JPS601586A - Sampling/measuring apparatus for radioactivity level - Google Patents

Sampling/measuring apparatus for radioactivity level

Info

Publication number
JPS601586A
JPS601586A JP10898783A JP10898783A JPS601586A JP S601586 A JPS601586 A JP S601586A JP 10898783 A JP10898783 A JP 10898783A JP 10898783 A JP10898783 A JP 10898783A JP S601586 A JPS601586 A JP S601586A
Authority
JP
Japan
Prior art keywords
dilution
fluid
radioactivity
tank
radioactivity level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10898783A
Other languages
Japanese (ja)
Inventor
Nobuhide Shimada
島田 信秀
Toshiaki Ito
敏明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10898783A priority Critical patent/JPS601586A/en
Publication of JPS601586A publication Critical patent/JPS601586A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/02Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure the radioactivity density at a high accuracy and quickly with an appropriate dilution of a sampling liquid by roughly measuring the radioactivity level of a fluid in a passage to match the measuring range of a radioactivity detector for precision measurement with the control of the dilution. CONSTITUTION:When the radioactivity level of a fluid in a passage 1 with a first radioactivity detector 2 exceeds the set value, a controller 17 computes the radio between the intake of the fluid and the quantity of a dilution fluid from a dilution tank 5 to ensure an accurate detection of the radioactivity with a second radioactivity detector 16. According to the results of the computation, valves 12 and 14 are controlled to regulate the dilution level of the fluid diluted of an agitator 6 properly. Then, the radioactivity of the fluid properly diluted as sampled via a valve 15 is detected with the detector 16 thereby enabling a highly accurate and quick detection of the radioactivity density.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子カプラント等において放射性物質をサンプ
リングし、適当濃度に希釈して放射能レベルを高精度で
測定する測定装置にI3!]iる。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is directed to a measuring device that samples radioactive substances in an atomic couplant, dilutes them to an appropriate concentration, and measures the radioactivity level with high precision. ]Iru.

[発明の技術的背景とその問題点] 原子力発電所その他の放射性物質取扱い1M段において
は、放射性物質を含有する流体の放射能レベルを精度よ
く測定する必要がある。
[Technical background of the invention and its problems] In nuclear power plants and other 1M stages that handle radioactive materials, it is necessary to accurately measure the radioactivity level of fluids containing radioactive materials.

従来、放射性流体の流路において放射能レベルを測定す
る手段としCは、 (イ)直接流路内で測定する方法。
Conventionally, methods for measuring radioactivity levels in the flow path of radioactive fluid include: (a) Method of measuring directly within the flow path.

(ロ)流路内から流体をサンプリングし、これを一定の
希釈率で希釈して測定する方法。
(b) A method in which fluid is sampled from within the flow path, diluted at a fixed dilution rate, and measured.

(ハ)上記(ロ)において、測定具が周囲の状況や過去
のデ゛−夕を参照して希釈率を決定し、この希釈率でサ
ンプリング流体を希釈して測定Jる方法等がある。
(c) In the above (b), there is a method in which the measuring tool determines the dilution rate by referring to the surrounding conditions and past data, and the sampling fluid is diluted at this dilution rate to perform the measurement.

しかしながら、上述の方法では精度のよい測定は期待で
きない。
However, with the above method, accurate measurement cannot be expected.

りなわら、(イ)の方法では、流路の人ささや流量およ
び流体中での放射性物質の不均一性によって測定値が大
幅に変動覆る。また(イ)、(ロ)の方法では、対象流
体の放射能濃度が検出系の飽和特性や感度よって定まる
最適測定範囲外になると測定精度が低下する。さらに(
ハ)の方法では、希釈率設定の根拠が曖昧な上、事故発
生時の測定開始に遅れが伴い手間がかかるという欠点が
ある[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
サンプリング流体を適当濃度に希釈し−Cレベル測定を
行なうことにより精度よく、かつ迅速に放射能濃度を測
定し得る放飼能レベルのサンプリング測定装置を提供す
ることを目的とするものである。
However, in method (a), the measured value fluctuates significantly depending on the number of people in the flow path, the flow rate, and the non-uniformity of the radioactive substance in the fluid. Furthermore, in methods (a) and (b), measurement accuracy decreases when the radioactive concentration of the target fluid falls outside the optimal measurement range determined by the saturation characteristics and sensitivity of the detection system. moreover(
Method c) has the drawbacks that the basis for setting the dilution rate is ambiguous, and the start of measurement in the event of an accident is delayed and takes time and effort. [Objective of the Invention] The present invention has been made in response to such conventional circumstances. With something that
It is an object of the present invention to provide a sampling measurement device for a stocking level that can accurately and quickly measure radioactivity concentration by diluting a sampling fluid to an appropriate concentration and measuring the -C level.

