by nY (indicates a Ytl-803H group or a -C02H group, and n = an integer of 1 to 4), and indicates m = 1 to 5. ] The specific modified CD effectively includes the present substrate L-γ-glutamyl-p-nitroanilide, and the enzymatic activity of γ-GTP toward the included present substrate is not suppressed in any way. When the present substrate γ-glutamyl-p-nitroanilide is used as a substrate in the presence of a specific modified CD such as
It was found that O enzyme activity can be easily and quantitatively measured.

本発明は、上記特定の修飾CDを本基質り一γ−グルタ
、ミル−p−ニトロアニリドと共にγ−GTPの酵素反
応系に存在させる点に特徴を有する発明であり、r−G
TPの酵素活性の測定操作自体は、グリシルグリシンな
どのグルタミン酸の受容体の存在下に汎用の緩衝液(ト
リス−塩酸緩@液など。)中で反応させる一般法に従う
ことで足シる。
The present invention is characterized in that the above-described specific modified CD is present in the γ-GTP enzymatic reaction system together with the present substrate γ-gluta and mil-p-nitroanilide.
The procedure for measuring the enzymatic activity of TP can be accomplished by following the general method of reacting in a general-purpose buffer (such as Tris-hydrochloric acid solution) in the presence of a glutamic acid receptor such as glycylglycine.

本発明に用いる特定の修飾CD、β−CD(−0H)2
□−m(−ox)m(但し、CDはシクロデキストリン
残基を、XはNO2、PO3H,5O3H,又は式(C
H2) nY (Yは−503H基又は−cO2H基を
示し、n=1〜4の整数を示す。)で表わされる基を示
し、m=1〜5を示す。〕に於いて、mは通常1〜5、
好ましくは1.5ミ3であり、X=(CH2)nY の
ときのnは通常1〜4の整数、好ましくは2又は3であ
り、Yで表わされる− 5(J3H基及び−C02H基
のHは、夫々Na5K等のアルカリ金属イオン又はNH
,+に置き換えられていても良い。
Specific modified CD used in the present invention, β-CD(-0H)2
□-m(-ox)m (where, CD is a cyclodextrin residue, X is NO2, PO3H, 5O3H, or the formula (C
H2) represents a group represented by nY (Y represents a -503H group or a -cO2H group, and n = an integer of 1 to 4), and m = 1 to 5; ], m is usually 1 to 5,
It is preferably 1.5 mi 3, and when X=(CH2)nY, n is usually an integer of 1 to 4, preferably 2 or 3, and -5 (J3H group and -C02H group) represented by Y H is an alkali metal ion such as Na5K or NH
, + may be substituted.

本発明に用いる特定の修飾CDの代表例を挙けると、例
えば、 β−CD(−0H)21−2(ONO2)2、β−CD
(0H)2□−1,8(OPO3H)1.8、β−CD
(−0H)2□−2(OSO3H) 2、β−CD (
−OH) 2□−2,5(−0−CH2−CO2H) 
2.5、β−CD(0H)2□−x、rl(0−CH2
CH2CH2,5O3H)1,7 、β−CD(0H)
212.5(0−CH2CH2CH25O3H)2,5
、β−CD(0H)21−3.0(OCH2CH2CH
25O3H)3,0 。
Representative examples of specific modified CDs used in the present invention include, for example, β-CD(-0H)21-2(ONO2)2, β-CD
(0H)2□-1,8 (OPO3H)1.8, β-CD
(-0H)2□-2(OSO3H) 2, β-CD (
-OH) 2□-2,5(-0-CH2-CO2H)
2.5, β-CD(0H)2□-x, rl(0-CH2
CH2CH2,5O3H)1,7, β-CD(0H)
212.5(0-CH2CH2CH25O3H)2,5
, β-CD(0H)21-3.0(OCH2CH2CH
25O3H)3,0.

