JPS60155678A - Method for reducing metallic ion - Google Patents

Method for reducing metallic ion

Info

Publication number
JPS60155678A
JPS60155678A JP940184A JP940184A JPS60155678A JP S60155678 A JPS60155678 A JP S60155678A JP 940184 A JP940184 A JP 940184A JP 940184 A JP940184 A JP 940184A JP S60155678 A JPS60155678 A JP S60155678A
Authority
JP
Japan
Prior art keywords
semiconductor material
layer
substrate
metal
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP940184A
Other languages
Japanese (ja)
Other versions
JPH022950B2 (en
Inventor
Tomoko Sato
倫子 佐藤
Masayuki Suzuki
雅行 鈴木
Toshio Nakayama
中山 俊夫
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP940184A priority Critical patent/JPS60155678A/en
Publication of JPS60155678A publication Critical patent/JPS60155678A/en
Publication of JPH022950B2 publication Critical patent/JPH022950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper

Abstract

PURPOSE:To increase the rate of the deposition of metal by the reduction of metallic ions by immersing a substrate supporting a photocatalyst layer and an oxidation catalyst layer in a soln. contg. metallic ions, adding an electron donor, and irradiating light. CONSTITUTION:A photocatalyst layer 3 contg. a semiconductor substance such as TiO2 which is excited with visible light or ultraviolet light is formed on the surface of a glass substrate 2, and an oxidation catalyst layer 6 of RuO2 or the like is supported on a part of the layer 3. The substrate 2 is immersed in an aqueous soln. contg. metallic ions such as an aqueous CuSO4 soln. A water soluble electron donor such as methanol is added to the soln., and light having larger energy than energy required to excite the semiconductor substance is irradiated on the semiconductor substance from the catalyst layer side to deposit metallic copper on the layer 3. By this method the rate of the deposition of metal by the reduction of metallic ions can be increased.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は溶液中における金緘イオンの還元方法に係わシ
、特に元エネルギー励起によシ触媒作用を発揮する光触
媒を用いた金属イオンの還元方法に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for reducing metal ions in a solution, and in particular to a method for reducing metal ions using a photocatalyst that exhibits a catalytic action by excitation of original energy. Regarding the reduction method.

〔発明の技術的背景とその問題点」 従来、溶液中の金属イオンの還元方法として、主に、外
部電流によって全編イオンを還元してカソード上に金属
として析出させる電気分解法と、外部電流を使わずに溶
液中の金属イオンを還元する無電解めっき法とがある。
[Technical background of the invention and its problems] Conventionally, as methods for reducing metal ions in a solution, the main methods are electrolysis, in which the entire ion is reduced using an external current and deposited as a metal on the cathode, and There is an electroless plating method that reduces metal ions in a solution without using them.

電気分解法は外部電流金利用するものであるため、電気
の良尋体にしか析出させることができず、また電流密度
分布の違いによシ析出膜厚に不均一さが生じやすいとい
う問題点があった。また、無電解めっき法は化学還元剤
を利用するものであるため、絶縁体上へのメッキが可能
で比較的均一なメッキが得られる反面、溶液中でメッキ
反応以外の副反応も進行するため溶液の活性が低下した
如或いは活性を制御しきれずに液の分解を招いたシする
という問題点があった。
Since the electrolysis method uses an external electric current, it can only be deposited on a body with good electricity, and the problem is that the deposited film thickness tends to be non-uniform due to differences in current density distribution. was there. In addition, since electroless plating uses a chemical reducing agent, it is possible to plate on insulators and relatively uniform plating can be obtained, but on the other hand, side reactions other than the plating reaction also occur in the solution. There was a problem that the activity of the solution decreased or the activity could not be fully controlled, resulting in decomposition of the solution.

