JPS60158359A - Fault locator for transmission line - Google Patents

Fault locator for transmission line

Info

Publication number
JPS60158359A
JPS60158359A JP1477884A JP1477884A JPS60158359A JP S60158359 A JPS60158359 A JP S60158359A JP 1477884 A JP1477884 A JP 1477884A JP 1477884 A JP1477884 A JP 1477884A JP S60158359 A JPS60158359 A JP S60158359A
Authority
JP
Japan
Prior art keywords
fault
circuit
transmission line
terminal
positive phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1477884A
Other languages
Japanese (ja)
Other versions
JPH0574788B2 (en
Inventor
Shigeto Oda
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1477884A priority Critical patent/JPS60158359A/en
Publication of JPS60158359A publication Critical patent/JPS60158359A/en
Publication of JPH0574788B2 publication Critical patent/JPH0574788B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To simplify the arithmetic circuit by performing an arithmetic processing using a positive phase voltage across both ends of a transmission line to secure a correct indication of a fault locator even with respect to a high resistance ground system of a power transmission line. CONSTITUTION:A master terminal FL12 and a slave terminal FL13 of a fault locator are connected to two ends of a transmission line separately. A positive phase synthesization circuit 15 at the master terminal FL12 performs a positive phase synthesization of various phases of voltages from a voltage transformer 5. Only when a fault is found, a positive phase voltage signal from a fault discovering circuit 14 is inputted into an arithmetic circuit 17. Likewise, at the slave terminal FL13, a positive phase synthesization circuit 20 synthesizes a positive voltage and a positive voltage signal is inputted into the arithmetic circuit 17 at the master terminal FL12 from a fault discovering circuit 19 only when a fault is found out. Positive phase voltage at the master and slave terminals are computed to indicate a fault point of the transmission line. The use of the positive phase voltages at the master and slave terminals in the computation permits immediate discovery of the fault point and the same input data can be used to eliminate the need for changing the input circuit according to the type of fault.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電力用送電線に発生した故障の位置を測定
する送電線の故障標定器(以下フォールトロケータと略
称する。)K関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power transmission line fault locator (hereinafter abbreviated as a fault locator) K that measures the location of a fault that has occurred in a power transmission line. .

〔従来技術〕[Prior art]

一般に送電線の単位長あたりのインピーダンスは、鉄塔
構造や電線種類等が同一であれば、電気所において故障
時の電圧及び電流を測定することにより故障点までの距
離を容易に知ることができる。
In general, the impedance per unit length of a power transmission line can be easily determined by measuring the voltage and current at the time of a failure at an electrical station, provided that the tower structure, wire type, etc. are the same.

上述の原理を利用した従来装置として、第1図に示すも
のがあった。図において1は、発電機、2は送電線で図
中のP点にCT4 (電流変成器)とPT5 (電圧変
成器)とが設置され送電線の電流及び電圧信号をフォー
ルトロケータ6に伝送している。
A conventional device using the above-mentioned principle is shown in FIG. In the figure, 1 is a generator, 2 is a power transmission line, and CT4 (current transformer) and PT5 (voltage transformer) are installed at point P in the figure, and transmit the current and voltage signals of the power line to fault locator 6. ing.

第1図に示す1回線の系統においてF点で人相地絡故障
が発生したとするとフォールトロヶータが設置されてい
るP点での人相電圧vaは(1)式で表わされる。
If a human-phase to ground fault occurs at point F in the one-line system shown in FIG. 1, the human-phase voltage va at point P, where a fault trometer is installed, is expressed by equation (1).

Va = Zf(1B 十KIO) + Rf If 
°−−“曲(1)ただし、zf:p−F点間の正相イン
ピーダンスIa: P点での人相電流 Io:零相電流 Rf:故障点抵抗 ■f:故障点に流れる電流 に=tz〒11 zO:送電線の零相インピーダンス z】:送電線の正相インピーダンス 一般に、直接接地系統においては、故障点に流れる電流
IfとP点でのA相電流工a と零相電流IOに係数K
を掛けたI3+KIoはほとんど同相どなる。
Va = Zf (1B 10 KIO) + Rf If
°--"Song (1) However, zf: Positive sequence impedance Ia between points p and F: Human phase current Io at point P: Zero-sequence current Rf: Fault point resistance f: Current flowing to the fault point = tz〒11 zO: Zero-sequence impedance of the transmission line z]: Positive-sequence impedance of the transmission line Generally, in a directly grounded system, the current If flowing to the fault point, the A-phase current a at point P, and the zero-sequence current IO Coefficient K
I3+KIo multiplied by is almost in phase.