等であり、これらは、一般的製造方法によシ容易に製造
することができる。(有機合成化学、第35巻、第2号
、123(41)〜124(42)頁(1977)。) 本基質及びこれら本発明に係る特定の修飾CDを用いる
γ−GTPの酵素活性の測定値は、従来の酸溶解法の測
定値とよい相関を示しく第1図。)、又、現在実用化さ
れている他の三法(1)、(2)及び(3)の方法と比
較して、ヘモグロビンの影響やγ−GTPの酵素活性値
の変動の問題もない。本発明に係る特定の修飾CDを用
いることにより、極めて効果的に本基質り一γ−グルタ
ミルーp−ニトロアニリドが包接され、飛躍的に基質溶
解性が改善され、且つ溶解後の基質液の安定性も改善さ
れた。又、γ−GTPの酵素活性は、これにより何らの
抑制をもうけず、容易に定量的にγ−G T Pの酵素
活性測定値を与え、更に、本基質の基質溶解性が200
mM以上と飛躍的に改善されたため、凍結乾燥された基
質製剤の調製も極めて容易となった。(表1参照) 又、本発明の意外な効果としては、本基質L −γ−グ
ルタミルーp−ニトロアニリドを基質とするγ−GTP
の酵素活性測定法に於て、本発明に係る特定の修飾CD
を存在させることにより、防腐剤として用いるヒドロキ
シ安息香酸エステルの溶解度をも改善し、防腐剤として
の効果を増大させ、試液の安定化に寄与するところ大な
らしめた点である。(表2参照) 即ち、ヒドロキシ安息香酸エステル類は、毒性の少ない
防腐剤として知られ、食品添加物や各種製剤の防腐剤と
して幅広く利用されているが、抗餉力が特に強いといわ
れているエステルの炭素数が3及び4のものは水に対す
る溶解度が低く、必要量、溶解させることが出来ないの
が現状であった(表2に示す如く、例えばプロピルエス
テルの場合、5mM用いたとすると重量%濃度は0.0
90%となるが、このものの20℃及び25℃に於ける
溶解度は夫々0.03%及び0.05%であるから、2
0〜25°Cに於ては必然的に0.06〜0,04%相
当分は不溶分として残る。)。然しなから、本発明によ
り、即ち本発明の特定の修飾CDを用いることにより、
その抗菌、防腐作用を何ら阻害せず、又何らの障害も発
生させることなしに、これら水難溶性物質の溶解度を飛
躍的に増大させ、その結果として試液の安定性向上に顕
著な効果をもたらした。
etc., and these can be easily manufactured by general manufacturing methods. (Organic Synthetic Chemistry, Vol. 35, No. 2, pp. 123(41) to 124(42) (1977).) Measurement of enzymatic activity of γ-GTP using the present substrate and these specific modified CDs according to the present invention. The values show good correlation with the values measured by the conventional acid dissolution method. ), and compared to the other three methods (1), (2) and (3) currently in practical use, there is no problem of influence of hemoglobin or fluctuation of the enzyme activity value of γ-GTP. By using the specific modified CD according to the present invention, the present substrate is extremely effectively clathrated with -gamma-glutamyl-p-nitroanilide, the substrate solubility is dramatically improved, and the substrate solution after dissolution is Stability has also been improved. Furthermore, the enzymatic activity of γ-GTP is not inhibited in any way, and the enzymatic activity of γ-GTP can easily be measured quantitatively, and furthermore, the substrate solubility of this substrate is 200%.
Since the concentration was dramatically improved to more than mM, it became extremely easy to prepare a freeze-dried substrate preparation. (See Table 1) Furthermore, as an unexpected effect of the present invention, γ-GTP using the present substrate L-γ-glutamyl-p-nitroanilide
In the method for measuring enzyme activity, the specific modified CD according to the present invention
The presence of hydroxybenzoic acid ester also improves the solubility of the hydroxybenzoic acid ester used as a preservative, increasing its effectiveness as a preservative and greatly contributing to the stabilization of the test solution. (See Table 2) In other words, hydroxybenzoic acid esters are known as preservatives with low toxicity and are widely used as preservatives in food additives and various preparations, but they are said to have particularly strong anti-fouling properties. Esters with 3 and 4 carbon atoms have low solubility in water and cannot be dissolved in the required amount (as shown in Table 2, for example, in the case of propyl ester, if 5mM is used, the weight % concentration is 0.0
However, the solubility of this substance at 20°C and 25°C is 0.03% and 0.05%, respectively, so 2
At 0 to 25°C, an amount equivalent to 0.06 to 0.04% remains as insoluble matter. ). However, according to the present invention, i.e. by using certain modified CDs of the present invention,
It dramatically increases the solubility of these poorly water-soluble substances without inhibiting their antibacterial and antiseptic effects or causing any problems, resulting in a remarkable effect on improving the stability of test solutions. .