[発明の概要」 ηなわち本発明は、流路を流れる流体の放射能レベルを
大まかに測定する第1の放射線検出器と、前記流路に配
管を介し゛C接続された希釈槽と、この希釈槽にそれぞ
れ配管を介して接続されlこ′8釈用流体槽a3よび採
取槽と、この採取槽内に採取されIC流体の放射能レベ
ルを精密測定する第2の放射線検出器と、前記第1の放
射線検出器の出力を人力し、前記第2の放射線検出器が
適切測定レンジで放射能レベルを測定Cきる用前記希釈
槽に導入される前記流路からの流体量、前記希釈用流体
槽からの希釈用流体量または希釈星を出力する制御装置
とから構成したことを特徴とり−る放射能レベルのサン
プリング測定装置である。
[Summary of the Invention] In other words, the present invention comprises: a first radiation detector that roughly measures the radioactivity level of a fluid flowing through a flow path; a dilution tank connected to the flow path via piping; A dilution fluid tank A3 and a collection tank each connected to the dilution tank via piping, and a second radiation detector that precisely measures the radioactivity level of the IC fluid collected in the collection tank; The amount of fluid from the flow path introduced into the dilution tank, the dilution amount, so that the output of the first radiation detector can be manually input, and the second radiation detector can measure the radioactivity level in an appropriate measurement range. This is a radioactivity level sampling measurement device characterized by comprising a control device that outputs the amount of dilution fluid from a dilution fluid tank or a dilution star.

[発明の実施例] 以下本発明の詳細を図面に示す一実施例について説明す
る。
[Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第1図は本発明におい゛CC使込れる測定装置の47、
i成例を示すもので、放射性物質を含む流体の流路1に
は第1の放!J’J FA検出器2が接続され、流体の
放射能レベルを監視している。第1の放射線検出器2は
r/it体の放射能レベルの大まかな目安をつりられる
程度の精度を有するもので十分であり、高い精度を有し
なくともよい。
Figure 1 shows 47 of the measuring device used for CC in the present invention.
This shows an example of a radioactive material, and the first release! A J'J FA detector 2 is connected to monitor the radioactivity level of the fluid. It is sufficient that the first radiation detector 2 has enough accuracy to roughly estimate the radioactivity level of the r/it body, and does not need to have high accuracy.

流路1の放射線検出器2により下流側には、配管3.4
を介して希釈槽5が接続され′Cいる。この希釈槽には
攪拌機6が取付けられており、また配管7.8を介して
遮蔽壁9の外側に設置、た希釈用流体槽10と採取4!
q11か接続されCいる。
On the downstream side of the radiation detector 2 in the flow path 1, there is a pipe 3.4.
A dilution tank 5 is connected through the . A stirrer 6 is attached to this dilution tank, and a dilution fluid tank 10 and a sampling 4!
Q11 is connected to C.

配色゛3.4.7.8にはそれぞれ弁12.13.14
.15が介挿されている。また採取槽1]には、これに
採取された流体の放射能レベルを精密に測定するための
第2の敢a1線検出器16が接続されている。
Color scheme 3.4.7.8 has valves 12.13.14 respectively
.. 15 is inserted. Further, a second A1-ray detector 16 is connected to the collection tank 1 for precisely measuring the radioactivity level of the fluid collected therein.

第1および第2の放射線検出器2.16が測定した放射
能レベルは、電気信号として制ill装置17に伝送さ
れる。この制御装置17は内蔵覆るコンピュータににっ
て入力(8号を解析し、弁12〜15のうち必要なもの
に開閉信号を出カリ−る。
The radioactivity levels measured by the first and second radiation detectors 2.16 are transmitted to the ill-control device 17 as electrical signals. This control device 17 uses a built-in computer to analyze input (No. 8) and output opening/closing signals to necessary valves 12 to 15.