また、2線あるいは3線故障においても、故障している
相の線間電圧と線間電流の関係は(2)式で表わされる Vbc−Zf(Ib Ic)+Rf(Ibf Icf)
 ”曲−(2)ただし、Vbc : P点の線間電圧 Ii)、I(s P点でのB相、C相の電流Ibf、 
Icf :故障点に流れるB相およびC相の電流 この場合にも、直接接地系においては(Ib Ic)と
(Ibf Icf)はほとんど同相で(1)及び(2)
式を合わせて V = Zf■+ RI If ・・”・”” (31
と表わすことができる。従って、故障電圧、電流より得
られるインピーダンスZxは 流Iはほとんど同相であるから(4)式における第2項
は純抵抗分のみと考えることができ、インピーダンスz
Xのリアクタンス分ztは故障点抵抗に影響を受けない
Also, in the case of a 2-wire or 3-wire fault, the relationship between the line voltage and line current of the faulty phase is expressed by equation (2): Vbc - Zf (Ib Ic) + Rf (Ibf Icf)
”Curve-(2) However, Vbc: line voltage Ii) at point P, I(s current Ibf of phase B and phase C at point P,
Icf: B-phase and C-phase currents flowing to the fault point Also in this case, in a direct grounding system, (Ib Ic) and (Ibf Icf) are almost in phase, and (1) and (2)
Combining the formulas, we get V = Zf■ + RI If...”・”” (31
It can be expressed as Therefore, since the current I is almost in phase with the impedance Zx obtained from the fault voltage and current, the second term in equation (4) can be considered to be only the pure resistance component, and the impedance Z
The reactance component zt of X is not affected by the resistance at the fault point.

よって、故障点までの距離eは If p= □ ただし、X:送電線単位長さ当りの正相インピーダンス
のりアクタンス分 これを具体化した従来のフォールトロケータの構成図を
第2図に示す。7は入力切替回路で、故障の種類に応じ
て適当な入力をリアクタンス測定回路8に導入し、この
りアクタンス測定回路8でリアクタンス21を計算し後
段の演算回路9で故障点までの距離eを計算し、表示回
路10で前記の距離沼な表示する。
Therefore, the distance e to the fault point is If p=□ where: X: positive sequence impedance plus actance per unit length of transmission line A configuration diagram of a conventional fault locator embodying this is shown in FIG. 7 is an input switching circuit, which introduces an appropriate input to the reactance measuring circuit 8 according to the type of failure, calculates the reactance 21 in the actance measuring circuit 8, and calculates the distance e to the failure point in the arithmetic circuit 9 in the subsequent stage. The distance is calculated and displayed on the display circuit 10.

従来における送電線のフォールトロケータは以上のよう
に構成されていたので、直接接地系の系統圧は用いるこ
とはできたが、高抵抗接地系の系統に用いることは不適
当とされていた。この理由は(3)式において故障点に
流れる電流Ifと故障電流■が同相でないために(If
/I)11Rfを純抵抗分と考えることができない為で
ある。従って高抵抗接地系におけるフォールトロケータ
としては上述の原理とは別の考え方を導入する必要があ
り、又、故障の種類によって、演算する入力信号を切替
える必要があって、回路が複雑となり、かつ、故障の種
類を正確に判別するための別の装置が外部に必要となる
などの欠点があった。
Conventional fault locators for power transmission lines were constructed as described above, and although they were able to use the system pressure of a directly grounded system, they were considered inappropriate for use in systems with high resistance grounding systems. The reason for this is that in equation (3), the current If flowing to the fault point and the fault current ■ are not in phase (If
/I) This is because 11Rf cannot be considered as a pure resistance component. Therefore, as a fault locator in a high-resistance grounding system, it is necessary to introduce a concept different from the above-mentioned principle, and it is also necessary to switch the input signal to be calculated depending on the type of fault, making the circuit complicated. There were drawbacks such as the need for a separate external device to accurately determine the type of failure.