以上申し述べたとおり、本発明は、現在盛んに行なわれ
ている、L−γ−グルタミルーp−ニトロアニリドを基
質とするγ−()TPの酵素活性測定法に於て、本発明
に係る特定の修飾CDを用いることにより、従来の方法
を極めて効果的に改良したものであり、斯業に貢献する
ところ大なるものである。
As stated above, the present invention provides a method for measuring the enzymatic activity of γ-()TP using L-γ-glutamyl-p-nitroanilide as a substrate, which is currently being actively carried out. By using a modified CD, this method is a very effective improvement over the conventional method, and will greatly contribute to this industry.

以下に実施例を示す。Examples are shown below.

実施例1゜ (1) 試薬の調製 ■ 基質緩衝液 β−CDスルホプロピルエーテル(m=2.5置換体)
10mM、L−γ−グルタミルーp−ニトロアニリド5
mMを溶解した0、 1 M トリス塩酸緩衝液(pH
8,40)を調製する。
Example 1゜(1) Preparation of reagent■ Substrate buffer β-CD sulfopropyl ether (m=2.5 substitution product)
10mM, L-γ-glutamyl-p-nitroanilide 5
0, 1 M Tris-HCl buffer (pH
8,40).

■ グリシルグリシ/溶液 塩酸でpH8,40に調整したグリシルグリシン162
mM溶液を調製する。
■ Glycylglycine/solution Glycylglycine 162 adjusted to pH 8.40 with hydrochloric acid
Prepare an mM solution.

(2)測定操作 試料50μtに基質緩衝液の2. OwLlを加え、3
7℃で3分間予備加温し、これにグリシルグリシン溶液
■0.5 mlを加えてよく混合後、分光光度計で41
0 nmの吸光度の増加を測定し、活性値を算出する。
(2) Measurement procedure 2. Add substrate buffer to 50μt of sample. Add OwLl, 3
Preheat at 7°C for 3 minutes, add 0.5 ml of glycylglycine solution, mix well, and measure 41°C using a spectrophotometer.
Measure the increase in absorbance at 0 nm and calculate the activity value.

(31活性値 単位時間(1分間)当シの吸光度の増加IE7minに
相当する活性値(mIU)i次式で与えられる。
(31 activity value unit time (1 minute) Activity value (mIU) corresponding to the increase in absorbance of the current IE7min) is given by the following equation.

比較例1゜ (1) 試薬の調製 ■ 基’Xi: L−γ−グルタミルーp−ニトロアニ
リド1 m M (2851RI/ )を0.5N塩酸
10罰に溶解し、水で全量50m1とする。(20mM
溶液) ■ 緩衝液ニゲリシルグリシン 40mMを溶解した0
、 1 M トリス塩酸緩衝液(PH8,40)を調製
する。
Comparative Example 1 (1) Preparation of Reagent Group 'Xi: 1 mM (2851RI/) of L-γ-glutamyl-p-nitroanilide is dissolved in 10 parts of 0.5N hydrochloric acid, and the total volume is made up to 50 ml with water. (20mM
Solution) ■ Buffer solution containing 40mM of nigericylglycine
, prepare 1 M Tris-HCl buffer (PH8,40).

(2)測定操作 試料50μtに緩衝液■2.Qmlを加え、37℃で3
分間予備加温し、これに基質液■Q、 5 mlを加え
てよく混合後、分光光度計で410 nmの吸光度の増
加を測定する。
(2) Measurement procedure 50μt of sample and buffer ■2. Add Qml and incubate at 37°C for 3
After prewarming for a minute, add 5 ml of substrate solution (Q) and mix well, then measure the increase in absorbance at 410 nm with a spectrophotometer.

実施例1. 及び比較例1. の方法により、同一の3
0検体の活性値をめ、それらの相関関係を第1図に示す
Example 1. and Comparative Example 1. By the method of
Figure 1 shows the correlation between the activity values of the 0 sample and the correlation between them.

第1図から明らかなように、本発明による測定値は、従
来の酸溶解法の測定値とよい相関を示しているo(r=
0.9987、Y=1.022X−2,121) 実施例2゜ (1) 試薬の調製 ■ 基質緩衝液 β−CDカルボキシメチルエーテル(m=2.5置換体
)10mM、L−γ−グルタミルーp−ニトロアニリド
5mMを溶解した0、1Mトリス塩酸緩衝液(pH8,
40)を調製する。
As is clear from FIG. 1, the measured values according to the present invention show a good correlation with the measured values of the conventional acid dissolution method.
0.9987, Y = 1.022 0, 1M Tris-HCl buffer (pH 8,
40).