上記にJ3いて冷ff1l材喪失事故(l 0CA)あ
るいはそれに近い状態で放射性物質が流体中に混入しだ
すと、流路1内の放射能濃度は、第2図のように上昇ザ
る。すなわち同図中の実FAAは流体自体のIIi剣能
レベルを示し、点線Bは流体自体の放射能レベルと、こ
の汚染された流路1の放射能レベルを含む値を示す。
If radioactive substances start to mix into the fluid in J3 mentioned above in a cold ff1l material loss accident (L0CA) or in a state close to it, the radioactivity concentration in the flow path 1 will rise as shown in FIG. That is, the actual FAA in the figure indicates the IIi radioactivity level of the fluid itself, and the dotted line B indicates a value that includes the radioactivity level of the fluid itself and the radioactivity level of this contaminated flow path 1.

第1の放射線検出器2は、第2図中の曲線Bの放射能レ
ベルを検出することになるが、流体自体のh9.14能
レベルはピーク値に達した後、曲線Aに承りように、比
較的速Aゝ)かに低下するのに対し、曲線Bの低下庶合
は曲線へに比べるとはるかに緩慢であるから、両省の間
には時間の経過とともに放剣能汚染分(△P)の差を生
づ゛る。
The first radiation detector 2 will detect the radioactivity level of curve B in FIG. , the rate of decline in curve B is much slower than that in curve B, so there is a difference between the two provinces in terms of the amount of radiation pollution (△ P) makes a difference.

A発明においては、放射線検出器2の検出値が設定値P
 sを越えると制御装置17に内蔵したピーク検出系が
作動を開始し、ピーク値Psに達づ−ると、解析的にめ
たピーク後の予想変化パターンに阜づいて、第2の放射
線検出器16が精度よく放射能レベルを1llll定C
ぎる範囲に収まるよう流体の採取口と希釈用流体mある
いはそれらの割合(@釈扉)を演樟し、この)舟昨結果
に従って弁12.1/lに開信号を出力する。
In invention A, the detected value of the radiation detector 2 is the set value P
When the peak value Ps is exceeded, the peak detection system built into the control device 17 starts operating, and when the peak value Ps is reached, a second radiation detection system is started based on the expected change pattern after the peak determined analytically. The device 16 accurately determines the radioactivity level C
The fluid sampling port and the diluting fluid m or their ratio (@shaku door) are calculated so that they fall within the same range, and an open signal is output to the valve 12.1/l according to this result.

これにより希釈槽5内に流に′81からの流体と、希釈
用流体槽10からの希釈流体が所定mずつ導入されると
、攪拌(幾6が作動して両液を混合し、均一化した後、
制御装置17からの指令にJ:つて弁15が所定時間間
となり、混合液を採取槽11に採取する。
As a result, when the fluid from '81 and the dilution fluid from the dilution fluid tank 10 are introduced into the dilution tank 5 by a predetermined amount, the agitation unit 6 operates to mix the two liquids and homogenize them. After that,
In response to a command from the control device 17, the valve 15 is activated for a predetermined period of time, and the mixed liquid is collected into the collection tank 11.

このようにしCサンプリングおよO・希釈されIζζ田
川9流体は、第2の放射線検出器1GによっC放射能レ
ベルを精密測定される。この測定jirJは制1311
装置17に導かれ、希釈0)で除紳されC貞の放射能レ
ベルに換算された後、表示器(図示Uず)十に表示され
る。
The C-sampled and O-diluted Iζζ Tagawa 9 fluid is precisely measured for its C radioactivity level by the second radiation detector 1G. This measurement jirJ is controlled by 1311
The radioactivity is guided to the device 17, diluted with a dilution of 0), converted to a radioactivity level of C, and then displayed on a display (not shown).

」二重にJ3いて採取槽11内の流体の放射能レベルが
、第2の放射線検出器1Gの適切測定レンジ外であると
測定された場合には、制御装置17からの指令に基づい
て弁13を聞ぎ、希釈槽5内の流体を配管4を通して流
路1に戻し、また採取槽11内を一旦空にした後、制御
装置17から修正された希釈率または採取量の指令か出
力され、前記と同様にして再測定が行なわれる。
” If the radioactivity level of the fluid in the collection tank 11 is measured to be outside the appropriate measurement range of the second radiation detector 1G, the valve is activated based on a command from the control device 17. 13, the fluid in the dilution tank 5 is returned to the flow path 1 through the piping 4, and after the sampling tank 11 is once emptied, a command for the corrected dilution rate or sampling amount is output from the control device 17. , re-measurement is performed in the same manner as above.