そこで、本発明者らは、上記した問題点を解消し、非導
電性物質への析出が可能で、かつ、金属イオンの析出反
応を外部から制御できる岬液中の金属イオンの還元方法
として、半導体を触媒物質として用いた光酸化還元反応
に基づく方法を、先に提案した(%願昭58−1549
44号)。
Therefore, the present inventors have developed a method for reducing metal ions in the cape liquid that solves the above-mentioned problems, allows precipitation on non-conductive substances, and allows external control of the metal ion precipitation reaction. We previously proposed a method based on a photoredox reaction using a semiconductor as a catalyst (%Gan Sho 58-1549).
No. 44).

しかしながら、この方法は上記従来技術の問題点を解消
するものの、半導体物質のみでは光生成した電荷対が容
易に再結合して電荷分離効率を低下せしめ、また半導体
物質上での酸化還元反応も遅いため、光触媒反応の円滑
な進行による金属の析出速度の向上を期待することは困
難であるという欠点を有していた。
However, although this method solves the above-mentioned problems of the prior art, when using only a semiconductor material, the photogenerated charge pairs easily recombine, reducing the charge separation efficiency, and the redox reaction on the semiconductor material is also slow. Therefore, it has been difficult to expect an improvement in the metal deposition rate due to the smooth progress of the photocatalytic reaction.

〔発明の目的J 本発明の目的は、上記した欠点の解消にあり、更に詳し
くは、酸化反応及び還元反応の反応サイトを効率よく分
離するとともに反応サイトでの触媒活性を増大させるこ
とにより、金属イオンの還元による析出速度を格段に向
上せしめた溶液中の金属イオンの還元方法を提供するも
のである。
[Objective of the Invention J The object of the present invention is to eliminate the above-mentioned drawbacks, and more specifically, by efficiently separating the reaction sites of oxidation and reduction reactions and increasing the catalytic activity at the reaction sites, The object of the present invention is to provide a method for reducing metal ions in a solution, which greatly improves the rate of precipitation due to ion reduction.

〔発明の概要J 本発明の金属イオンの還元力法は、金属イオンを含む溶
液中に、基板と該基板の表面に担持した可視及び/又は
紫外光に励起される半導体物質を有する光触媒層と該光
触媒層の溶液側の面の少なくとも一部に担持した酸化触
媒層から成る触媒基板を浸漬し、該半導体物質の光励起
状態下で該半導体物質に電子を注入できる電子エネルギ
ー配置をもつ水溶性電子供与体を共存妊せ、該半導体物
質)励起エネルギー以上のエネルギーをもつ元を該半導
体物質に照射することケ特徴とするものである。
[Summary of the Invention J The metal ion reducing power method of the present invention comprises a substrate and a photocatalytic layer having a semiconductor material excited by visible and/or ultraviolet light supported on the surface of the substrate, in a solution containing metal ions. A catalyst substrate consisting of an oxidation catalyst layer supported on at least a portion of the solution side surface of the photocatalyst layer is immersed, and water-soluble electrons having an electron energy configuration capable of injecting electrons into the semiconductor material under the photoexcitation state of the semiconductor material are immersed. The method is characterized in that the semiconductor material is irradiated with an element having an energy higher than the excitation energy of the semiconductor material, in which the donor is co-pregnant.

本発明の方法において使用される金属イオンは、用いる
触媒基板を構成する半導体物質の光励起によシ還元可能
なものならいかなるものであっても−よい。この金属イ
オンとしては、例えば鉄族イオン、白金族イオンまたは
銅族イオン等が好ましいものとして挙げられる。なお、
金属イオンは溶液中において、錯化剤によ多金属イオン
が錯イオンを形成していてもよい。
The metal ion used in the method of the present invention may be any metal ion as long as it can be reduced by photoexcitation of the semiconductor material constituting the catalyst substrate used. Preferred examples of the metal ion include iron group ions, platinum group ions, and copper group ions. In addition,
The metal ions may form a complex ion with a complexing agent in the solution.