■ グリシルグリシン溶液 塩酸でPH8,40に調整したグリシルグリシン162
mM溶液を調製する。
■ Glycylglycine solution Glycylglycine 162 adjusted to pH 8.40 with hydrochloric acid
Prepare an mM solution.

(2)測定操作 試料50μtに基質緩衝液■2.Omlを加え、37℃
で3分間予備加温し、これにグリシルグリシン溶液■0
.5 mtを加えてよく混合後、分光光度計で410n
mの吸光度の増加を測定し、活性値を算出する。
(2) Measurement procedure 50 μt of sample and substrate buffer ■2. Add Oml and heat to 37℃
Preheat for 3 minutes with
.. After adding 5 mt and mixing well, measure 410n using a spectrophotometer.
The increase in absorbance of m is measured and the activity value is calculated.

実施例2. によっても、実施例1. と同様な結果が
得られた。
Example 2. Also according to Example 1. Similar results were obtained.

実施例3゜ (1) 試薬の調製 ■ 基X液: L−γ−グルタミルーp−ニトロアニリ
ド 200mM、β−CDカルボキシメチルエーテル(
m=2゜5置換体)400mMの混合液を2WLlずつ
分注し凍結乾燥して基質剤を得る。
Example 3゜(1) Preparation of reagent ■ Base X solution: L-γ-glutamyl-p-nitroanilide 200mM, β-CD carboxymethyl ether (
m=2°5 substitution product) A 400mM mixture was dispensed in 2WLl portions and lyophilized to obtain a substrate agent.

これを、使用時、0.1M)!jス塩酸緩衝液(pH8
,40)20s+lに溶解し、基質液を調製する。
When using this, 0.1M)! jsu hydrochloric acid buffer (pH 8
, 40) Dissolve in 20s+l to prepare a substrate solution.

■ 緩衝液ニゲリシルグリシ740mMを溶解した0、
 1 M )リス塩酸緩衝液(pH8,40)を調製す
る。
■ Buffer solution containing 740mM of nigericylglycyl,
Prepare 1 M) Lis-HCl buffer (pH 8,40).

(2)測定操作 試料50μtに緩衝液■2.Omlを加え、37℃で3
分間予備加温し、これに基質液■0.5 mlを加えて
よく混合後、分光光度計で410 nmの吸光度の増加
を測定する。
(2) Measurement procedure 50μt of sample and buffer ■2. Add Oml and incubate at 37°C for 3
Preheat for 1 minute, add 0.5 ml of substrate solution (1), mix well, and measure the increase in absorbance at 410 nm using a spectrophotometer.

実施例4゜ (1) 試薬の調製 ■ 基質i : L−γ−グルタミルーp−ニトロアニ
リド 200mM、β−CDスルホプロピルエーテル(
m = 2.5置換体)400mMの混合液を2 ml
ずつ分注し、凍結乾燥して基質剤を得る。
Example 4゜(1) Preparation of reagent ■ Substrate i: L-γ-glutamyl-p-nitroanilide 200mM, β-CD sulfopropyl ether (
m = 2.5 substitution product) 2 ml of 400 mM mixture
Dispense the solution into portions and lyophilize to obtain the substrate.

使用時、0.1 M )リス塩酸緩衝液(pH8,40
)201nlに溶解し、基質液を調製する。
When used, 0.1 M) lithium-hydrochloric acid buffer (pH 8,40
) Dissolve in 201 nl to prepare a substrate solution.

■ 緩衝液ニゲリシルグリシ740 m Mを溶解した
0、 1 M トリス塩酸緩衝液(pH8,40)を調
製する。
(2) Buffer Prepare 0.1 M Tris-HCl buffer (pH 8.40) in which 740 mM of nigericylglycide is dissolved.

(2)測定操作 試料50μtに緩衝液■2.Omlを加え、37℃で3
分間予備加温し、これに木質液の0.5 mlを加えて
よく混合後、分光光度計で410 nmの吸光度の増加
を測定し、活性値を算出する。
(2) Measurement procedure 50μt of sample and buffer ■2. Add Oml and incubate at 37°C for 3
After preheating for a minute, add 0.5 ml of woody liquid and mix well. The increase in absorbance at 410 nm is measured using a spectrophotometer, and the activity value is calculated.