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、送電線の両端の正相電圧を測定
し、それらの正相電圧を演算することにより、高抵抗接
地系においても正確に故障点の表示を可能とし、かつ、
故障の種類にかかわらずフォールトロケータ演算入力と
じて同一の入力デ〜りが使用できる送電線の故障標定器
を提供することを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and by measuring the positive sequence voltages at both ends of a power transmission line and calculating those positive sequence voltages, it can be used in high resistance grounding systems. It also makes it possible to accurately display the failure point, and
It is an object of the present invention to provide a fault locator for a power transmission line in which the same input data can be used as a fault locator calculation input regardless of the type of fault.

〔発明の特実施例〕[Special embodiment of the invention]

以下、この発明の一実施例を図について説明する。図中
第1図と同一の部分は同一の符号をもって図示した第3
図において、12.13は故障点までの距離を表示する
フォール)aケータで、12が親端のフォールトロケー
タ、13が子端のフォールトロケータで、親端のフォー
ルトロケータ12において子端のフォールトロクータ1
3からの伝送信号を受信し故障点の表示をするよう構成
されている。即ち、子端のフォールトロケータ13で送
電線の他端の電圧信号を入力し、その電圧信号から正相
電圧を合成し、伝送回線11を介して親端のフォールト
ロケータ12に送信する。親端において自端の正相電圧
と子端のフォールトロケータ13からの他端の正相電圧
とを演算し、故障点を表示する。上述の具体的回路構成
例を図示したのが第4図のフォールトロケータ内部構成
図である。15は親端の正相合成回路で、P T 5A
 から入力された各相の電圧を合成して正相電圧を作る
An embodiment of the present invention will be described below with reference to the drawings. In the figure, the same parts as in Figure 1 are designated by the same reference numerals.
In the figure, 12.13 is a fault locator that displays the distance to the fault point, 12 is the fault locator at the parent end, and 13 is the fault locator at the child end. Cooter 1
It is configured to receive the transmission signal from 3 and display the failure point. That is, the fault locator 13 at the child end inputs the voltage signal at the other end of the power transmission line, synthesizes the positive-sequence voltage from the voltage signal, and transmits it via the transmission line 11 to the fault locator 12 at the parent end. At the parent end, the positive sequence voltage at its own end and the positive sequence voltage at the other end from the fault locator 13 at the child end are calculated and the failure point is displayed. The internal configuration diagram of the fault locator shown in FIG. 4 illustrates a specific example of the circuit configuration described above. 15 is a positive phase synthesis circuit at the parent end, P T 5A
The positive-sequence voltage is created by combining the voltages of each phase input from the

また、20は子端の正相合成回路でp’rsBから入力
された各相の電圧を合成して正相電圧を作る。
Further, 20 is a positive phase synthesis circuit at the child terminal, which synthesizes the voltages of each phase inputted from p'rsB to generate a positive phase voltage.

また19は故障発見回路で、送電線に故障が生じたとき
にだけ正相合成回路20より正相電圧信号を出力し送信
回路21へ入力して親端のフォールトロケータ12へ送
信する。親端のフォールトロケータ12においても同様
に故障発見回路14が動作したとき、即ち故障が生じた
ときのみ正相合成回路15の出力信号が演算回路17へ
入力される。子端のフォールトロケータ13よりの送信
信号は、親端のフォールトロケータ12内の受信回路1
6で復調され正相合成回路15の出力信号と共に演算回
路17に入力される。前記の入力された親端及び子端の
正相電圧より演算回路17にて後述の演算が行われ、そ
の演算結果が故障点の表示回路18に入力され親端から
故障点までの距離が表示される。
Reference numeral 19 denotes a fault detection circuit, which outputs a positive phase voltage signal from the positive phase synthesis circuit 20 only when a failure occurs in the power transmission line, inputs it to the transmitting circuit 21, and transmits it to the fault locator 12 at the parent end. Similarly, in the fault locator 12 at the parent end, the output signal of the positive phase synthesis circuit 15 is input to the arithmetic circuit 17 only when the fault finding circuit 14 operates, that is, only when a fault occurs. The transmission signal from the fault locator 13 at the child end is transmitted to the receiving circuit 1 in the fault locator 12 at the parent end.
6 and input to the arithmetic circuit 17 together with the output signal of the positive phase synthesis circuit 15. The arithmetic circuit 17 performs the calculation described below based on the input positive sequence voltages of the parent terminal and the child terminal, and the result of the calculation is input to the failure point display circuit 18 to display the distance from the parent terminal to the failure point. be done.