本発明の方法において使用されろ触媒基板は、基板及び
光触媒層から成るものの光触媒層の溶液側の面の少なく
とも一部に酸化触媒層を担持して構成されているもので
ある。この基板は、通常に用いられる絶縁体および半導
体であれば格別に限定されるものではない。また、この
光触媒層は半導体物質より成る触媒の膜もしくは半導体
物質の粒子を担持した膜よ構成るものであり、この半導
体物質は、可視および/または紫外領域の元によシ励起
された光酸化還元作用を有するものであればいかなるも
のであってもよい。この半導体物質としては、通常、金
属酸化物、金属硫化物、金属リン化物、金属砒化物、金
属セレン化物および金属テルル化物からなる群よシ選ば
れる少なくとも1種以上のものが挙げられ、例えばTi
O□、 5rTiOaZnO、Fe2rs 、 CdS
 、 CdSe 、 CdTe 、 GaP 、 Ga
As 、 InP 。
The catalyst substrate used in the method of the present invention is composed of a substrate and a photocatalyst layer, with an oxidation catalyst layer supported on at least a portion of the solution side surface of the photocatalyst layer. This substrate is not particularly limited as long as it is a commonly used insulator or semiconductor. The photocatalytic layer is composed of a catalyst film made of a semiconductor material or a film supporting particles of a semiconductor material, and the semiconductor material is photooxidized by photo-oxidation excited under visible and/or ultraviolet light. Any substance may be used as long as it has a reducing effect. This semiconductor material usually includes at least one kind selected from the group consisting of metal oxides, metal sulfides, metal phosphides, metal arsenides, metal selenides, and metal tellurides, such as Ti.
O□, 5rTiOaZnO, Fe2rs, CdS
, CdSe, CdTe, GaP, Ga
As, InP.

znSIznSeからなる群よシ選ばれる少なくとも1
種以上のものが挙げられる。上記基板へのこの半導体物
質を有する光触媒層の担持方法としては、例えば真空蒸
着法、スノ(ツタリング法、含浸法、沈着法等による固
定のほか、半導体物質を結合剤中に分散させて基板と結
着する方法等が挙げられる。さらにまた、酸化触媒層は
上記した光触媒層の溶液側の頗の少なくとも一部に酸化
触媒を担持して形成したものであシ、この酸化触媒とし
ては、例えばRun□、 IrOx 、 PdO、Pb
O□、および遷移金属のスピネル型酸化物、ペロブスカ
イト型酸化物等より選ばれる少なくとも1種のものが挙
げられる。
At least one selected from the group consisting of znSIznSe
It includes more than just species. As a method for supporting the photocatalytic layer containing the semiconductor material on the substrate, for example, in addition to fixing by vacuum evaporation method, snobbing method, impregnation method, deposition method, etc., the semiconductor material is dispersed in a binder and attached to the substrate. Furthermore, the oxidation catalyst layer is formed by supporting an oxidation catalyst on at least a part of the solution-side body of the photocatalyst layer, and the oxidation catalyst may be, for example, Run□, IrOx, PdO, Pb
Examples include at least one selected from O□, spinel-type oxides, perovskite-type oxides, etc. of transition metals.

上記した光触媒層へのこの酸化触媒の担持方法としては
、例えばスパッタリング法、塩化物等の溶液を光触媒層
に塗布後、燃成する方法等が挙げられる。更に、光触媒
層の溶液側の面における酸化 ゛触媒層を担持した部分
以外に、還元触媒層を担持すれば、本発明の効果である
金属の還元による析、比速度は一層顕著なものとなる。
Examples of the method for supporting the oxidation catalyst on the photocatalyst layer include a sputtering method and a method in which a solution of chloride or the like is applied to the photocatalyst layer and then burned. Furthermore, if a reduction catalyst layer is supported on the solution-side surface of the photocatalyst layer in addition to the portion supporting the oxidation/catalyst layer, the effects of the present invention, such as the specific velocity of metal reduction, will become even more remarkable. .

