JPS60155621A - Production of steel bar and wire rod having spheroidized structure - Google Patents

Production of steel bar and wire rod having spheroidized structure

Info

Publication number
JPS60155621A
JPS60155621A JP950084A JP950084A JPS60155621A JP S60155621 A JPS60155621 A JP S60155621A JP 950084 A JP950084 A JP 950084A JP 950084 A JP950084 A JP 950084A JP S60155621 A JPS60155621 A JP S60155621A
Authority
JP
Japan
Prior art keywords
point
processing
temperature range
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP950084A
Other languages
Japanese (ja)
Other versions
JPS644568B2 (en
Inventor
Susumu Kanbara
神原 進
Kenji Aihara
相原 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP950084A priority Critical patent/JPS60155621A/en
Priority to ES534456A priority patent/ES534456A0/en
Priority to US06/632,234 priority patent/US4604145A/en
Priority to FR848411634A priority patent/FR2558174B1/en
Priority to GB08418577A priority patent/GB2154476B/en
Priority to CA000459371A priority patent/CA1222678A/en
Publication of JPS60155621A publication Critical patent/JPS60155621A/en
Publication of JPS644568B2 publication Critical patent/JPS644568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To omit spheroidizing annealing in another line or to reduce the time for a spheroidizing treatment with a method for spheroidizing cementite in a hot rolling or secondary working stage by specifying working conditions and direct heat treating conditions after said working. CONSTITUTION:A steel contg. >=2% C is subjected to <=10% working at Ar3 or Arcm point or over -Ar3+100 deg.C or Arcm+100 deg.C. The grain size of austenite before deposition of ferrite or proeutectoid cementite is thus made <=25mm. and in succession the steel is subjected to >=20% working at Ar1-Ar3 or Arcm. The steel is thereafter subjected a) immediate holding at an equa. temp. of Ae1- 100 deg.C-Ae1 for >=5min, b) cooling at a rate of <=100 deg.C/min down to 500 deg.C and c) allowing to cool down to a room temp. and ordinary spheroidizing annealing in another line. The good titled steel bar and wire rod are thus efficiently produced as hot-rolled or are easily spheroidized in another stage.

Description

【発明の詳細な説明】 m−−の第1 \。[Detailed description of the invention] The first of m--.

本発明は棒鋼および線材の製造方法に関し、特に熱間圧
延中の加工熱を利用して圧延ままで良質の炭化物の球状
化組織を得ることができる、或いは別ラインで球状化焼
鈍を効果的に実施できる、棒鋼および線材の製造方法に
関する。
The present invention relates to a method for manufacturing steel bars and wire rods, and in particular, it is possible to obtain a high-quality carbide spheroidized structure as rolled by utilizing the processing heat during hot rolling, or to effectively perform spheroidizing annealing on a separate line. The present invention relates to a method of manufacturing steel bars and wire rods that can be implemented.

従来技肪 各種鋼材の中には、組織中の炭化物を球状化させて使用
するものが多い。例えば、冷間鍛造用鋼はその変形能を
向上させ、変形抵抗を減少させろために、また軸受鋼は
その1li4 If耗性を向上させると同時に、冷間加
工性、切削性を付与するために、鋼中のセメンタイトを
球状化させるのが一般的である。
Among various conventional steel materials, many of them are used by spheroidizing carbides in the structure. For example, steel for cold forging is used to improve its deformability and reduce deformation resistance, and bearing steel is used to improve its wear resistance and at the same time provide cold workability and machinability. , it is common to spheroidize cementite in steel.

従来、これら鋼中のセメンタイトの球状化を行うために
、通常の熱間圧延工程で製造された棒鋼および線材コイ
ルを、別ラインの熱処理炉内で球状化焼鈍と呼ばれる熱
処理を施していた。球状化焼鈍には、A+点以上に加熱
した後徐冷する方法(徐冷法)、A+点直下で等温保持
する方法(等温保持法)、A1点を境に繰り返し加熱冷
却する方法(繰り返し法)がよく知られζいるが、いず
れの方法を用いても非常な長時間を必要としていた。た
とえば、冷間鍛造用合金鋼(SCr435、SCr43
5など)や軸受鋼(SUJ2など)では20〜25時間
、比較的セメンタイトの球状化の容易な冷間鍛造用炭素
鋼ども15〜20時間も要U7ていた。
Conventionally, in order to spheroidize the cementite in these steels, steel bars and wire rod coils produced in a normal hot rolling process were subjected to a heat treatment called spheroidizing annealing in a heat treatment furnace on a separate line. For spheroidizing annealing, there are two methods: heating to above the A+ point and then slowly cooling (slow cooling method), holding the material at an isothermal temperature just below the A+ point (isothermal holding method), and repeating heating and cooling after the A1 point (repetitive method). Both methods are well known, but require a very long time. For example, alloy steel for cold forging (SCr435, SCr43
5) and bearing steels (SUJ2, etc.), it took 20 to 25 hours, while carbon steels for cold forging, in which cementite is relatively easily spheroidized, took 15 to 20 hours.

このため、球状化焼鈍処理は、これら棒鋼および線材の
関造二[程のネックになっており、省エネルギーの見地
からも大きな問題とな、っ”でいた。さらには、長時間
の熱処理のため鋼表面の酸化、脱炭の問題が生じる場合
もあった。したがって、球状化焼鈍工程の簡略化、省略
化が従来から強く望まれ°ζおり、実現されれば大きな
効果を生じるものと予想された。
For this reason, the spheroidizing annealing treatment has become a bottleneck for manufacturing these steel bars and wire rods, and has become a major problem from the standpoint of energy conservation. In some cases, problems of oxidation and decarburization of the steel surface occurred.Therefore, there has been a strong desire to simplify and omit the spheroidizing annealing process, and it is expected that if realized, it would have a great effect. Ta.