次に本発明の動作原理について以下に説明する。Next, the operating principle of the present invention will be explained below.

まず、送電線2上に故障抵抗Rfの1線地絡故障が発生
した場合を考えると、等価回路では第5図の如(示され
る。ここで、 Xpl・・・親端のフォールトロケータ12の設置点か
らみた正相の電源インピーダンス Xql・・・子端の・フォールトロケータ13の設置点
からみた正相の電源インピーダンス xz1・・・送電線2の親端のフォールトロケータ12
と子端フォールトロケータ13間の正相の線路インピー
ダンス k ・・・故障点を示す比 Vpl・・・親端のフォールトロケータ12における正
相電圧 ■、!・・・子端のフォールトロケータ13における正
相電圧 E・・・電源電圧 ただし、第5図の添字″′2”は逆相分、′0”は零相
分を示す。
First, considering the case where a one-wire ground fault occurs in the fault resistance Rf on the power transmission line 2, the equivalent circuit is shown in FIG. Positive phase power supply impedance Xql viewed from the installation point...Fault locator 13 at the child end Positive phase power supply impedance xz1 viewed from the installation point...Fault locator 12 at the parent end of the transmission line 2
Positive-sequence line impedance k between the fault locator 13 and the fault locator 13... Ratio Vpl indicating the failure point... Positive-sequence voltage at the fault locator 12 at the parent end ■,! . . . Positive-sequence voltage E at the fault locator 13 at the child terminal. Power supply voltage. However, the subscript "'2" in FIG. 5 indicates the negative phase component, and "0" indicates the zero-phase component.

第5図を簡単にまとめ第6図の如く書き替える。Figure 5 can be simply summarized and rewritten as shown in Figure 6.

ここで、vFは故障点における正相電圧である。Here, vF is the positive sequence voltage at the fault point.

また、E 、Vpl −Vql * vpを夫々実効値
トシテ考えると、第7図のような関係に書き直すことが
できる。即ち、E * Xpl # Xqlは既知であ
り、これを演算回路17に記憶させておき、かつ、Vp
l、Vqlが親端及び子端のフォールトロケータ12.
13内の夫々の正相合成回路15.20とより測定され
ているので、第7図より故障点を示すkの値を計算する
と(9式で表わすことができる。
Furthermore, if we consider the effective values of E and Vpl-Vql*vp, we can rewrite the relationship as shown in FIG. 7. That is, E*Xpl #Xql is known, is stored in the arithmetic circuit 17, and Vp
Fault locator 12.l, Vql is the parent end and child end.
Since the value of k indicating the failure point is calculated from FIG. 7, it can be expressed by Equation 9.

(1) 、 (21式を解くと ただし、 即ち、(71、(8)式より故障点の表示は親端のフォ
ールトロケータ12より、kaxzlで表示することが
できる。
(1), (Solving Equation 21 yields: (71) From Equation (8), the fault point can be displayed by kaxzl using the fault locator 12 at the parent end.

本例においては、1相地絡故障について説明を行ったが
、2相短絡故障、2相地絡故障、3相短絡等の全ての故
障についても、第6図の如く等価回路を表わすことがで
き、(71、(8)弐によりkの値が計算できる。又、
本例では簡単のため1回線送電線の場合で説明したが、
2回線送電線でも同様に本動作原理を適用できるもので
ある。
In this example, we have explained the 1-phase ground fault, but the equivalent circuit can be expressed as shown in Figure 6 for all faults such as 2-phase short circuit fault, 2-phase ground fault, and 3-phase short circuit. The value of k can be calculated using (71, (8)2). Also,
In this example, for simplicity, we have explained the case of a single-line power transmission line.
The present operating principle can be similarly applied to a two-circuit power transmission line.