この還元触媒層は上記した酸化触媒層の形成方法を同様
に適用すればよく、この還元触媒としては、例えばIr
 、 Os 。
This reduction catalyst layer may be formed by applying the above-described method of forming an oxidation catalyst layer in the same manner, and as this reduction catalyst, for example, Ir
, Os.

Pd 、 Pt 、 Rh 、 Ru 、 Re 等が
挙げられる。
Examples include Pd, Pt, Rh, Ru, Re, and the like.

本発明の方法において使用される電子供与体は、触媒基
板な構成する半導体物質に電子を注入できる電子エネル
ギー配置をもつものであればいがなるものであってもよ
く、例えばアンモニア、アミン類、アルコール類、アル
デヒド類、ケトン類、エーテル類、スルホキシド類およ
びアミド類からなる群よ)選ばれる少なくとも1種のも
のが挙げられる。好ましくは、アンモニア、メチルアミ
ン、メタノール、エタノール尋である。
The electron donor used in the method of the present invention may be anything that has an electron energy configuration capable of injecting electrons into the semiconductor material constituting the catalyst substrate, such as ammonia, amines, alcohols, etc. At least one type selected from the group consisting of aldehydes, ketones, ethers, sulfoxides, and amides) can be mentioned. Preferred are ammonia, methylamine, methanol, and ethanol.

本発明の方法において使用される溶液は、常用の混合方
法によシ上記した金属イオン?生成する塩を上記した水
溶性電子供与体に混合して得られる。
The solution used in the method of the invention can be prepared by mixing the metal ions mentioned above by conventional mixing methods. It is obtained by mixing the resulting salt with the water-soluble electron donor described above.

本発明の方法において使用される光源は、可視及び/又
は紫外領域の波長の光を発し、触媒基板を構成する半導
体物を励起するに足るものであればいかなるものであっ
てもよい。この光源としては、例えば超高圧水銀ランプ
、キセノンショートアークランプ、各種レーザー等が挙
けられる。照射時間は目的に応じて適宜選択すればよい
The light source used in the method of the present invention may be any light source that emits light with a wavelength in the visible and/or ultraviolet region and is sufficient to excite the semiconductor material constituting the catalyst substrate. Examples of this light source include an ultra-high pressure mercury lamp, a xenon short arc lamp, and various lasers. The irradiation time may be appropriately selected depending on the purpose.

次に第1図を参照して本発明による金属イオンの還元方
法の原理を説明する。基板2の上に形成した元触媒層で
ある半導体物質3に、この半導体物質の励起エネルギー
以上のエネルギーの光lまたは1′を照射すると、価電
子帯に正孔詐が伝導帯に電子e−が生成する。このとき
、この半導体物質3が第2図に示すように金属イオンの
還元レベルE (M”/M ) 、1: リも高い伝導
帯のレベル4f:有シ、電子供与体の酸化レベルE(D
”/D’)よシも低い価電子帯のレベル5を有していれ
ば、光にょっで生成した電子e−−正孔す十対にょ重金
属イオンを還元析出させることがw、FJ的に可能であ
る。
Next, the principle of the method for reducing metal ions according to the present invention will be explained with reference to FIG. When the semiconductor material 3, which is the original catalyst layer formed on the substrate 2, is irradiated with light l or 1' having an energy higher than the excitation energy of the semiconductor material, holes are transferred to the valence band and electrons e- to the conduction band. is generated. At this time, as shown in FIG. 2, this semiconductor material 3 has a reduction level of metal ions E(M''/M), 1:1, a high conduction band level 4f: yes, and an oxidation level of electron donors E( D
``/D') If the valence band has a low level 5, it is possible to reduce and precipitate heavy metal ions with ten pairs of electrons and holes generated by light. possible.

しかしながら単一の半導体のみでは光生成した電子e−
−正孔り十対が再結合しゃ°すく、電狗分離効率が悪い
ため全組イオンの析出速度が遅いことの原因となってい
ることがわかった。
However, with only a single semiconductor, the photogenerated electrons e-
- It was found that the recombination of the 10 pairs of holes and the poor separation efficiency caused the slow precipitation rate of all pairs of ions.