な63に1.十の説明では、放射能レベルのピークIi
Oの検出と予測変化パターンの演算、合弁の開閉および
希釈率または摂取mの算定のすべてを制御装置17によ
り自動的に行なう例につき述べたが、本発明は必ずしも
これに限定されるものではなく、その一部を手動により
行なうにうにしてもよい。
63 to 1. In the description of ten, the peak of radioactivity level Ii
Although an example has been described in which all of the detection of O, the calculation of the predicted change pattern, the opening and closing of the joint venture, and the calculation of the dilution rate or intake m are all automatically performed by the control device 17, the present invention is not necessarily limited to this. , a part of which may be performed manually.

し発明の効!!] 上述の如く本発明の放射能レベルのリーンブリング1l
lll定装置6ぐは、第1の放射線検出器によっC大ま
かな放射能レベルを検出し、第2の放射線検出器が適切
レンジで放射能レベルを測定で・きるよう流体のリンブ
リング量、希釈用流体量あるいは希釈率をp出し、これ
に基づい゛C各合弁操作し、均−混合後、第2の放射線
検出器でIJ文用能レベルをa11]定するものである
から、流体中の放射能レベルがいかなる範囲にあっ“C
−t)精密に測定JることがCぎる。
The effectiveness of invention! ! ] Leanbring 1l of the radioactivity level of the present invention as described above
The measuring device 6 detects the rough radioactivity level by the first radiation detector, and detects the amount of fluid brimbling so that the second radiation detector can measure the radioactivity level in an appropriate range. The amount of dilution fluid or dilution rate is calculated, and based on this, each joint operation is performed, and after homogeneous mixing, the IJ functional level is determined using the second radiation detector. In what range is the radioactivity level of "C"?
-t) It is too difficult to measure accurately.

またピーク後の予測変化パターンを利用する場合には、
流路の放射能汚染の影9kを受りることなく希釈率等を
適切に設定でき、測定時間を短縮でることができる。
Also, when using the predicted change pattern after the peak,
The dilution rate, etc. can be appropriately set without being affected by radioactive contamination of the flow path, and the measurement time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

−第1図は本発明装置の一実施例を示す系統図、第2図
は流体の放射能レベルの時間的変化の様子を示づグラフ
である。 1・・・・・・・・・・・・流路 2・・・・・・・・・・・・第1の放射線検出器5・・
・・・・・・・・・・希釈(a 6・・・・・・・・・・・・攪拌)幾 9・・・・・・・・・・・・遮蔽体 16・・・・・・・・・・・・第2の放銅線検出器代理
人弁理士 須 山 仏 −
- Fig. 1 is a system diagram showing an embodiment of the device of the present invention, and Fig. 2 is a graph showing temporal changes in the radioactivity level of a fluid. 1......Flow path 2...First radiation detector 5...
・・・・・・・・・・・・Dilution (a 6・・・・・・・・・Stirring) 9・・・・・・・・・・・・Shield 16・・・・・・・・・・・・・Patent attorney representing the second copper wire detector Suyama Tomo −

Claims (5)