なお、上記の実施例では第4図内に夫々故障発見回路1
4.19を実装したが、この回路を実装せず、フォール
トロケータ外の送電線保護リレーの動作信号によりフォ
ールトロケータの動作制御を行なってもよい。
In the above embodiment, each fault detection circuit 1 is shown in FIG.
4.19 has been implemented, but this circuit may not be implemented and the operation of the fault locator may be controlled by an operation signal of a power transmission line protection relay outside the fault locator.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、送電線に故障が発生
した場合に直ちに故障点の計算を送電線両端の正相電圧
を使って演算するようにしたので、故障種類により入力
信号条件を変えるため入力回路を切替える等の複雑な回
路操作も不要となり、かつ高抵抗接地系にも適用できる
等の効果がある。
As described above, according to the present invention, when a fault occurs in a power transmission line, the fault point is immediately calculated using the positive-sequence voltage at both ends of the transmission line, so input signal conditions can be adjusted depending on the type of fault. This eliminates the need for complicated circuit operations such as switching input circuits to change input circuits, and has the advantage that it can be applied to high-resistance grounding systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のフォールトロケータの原理説明図、第
2図は、従来のフォールトロケータのブロック構成図、
第3図は、本発明の一実施例を示すフォールトロケータ
のシステム構成図、第4図は、本発明の一実施例を示す
フォールトロケータの内部構成図。第5図は1相地絡故
障の等価回路図、第6図は第5図の簡易等価回路図、第
7図は第5図の電圧の関係を示す電圧分布図である。 1・・・電源、2・・・送電線、3・・・故障抵抗、4
・・・電流変成器、5・・・電圧変成器、6・・・従来
のフォールトロケータ、T・・・入力切替回路、8・・
・リアクタンス測定回路、9・・・演算回路、10・・
・表示回路、11・・・伝送回線、12・・・本発明例
の親端のフォールトロケータ、13・・・本発明例の子
端のフォールトロケータ、14,19・・・故障発見回
路、15.20・・・正相合成回路、16・・・受信回
路、17・・・演算回路、18・・・表示回路、21・
・・発信回路。 特許出願人 三菱電機株式会社 第1図 第3図 第7図 ・χPI kズ21 (1−旬ズl、 χt。 第6図 第6図 手続補正書(自発) 59.6.25 昭和 年 月 日 1チ1許庁長宮殿 1.1件の表示 特瞑l昭 59−14778号′°′
°“”°6″″゛ 送電線の故障標定器3、補正をする
者 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容
FIG. 1 is a diagram explaining the principle of a conventional fault locator, and FIG. 2 is a block diagram of a conventional fault locator.
FIG. 3 is a system configuration diagram of a fault locator according to an embodiment of the present invention, and FIG. 4 is an internal configuration diagram of a fault locator according to an embodiment of the present invention. FIG. 5 is an equivalent circuit diagram of a one-phase ground fault, FIG. 6 is a simplified equivalent circuit diagram of FIG. 5, and FIG. 7 is a voltage distribution diagram showing the voltage relationship of FIG. 5. 1...Power supply, 2...Power transmission line, 3...Fault resistance, 4
... Current transformer, 5... Voltage transformer, 6... Conventional fault locator, T... Input switching circuit, 8...
・Reactance measurement circuit, 9... Arithmetic circuit, 10...
- Display circuit, 11... Transmission line, 12... Fault locator at the parent end of the example of the present invention, 13... Fault locator at the slave end of the example of the present invention, 14, 19... Fault finding circuit, 15 .20... Positive phase synthesis circuit, 16... Receiving circuit, 17... Arithmetic circuit, 18... Display circuit, 21...
...Sending circuit. Patent Applicant: Mitsubishi Electric Corporation Figure 1 Figure 3 Figure 7 χPI k's 21 (1-season l, χt. Figure 6 Figure 6 Procedural Amendment (voluntary) 59.6.25 Showa Showing 1.1 results of the day 1 day 1 day 1 day 1 day 1 office chief's palace
°""°6""゛ Transmission line fault locator 3, person making the amendment 5, column 6 for detailed explanation of the invention in the specification to be amended, content of the amendment