そこで、泥3図に示すように半導体の一部に、さらに酸
化反応促進触媒6を担持すると、電子供与体りの酸化反
応は酸化触媒6の表面上で専ら進行し、半導体物質3上
では金属イオンの還元反応が選択的に進行する。しかも
、半導体物質3上に一担金楓の析出が起こるとこれが電
子伝導体として働き、半導体物質内部で光生成した電子
がここに引き抜かれて正孔と分離されるため、反応の効
率は一段と向上する。
Therefore, when an oxidation reaction promoting catalyst 6 is further supported on a part of the semiconductor as shown in Figure 3, the oxidation reaction of the electron donor proceeds exclusively on the surface of the oxidation catalyst 6, and the metal The reduction reaction of ions proceeds selectively. Moreover, when gold maple is precipitated on the semiconductor material 3, it acts as an electron conductor, and the electrons photogenerated inside the semiconductor material are extracted here and separated from the holes, further improving the efficiency of the reaction. do.

とのように本発明方法によれば、半導体光触媒上での酸
化反応と還元反応のサイト部分離し、反応の効率を向上
させることが可能である。さらに還元反応サイト(即ち
金属析出箇所)に予め還元反応触媒金属を担持させてお
けば一層の反応効率向上が達成され、金属析出速度は飛
蹄的に向上する。
According to the method of the present invention, it is possible to separate the oxidation reaction and reduction reaction sites on the semiconductor photocatalyst and improve the efficiency of the reaction. Furthermore, if a reduction reaction catalyst metal is supported in advance on the reduction reaction site (that is, the metal deposition location), further improvement in reaction efficiency can be achieved, and the metal deposition rate can be dramatically improved.

なお、本発明方法の応用可能例として、回路基板(マス
クレスパターン)もしくは半導体県積回路形成方法への
応用等の金属導電膜(層)の形成、種々の表示もしくは
情報記憶的な応用、金檎イオンの回収(貴金属)もしく
は重金属イオンの除去、または、金属磁性体膜の形成等
が挙げられる。
Examples of possible applications of the method of the present invention include the formation of metal conductive films (layers) such as application to circuit boards (maskless patterns) or semiconductor integrated circuit formation methods, various display or information storage applications, metal Examples include collecting ions (noble metals), removing heavy metal ions, and forming a metal magnetic film.

以下において、本発明の実施例を掲け、更に詳しく説明
する。
EXAMPLES Below, examples of the present invention will be presented and explained in more detail.

〔発明の実施例〕[Embodiments of the invention]

実施例 第3図(a)及び(b)に示すように3 cInx 3
 c’sの正方形状の硬質ガラス基板20表面に、スパ
ッタリング法によシ厚さ約1μm の二酸化チタン(T
i■の薄膜を設けて半導体から成る元触媒層3を形成し
た後、この周縁5躊に三塩化ルテニウム(RuC13)
溶液を塗布後、450℃で焼成するという手順を3回繰
り返して、二酸化ルテニウム(RuO□)j?i(酸化
触媒層)6を担持させた。全体をn 、 1 mol/
l!硫酸銅(CuSO4)と1mol/l メタノール
f含む溶液中に浸漬して、触媒層側からl KW超高圧
水銀ランプで2時間元照射したところ、l100Aの金
属銅がTiO2上(第3図(′b)の3の部分)に析出
した。
Example As shown in FIG. 3(a) and (b), 3 cInx 3
Titanium dioxide (T
After forming the base catalyst layer 3 made of a semiconductor by providing a thin film of 3, ruthenium trichloride (RuC13) is applied to the periphery of the layer 3.
After applying the solution, the procedure of baking at 450°C was repeated three times to form ruthenium dioxide (RuO□)j? i (oxidation catalyst layer) 6 was supported. Total n, 1 mol/
l! When the catalyst layer was immersed in a solution containing copper sulfate (CuSO4) and 1 mol/l methanol and irradiated with a 1 KW ultra-high pressure mercury lamp for 2 hours, 1100A of metallic copper was deposited on TiO2 (Fig. 3 (' It precipitated in part 3) of b).