【特許請求の範囲】[Claims] (1)流路を流れる流体の放射能レベルを大まかに測定
する第1の放射線検出器と、前記流路に配管を介して接
続された希釈槽と、この希釈槽にそれぞれ配管を介して
接続された希釈用流体槽および採取槽と、この採取槽内
に採取された流体の放射能レベルを精密測定する第2の
放射線検出器と、前記第1の放射線検出器の出力を入力
し、前記第2の放41線検出器が適切な測定レンジで放
射能レベルを測定できるように前記希釈槽に導入される
前記流路からの流体機、および前記希釈用流体槽からの
希釈用流体槽を出力する制御装置とを備えたことを特徴
とり−る放射11シレベルのサンプリング測定装置。
(1) A first radiation detector that roughly measures the radioactivity level of the fluid flowing through the flow path, a dilution tank connected to the flow path via piping, and each connected to the dilution tank via piping. input the output of the dilution fluid tank and collection tank, a second radiation detector that precisely measures the radioactivity level of the fluid collected in the collection tank, and the first radiation detector; A fluid machine from the flow path introduced into the dilution tank and a dilution fluid tank from the dilution fluid tank are introduced into the dilution tank so that a second radiation detector can measure the radioactivity level in an appropriate measurement range. 1. A radiation 11 level sampling measuring device characterized by comprising a control device for outputting.
(2)希釈槽に攪拌機を1111!付番プた特許請求の
範囲第1項記載の放射能レベルのサンプリング測定装置
(2) Add a stirrer to the dilution tank! A radioactivity level sampling measuring device according to claim 1.
(3)希釈4fTjと流路および希釈用流体槽とを結ぶ
配管に設けた弁を制御装置からの指令でIttl r3
71さIる特許請求の範囲第1項または第2項記載の放
射能レベルのサンプリング測定装置。
(3) The valve installed in the piping connecting the dilution 4fTj, the flow path, and the dilution fluid tank is activated by the command from the control device.
71. A radioactivity level sampling measuring device according to claim 1 or 2.
(4)採取槽に採取された流体の放射能レベルが第2の
放射線検出器の適切な測定レンジ外であるときに、この
放射線検出器の出力に基づいて制御装置mから配管に設
けた各弁に向けて開閉指令が出力され、希釈率を変えて
再測定を行なうよう構成した特許請求の範囲第1項ない
し第3項のいずれか1項記載の放射能レベルのサンプリ
ング測定装置。 。
(4) When the radioactivity level of the fluid collected in the collection tank is outside the appropriate measurement range of the second radiation detector, the controller The radioactivity level sampling measuring device according to any one of claims 1 to 3, wherein an opening/closing command is output to the valve and re-measurement is performed by changing the dilution rate. .
(5)制御装置が第1の放射線検出器からの信号によっ
て演算したピーク後の予測変化パターンに阜づいて希釈
率を設定づ゛る特ii′T請求の範囲第1項ないし第4
項のいずれか1項記載の放射能レベルのVンブリング測
定装fffi 。
(5) The control device sets the dilution rate based on the predicted change pattern after the peak calculated based on the signal from the first radiation detector.
The radioactivity level V-embedding measuring device according to any one of the above items.
JP10898783A 1983-06-17 1983-06-17 Sampling/measuring apparatus for radioactivity level Pending JPS601586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10898783A JPS601586A (en) 1983-06-17 1983-06-17 Sampling/measuring apparatus for radioactivity level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10898783A JPS601586A (en) 1983-06-17 1983-06-17 Sampling/measuring apparatus for radioactivity level

Publications (1)

Publication Number Publication Date
JPS601586A true JPS601586A (en) 1985-01-07

Family

ID=14498711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10898783A Pending JPS601586A (en) 1983-06-17 1983-06-17 Sampling/measuring apparatus for radioactivity level

Country Status (1)

Country Link
JP (1) JPS601586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228514A (en) * 1988-02-09 1990-01-30 Mitsubishi Heavy Ind Ltd Method and device for detecting noise disappearance
JPH04506735A (en) * 1989-05-30 1992-11-19 モトローラ・インコーポレイテッド Two-state phase detector with frequency steering function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228514A (en) * 1988-02-09 1990-01-30 Mitsubishi Heavy Ind Ltd Method and device for detecting noise disappearance
JPH04506735A (en) * 1989-05-30 1992-11-19 モトローラ・インコーポレイテッド Two-state phase detector with frequency steering function

Similar Documents

Publication Publication Date Title
US4107533A (en) Apparatus for measuring a concentration of radioactivity
CN105738287B (en) Water Test Kits
US3765226A (en) Self-powered sample probe
JPWO2015182256A1 (en) Automatic analyzer
SE444223B (en) PROCEDURE AND DEVICE FOR HANDLING OF LIQUID KITS
CN106053751A (en) Water quality monitoring system
KR940022591A (en) Airborne radiation tracking device for detecting reactor coolant leak with improved sensitivity
US2613326A (en) Method of determining proportions in compositions of substances
JPS601586A (en) Sampling/measuring apparatus for radioactivity level
US3442623A (en) Method of determining the fat content of milk and related products
US5723093A (en) Apparatus for the continuous sampling and analysis of a liquid effluent
KR102593221B1 (en) Analysis equipment and analysis methods
Lewis et al. Selecting particle counters for process monitoring
US20040112122A1 (en) BS&W metering apparatus & method
JPH025406Y2 (en)
JP3999166B2 (en) Gas radioactivity concentration measuring device
GB2042471A (en) Sampling non-homogenous liquids
Patil et al. Design of a low cost system for determination of fat using IOT and ML
JPH04204378A (en) Immune reaction automatic analyzer
Larson et al. Flow measurement in sodium and water using pulsed-neutron activation: Part 1, theory
Wetchagarun et al. A study of residence time distribution in a lab scale stirred tank reactor using radiotracer technique
Wu et al. Microcomputer controlled titration for determination of protein nitrogen in feeds and wheat
CN115791513A (en) Online L limit densimeter
MAIN¹ Tracer Methods for Rapid Determination of Uniformity of Mixing
Chen et al. Performance characteristics of the light-initiated chemiluminescent assay for quantitative determination of progesterone