実施例3及び4からも明らかなように、本発明の修飾C
DVi、400mM以上の非常に高い溶解度を有してい
て、ゲスト分子である本基質γ−グルタミルーp−ニト
ロアニリドを、200mMと、飛躍的に可溶化すること
ができる。
As is clear from Examples 3 and 4, modification C of the present invention
DVi has a very high solubility of 400 mM or more, and can dramatically solubilize the guest molecule, γ-glutamyl-p-nitroanilide, to 200 mM.

実施例5.(p−ヒドロキシ安息香酸エステルの可溶化
) ■ 緩衝液=1を 塩酸でPHを9.0に調整する。
Example 5. (Solubilization of p-hydroxybenzoic acid ester) (1) Adjust the pH of buffer solution 1 to 9.0 with hydrochloric acid.

本溶液は室温で1年間安定である。This solution is stable for one year at room temperature.

■ 基質緩衝液 り一γ−グルタミルーp−ニトロアニリド1mMをo:
s N−H2SO,10mlに溶解し、上記緩衝液の1
90m1と混合する。
■ Add 1 mM of γ-glutamyl-p-nitroanilide to the substrate buffer:
s N-H2SO, 10 ml of the above buffer solution.
Mix with 90ml.

本溶液は2〜10℃保存で2週間使用可能である0This solution can be used for 2 weeks when stored at 2-10℃.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法で得られたγ−GTPの酵素活
性値と従来の酸溶解法で得られたr−G T I)の酵
素活性値との相関を表わし、横軸Xは酸溶解法の活性値
(m I U )を、縦軸Yは本発明の(方法の活性値
(mIU)を表わす。 特許出願人 和光純薬工業株式会社 第1図 ( ? ( イ1 l QQ 200 X 酸浴解法による酵素活性値(mIU) 手続補正書 昭和lρ年 夕 月2/7日 1、事件の表示 pafFrJt; q 4−aHr願44 o t b
 t; g ? 4λ 発明の名称 3、 補正をする者 事件との関係 特許出願人 郵便番号 541 連絡装置 03−270−8571 4、補正命令の日付 名 搭 5、補正の対象 明細書の発明の詳細な説明の欄。 6、補正の内容 (1)明細書12頁表1中に記載の(2)水溶性基法に
於ける基質「L−γ−G−p−N−0−スルホン酸」を
「L−γ−G−p−N−m−スルホン酪」と補正する。 以」二 手続補正書 昭和60年 q 月 2λ日 1 事件の表示 2 発明の名称 3 補正をする者 事件との関係 特許出願人 連絡先11らL 03−270−85714 補正命令
の日付 飽 沁 5、補正の対象 明細書の発明の詳細な説明の欄。 6、 捕■の内容 (1)明細書12頁表1中に記載の(2)水溶性基法に
於ける基質「L−γ−G−p−N−0−カルボン酸」を
「L−γ−G−p −N −m−力ルホン耐」と補正す
る。 以]−
FIG. 1 shows the correlation between the enzyme activity value of γ-GTP obtained by the method of the present invention and the enzyme activity value of r-GTP obtained by the conventional acid dissolution method, and the horizontal axis X is The activity value (mIU) of the acid dissolution method is represented by the activity value (mIU) of the method of the present invention, and the vertical axis Y represents the activity value (mIU) of the method of the present invention.Patent applicant: Wako Pure Chemical Industries, Ltd. 200
t; g? 4λ Title of the invention 3. Relationship with the case of the person making the amendment Patent applicant postal code 541 Communication device 03-270-8571 4. Name of date of amendment order 5. Detailed description of the invention in the specification to be amended . 6. Contents of amendment (1) The substrate "L-γ-G-p-N-0-sulfonic acid" in the (2) water-soluble base method described in Table 1 on page 12 of the specification was replaced with "L-γ-G-p-N-0-sulfonic acid". -G-p-N-m-sulfonebutyro”. 2 Procedural amendments 1985 q Month 2λ day 1 Indication of the case 2 Title of the invention 3 Relationship to the case of the person making the amendment Patent applicant contact information 11 et al. 03-270-85714 Date of amendment order 5 pm , Detailed description of the invention in the specification to be amended. 6. Contents of capture (1) The substrate "L-γ-G-p-N-0-carboxylic acid" in the (2) water-soluble group method described in Table 1 on page 12 of the specification was replaced with "L-γ-G-p-N-0-carboxylic acid". It is corrected as γ-G-p-N-m-force resistance. ]-

Claims (1)