RuO2層を形成しない基板を用いて同様な溶液、光源
によシはは同程度の膜厚の金属銅を得る場合には、約6
時開裂したことから酸化触媒担持による析出速度増大効
果は明白である。
When obtaining metallic copper with a similar film thickness using a similar solution and light source using a substrate on which no RuO2 layer is formed, approximately 6
The effect of increasing the deposition rate by supporting the oxidation catalyst is obvious from the fact that the oxidation catalyst was cleaved at the same time.

〔発明の効呆〕[Efficacy of invention]

以上、詳述した通り、本発明の金属イオンの還元力法は
従来の方法に比べ、金属イオンの析出速度を格段に向上
できるため、その工業的価値は極めて大である。
As described above in detail, the metal ion reducing power method of the present invention can significantly improve the metal ion precipitation rate compared to conventional methods, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体光触媒反応によシ溶歇中の金^イオンを
基板上へ析出させる機何ヲ説明する極式図、第2図は半
導体表面での金属イオンの還元が起こるために必要なエ
ネルギー条件を示す説明図、第3図は本発明に係わる触
媒基板の構成を示す(a)断面図及び(b)平面図であ
る。 1 、1’・・・元、2・・・基板、3・・・半導体物
質、4・・・伝導体のレベル、5・・・価電子帯のレベ
ル、6・・・酸化触媒。 第1図 第3図 (0) (b)
Figure 1 is a polar diagram explaining the mechanism by which gold ions in the melt are deposited onto a substrate by a semiconductor photocatalytic reaction, and Figure 2 is a diagram showing the mechanism necessary for the reduction of metal ions on the semiconductor surface to occur. FIG. 3 is an explanatory diagram showing energy conditions, and FIG. 3 is a cross-sectional view (a) and a plan view (b) showing the structure of a catalyst substrate according to the present invention. 1, 1'... element, 2... substrate, 3... semiconductor material, 4... conductor level, 5... valence band level, 6... oxidation catalyst. Figure 1 Figure 3 (0) (b)

Claims (1)

【特許請求の範囲】 1、 金属イオンを宵む溶液中に、基板と該基板の表面
に担持した可視及び/又は紫外光に励起される半導体物
質を有する光触媒層と核元触媒層の溶液側の面の少なく
とも一部に担持した酸化触媒層から成る触媒基板を浸漬
し、該半導体物質の光励起状態下で該半導体物質に電子
を注入できる電子エネルギー配置をもつ水溶性電子供与
体を共存させ、該半導体物質の励起エネルギー以上のエ
ネルギーをもつ光を該半導体物質に照射することを特徴
とする金属イオンの還元方法。 2、該光触媒層の溶液側の面の他の部分が、還元触媒層
を担持したものである特許請求の範囲第1項記載の金属
イオンの還元方法。
[Claims] 1. The solution side of the photocatalytic layer and the nuclear catalyst layer, which have a substrate and a semiconductor substance supported on the surface of the substrate and which is excited by visible and/or ultraviolet light, in a solution containing metal ions. immersing a catalyst substrate comprising an oxidation catalyst layer supported on at least a portion of the surface of the semiconductor material, coexisting with a water-soluble electron donor having an electron energy configuration capable of injecting electrons into the semiconductor material under the photoexcitation state of the semiconductor material; A method for reducing metal ions, comprising irradiating the semiconductor material with light having an energy higher than the excitation energy of the semiconductor material. 2. The method for reducing metal ions according to claim 1, wherein the other portion of the solution side surface of the photocatalyst layer supports a reduction catalyst layer.
JP940184A 1984-01-24 1984-01-24 Method for reducing metallic ion Granted JPS60155678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP940184A JPS60155678A (en) 1984-01-24 1984-01-24 Method for reducing metallic ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP940184A JPS60155678A (en) 1984-01-24 1984-01-24 Method for reducing metallic ion