Claims (2)

【特許請求の範囲】[Claims] (1)送電線をはさみ2ケ所に設けた親端及び子端のフ
ォルトロケータと、送電線に地絡故障が発生した時前記
載端及び子端の7オルトロケータにて相電圧を測定し正
相電圧を合成する親端及び子端の正相合成回路と、前記
子端の正相合成回路の出力信号を前記親端のフォルトロ
ケータ側に信号伝送する送受信回路と、前記受信回路及
び親端の正相合成回路の両川力信号とを入力とする演算
回路と、前記演算回路で演算した故障点表示データを入
力とする表示回路とを備えた送電線の故障標定器。
(1) When a fault locator is installed at the main terminal and terminal at two places across the power transmission line, and when a ground fault occurs on the transmission line, the phase voltage is measured using the 7 ortho locators at the terminal and terminal mentioned above and the fault is corrected. a positive phase synthesis circuit of the parent terminal and the child terminal for synthesizing phase voltages; a transmitting/receiving circuit for transmitting the output signal of the positive phase synthesis circuit of the child terminal to the fault locator side of the parent terminal; and the receiving circuit and the parent terminal. A fault locator for a power transmission line, comprising: an arithmetic circuit that receives as input the Ryokawa power signal of a positive phase synthesis circuit; and a display circuit that receives as input fault point display data calculated by the arithmetic circuit.
(2)前記親端及び子端のフォルトロケータ内の正相合
成回路の動作を監視する故障発見回路を実装し、送電線
に発生した故障を前記故障発見回路が自動検出して前記
親端及び子端のフォルトロケータを連けいすることを特
徴とする特許請求の範囲第1項記載の送電線の故障標定
器。
(2) A fault finding circuit that monitors the operation of the positive phase synthesis circuit in the fault locator of the parent terminal and the child terminal is implemented, and the fault finding circuit automatically detects a fault that occurs in the power transmission line and A fault locator for a power transmission line according to claim 1, characterized in that a fault locator at a terminal is linked.
JP1477884A 1984-01-30 1984-01-30 Fault locator for transmission line Granted JPS60158359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1477884A JPS60158359A (en) 1984-01-30 1984-01-30 Fault locator for transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1477884A JPS60158359A (en) 1984-01-30 1984-01-30 Fault locator for transmission line

Publications (2)

Publication Number Publication Date
JPS60158359A true JPS60158359A (en) 1985-08-19
JPH0574788B2 JPH0574788B2 (en) 1993-10-19

Family

ID=11870507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1477884A Granted JPS60158359A (en) 1984-01-30 1984-01-30 Fault locator for transmission line

Country Status (1)

Country Link
JP (1) JPS60158359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116008A (en) * 2013-12-10 2015-06-22 三菱電機株式会社 Power transmission line protection relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116008A (en) * 2013-12-10 2015-06-22 三菱電機株式会社 Power transmission line protection relay

Also Published As

Publication number Publication date
JPH0574788B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US7068040B2 (en) Ground circuit impedance measurement apparatus and method
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JPS60158359A (en) Fault locator for transmission line
JP3341485B2 (en) Transmission line fault location method
JP2560994B2 (en) Short-circuit fault location method
JPH11344525A (en) Fault point plotting device
JPH0373825B2 (en)
JPH10132890A (en) Method and device for locating failure point
JPS62249078A (en) Fault point locating system
JP3873785B2 (en) Fault location method
JPH0510633B2 (en)
JPS6122264A (en) Method for locating trouble point of transmission line
RU2028634C1 (en) Method of and device for insulation resistance measurement in alternating-current lines incorporating static converters
JPH0374346B2 (en)
JPH0583874B2 (en)
JP3013487B2 (en) Fault location method
JPS60169774A (en) Locating method of insulating failure point of cable under live state
JP2000009757A (en) Demand monitoring device
JPH06347504A (en) Ground fault position locating apparatus
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH0585874B2 (en)
JPH0554633B2 (en)
JPH0374345B2 (en)
JPH0374344B2 (en)
JPS59230176A (en) Spotting method of short-circuit point of high-voltage distribution line