【特許請求の範囲】 γ−グルタミルトランスペプチダーゼの酵素活性を測定
するに当り、β−CD(OH)21−m(0X)rr+
〔但シ、CDはシクロデキストリン残基を、XはNO2
、PO3H,803H,又は式−(CH2)IY(Yは
−803H基又は−Co2H基を示し、n=1〜4の整
数を示す。)で表わされる基を示し、m = 1〜5を
示す。 〕なる修修飾シフロブキストリの存在下に、L−γ−グ
ルタミルーp−ニトロアニリドを基質として用いること
を特徴とする、γ−グルタミルトランスペプチダーゼ活
性の測定方法。
[Claims] In measuring the enzymatic activity of γ-glutamyl transpeptidase, β-CD(OH)21-m(0X)rr+
[However, CD is a cyclodextrin residue, and X is NO2
, PO3H, 803H, or a group represented by the formula -(CH2)IY (Y represents a -803H group or a -Co2H group, and n = an integer of 1 to 4), and m = 1 to 5. . ] A method for measuring γ-glutamyl transpeptidase activity, which comprises using L-γ-glutamyl-p-nitroanilide as a substrate in the presence of a modified schiflobuchistri.
JP1658984A 1984-01-31 1984-01-31 Measuring method of activity of gamma-glutamyl- transpeptidase Granted JPS60160896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1658984A JPS60160896A (en) 1984-01-31 1984-01-31 Measuring method of activity of gamma-glutamyl- transpeptidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1658984A JPS60160896A (en) 1984-01-31 1984-01-31 Measuring method of activity of gamma-glutamyl- transpeptidase

Publications (2)

Publication Number Publication Date
JPS60160896A true JPS60160896A (en) 1985-08-22
JPH0516837B2 JPH0516837B2 (en) 1993-03-05

Family

ID=11920461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1658984A Granted JPS60160896A (en) 1984-01-31 1984-01-31 Measuring method of activity of gamma-glutamyl- transpeptidase

Country Status (1)

Country Link
JP (1) JPS60160896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284199A (en) * 1988-09-20 1990-03-26 Wako Pure Chem Ind Ltd Reagent solution for determination of acidic phosphatase activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284199A (en) * 1988-09-20 1990-03-26 Wako Pure Chem Ind Ltd Reagent solution for determination of acidic phosphatase activity
JP2797102B2 (en) * 1988-09-20 1998-09-17 和光純薬工業株式会社 Acid phosphatase activity reagent

Also Published As

Publication number Publication date
JPH0516837B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
US4138476A (en) Plaque dispersing enzymes as oral therapeutic agents by molecular alteration
AU2020239621B2 (en) Pharmaceutical formulations of Her2 antibody-drug conjugate
HU177081B (en) Process for preparing the occlusion complex of allicin with cyclodextrin
Reynolds et al. Inhibition of venom phospholipases A2 by manoalide and manoalogue. Stoichiometry of incorporation.
US3952092A (en) Oral preparations
TWI406675B (en) Pharmaceutical composition
JPS60160896A (en) Measuring method of activity of gamma-glutamyl- transpeptidase
JPH04503683A (en) Pharmaceutical formulation for dissolving blood clots and method for producing the same
JP2007228842A (en) Method for stabilizing enzyme
US7795207B2 (en) Lipopeptide compositions
Kuranov et al. Complex formation of cyclodextrins with sulfasalazine in buffer solutions
JPS61236802A (en) Novel branched gamma-cyclodextrin and its preparation
JPH06289015A (en) Stabilized phenothiazine chromogen composition
JPS61260900A (en) Method for measuring activity of gamma-glutamyl transpeptidase
Waheed et al. Covalent modification as the cause of the anomalous kinetics of aryl sulfatase A
JPH0466087A (en) Method for stabilizing ascorbate oxidase and stabilized composition of the same enzyme
JPS611399A (en) Method of measuring gamma-glutamyl transpeptidase activity
JP2000159806A (en) Carboxymethylated mutan and cosmetic
Benson et al. The participation of an enzyme-bound oxygen group in a coenzyme A transferase reaction
CN101370524A (en) Lipopeptide compositions
JPH04304896A (en) Production of composition containing angiotensin converting enzyme inhibitor
JPH0383582A (en) Novel cyclodextrin-decomposing enzyme its preparation and microorganism, producing the same enzyme
JP3823461B2 (en) Reagent for measuring γ-glutamyltranspeptidase activity
JPH0427388A (en) Modified protease and production thereof
JPS60120984A (en) Heat-resistant cyclodextrin glycosyl transferase and its production