Publications (2)

Publication Number Publication Date
JPS60155678A true JPS60155678A (en) 1985-08-15
JPH022950B2 JPH022950B2 (en) 1990-01-19

Family

ID=11719394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP940184A Granted JPS60155678A (en) 1984-01-24 1984-01-24 Method for reducing metallic ion

Country Status (1)

Country Link
JP (1) JPS60155678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171641A (en) * 1986-01-22 1988-07-15 Hitachi Ltd Method and apparatus for oxidizing and reducting dissolved material
JPS63318750A (en) * 1987-06-22 1988-12-27 Nec Corp Manufacture of semiconductor device
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2009001897A (en) * 2007-05-08 2009-01-08 Interuniv Micro Electronica Centrum Vzw Bipolar electroless processing method
US8946088B2 (en) 2010-10-01 2015-02-03 Lancaster University Business Enterprises Limited Method of metal deposition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171641A (en) * 1986-01-22 1988-07-15 Hitachi Ltd Method and apparatus for oxidizing and reducting dissolved material
JPS63318750A (en) * 1987-06-22 1988-12-27 Nec Corp Manufacture of semiconductor device
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
US7731786B2 (en) 2003-01-03 2010-06-08 Semika Photosensitive dispersion with adjustable viscosity for the deposition of metal on an insulating substrate and use thereof
JP2009001897A (en) * 2007-05-08 2009-01-08 Interuniv Micro Electronica Centrum Vzw Bipolar electroless processing method
US8946088B2 (en) 2010-10-01 2015-02-03 Lancaster University Business Enterprises Limited Method of metal deposition

Also Published As

Publication number Publication date
JPH022950B2 (en) 1990-01-19

Similar Documents

Publication Publication Date Title
Gorlin et al. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
EP1492621B1 (en) Fuel cell assembly comprising surface structure for enhancing catalytic reactivity
EP0164184A2 (en) Electrochemical photocatalytic structure
Szklarczyk et al. Photoelectrochemical evolution of hydrogen on p-indium phosphide
Gaikwad et al. Cobalt ferrite nanocrystallites for sustainable hydrogen production application
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
JPH0699070A (en) Copper-based oxidization catalyst and its application
DE3805080A1 (en) METHOD AND DEVICE FOR THE OXIDATION OF CARBON MONOXIDE
US11028490B2 (en) Subnanometer catalytic clusters for water splitting, method for splitting water using subnanometer catalyst clusters
Li et al. Dealloying of mesoporous PtCu alloy film for the synthesis of mesoporous Pt films with high electrocatalytic activity
Costa et al. Investigation of charge recombination lifetime in γ-WO 3 films modified with Ag 0 and Pt 0 nanoparticles and its influence on photocurrent density
Tsunoyama et al. Size-effect on electrochemical hydrogen evolution reaction by single-size platinum nanocluster catalysts immobilized on strontium titanate
Swierk et al. Electrocatalytic water oxidation by single site and small nuclearity clusters of cobalt
Shih et al. Discontinuity‐Enhanced Thin Film Electrocatalytic Oxygen Evolution
NL8103049A (en) SYSTEM AND METHOD FOR THE PHOTOLYTIC PRODUCTION OF OXYDATION AND REDUCTION PRODUCTS.
JPS60155678A (en) Method for reducing metallic ion
JPS59112841A (en) Catalyst for photochemical reaction
JP6497590B2 (en) Method of decomposing water, water splitting device and anode electrode for oxygen generation
JPS61290355A (en) Electrochemical gas sensor
JPH0639285A (en) Photocatalyst
JPH09262473A (en) Iron oxide photocatalyst and production of hydrogen using the same
US3791939A (en) Method of selectively depositing a metal on a surface
JPS6050172A (en) Method for reducing metallic ion
JP2017160524A (en) Photochemical electrode and manufacturing method therefor