その一方法として、鋼材に球状化焼鈍を施す前に、予め
冷間加工(たとえば冷間伸線、冷間抽伸など)を行い、
鋼中のセメンタイトに変形破壊を生せしめると同時に、
多数の転位を導入し7、その後の球状化焼鈍での残存セ
メンタイ1−の分141iif;J隼と、新たに生成す
るセメンタイトの発生核の多数分散化をはかるごとによ
って、球状化焼鈍時間の短縮化を実現する方法は既に行
われている。しかし、この方法では球状化焼鈍時間の短
縮は実現されるものの、冷間加工工程が追加されるため
に、全工程を通じての処理時間の短縮という意味ではい
ま一つ効果が薄かった。
One method is to perform cold working (for example, cold wire drawing, cold drawing, etc.) in advance before subjecting the steel material to spheroidizing annealing.
At the same time, it causes deformation failure in the cementite in the steel,
The spheroidizing annealing time is shortened by introducing a large number of dislocations7 and dispersing the remaining cementite 1-1 in the subsequent spheroidizing annealing. Methods to achieve this are already in use. However, although this method achieved shortening of the spheroidizing annealing time, it added a cold working step, so it was less effective in terms of shortening the processing time throughout the entire process.

そごで、熱間圧延工程または2次加工工程においζ、オ
ンライン中でセメンタイトを球状化さ−lることにより
球状化焼鈍を省略する方法が特開昭58−27926J
i3−に提案されている。しかしながら8、−の従来方
法では、加工温度範囲の指定力<As2およびAe+ 
の如く平衡状態に於ける変態温度で表示されており、実
用的でない。更に、後述するように、本発明者らの見出
した知見に基づくと、この特開昭58−27926号に
記載の方法では加工温度が高く、実質的にはセメンタイ
トの球状化には効果の薄い方法である。
Therefore, a method of omitting spheroidizing annealing by spheroidizing cementite online during the hot rolling process or secondary processing process is disclosed in JP-A-58-27926J.
i3- is proposed. However, in the conventional method of 8.-, the specified force in the processing temperature range <As2 and Ae+
It is expressed as the transformation temperature in an equilibrium state, such as , which is not practical. Furthermore, as will be described later, based on the findings of the present inventors, the method described in JP-A-58-27926 requires a high processing temperature and is substantially ineffective in spheroidizing cementite. It's a method.

皇靭Ω且伯 本発明は本発明者等が行った線材の加i熟処理に関する
訂細な実験の結果から得られたものであり、その目的は
、熱間圧延]−程または2次加工工程において、加工条
件とその後の直接熱処理条件を制御することにより、別
ラインでの球状化焼鈍処理を省略するか、あるいは球状
化処理時間を短縮させることにある。
The present invention was obtained from the results of detailed experiments conducted by the present inventors regarding the aging treatment of wire rods, and its purpose is to improve the hot rolling process or secondary processing. In the process, by controlling processing conditions and subsequent direct heat treatment conditions, it is possible to omit the spheroidizing annealing treatment in a separate line or shorten the spheroidizing treatment time.

元型j−のコ^7Jj’Q 本発明に従うと、2%以下のCを含有する鋼を胱3点ま
たはAccm点以」−に加熱した後変形を加える加工工
程において、Ar3点またーはArcm点を越え11つ
八r3+100℃またはArcm +10(1”C以下
の温度域で10%以上の加工を付与してフェライトまた
は初析セメンタイトが析出する前のオーステナイト粒径
を25JIm以下とし、引き続いてAr+点以上であり
且つAr3点またはArcm点以下の温度域で20%以
上の加工を施し、その後直ちにAe+ 100℃以上で
あり且つAe+点以下の温度域に5分収上等温保持する
か、または500℃までを10(+”c/分以)の冷却
速度で冷却して良好な球状化組織を得るごまを特徴とす
る、棒鋼および線材の製造方法が提供される。すなわち
、これらの本発明の製造方法は、熱間加工工程または2
次加工工程のオンライン中でセメンタイトの球状化を実
現せしめようとするものである。
According to the present invention, in the processing step in which steel containing 2% or less of C is heated to 3 points or above Accm point and then deformed, 3 points Ar or The austenite grain size before ferrite or pro-eutectoid cementite precipitates is reduced to 25JIm or less by applying 10% or more processing in a temperature range of 118r3 + 100℃ or Arcm +10 (1"C or less) beyond the Arcm point, and then Processing is performed by 20% or more in a temperature range above Ar+ point and below Ar3 point or Arcm point, and then immediately held isothermally in a temperature range above Ae+ 100°C and below Ae+ point for 5 minutes, or Provided is a method for producing steel bars and wire rods characterized by sesame that obtains a good spheroidized structure by cooling up to 500° C. at a cooling rate of 10 (+”c/min or more). That is, the present invention The manufacturing method is a hot working process or 2
The aim is to achieve spheroidization of cementite during the next processing process online.

更に、本発明に従うと、2%以下のCを含有する鋼をA
C3点またはAccm点以上に加熱した後変形を加える
加工工程において、Ar3点またはA r c m 、
H,”jを越え月、つ八r3+100℃又は八rcm 
+ 100℃思[;の温度域で1()%以上の加工を付
与してフェライトがまたは初析セメンタイトが析出する
前のオーステナイト粒径を25 Am以下とし、引き続
い゛(Ar1 点以上であり汀つAr3点またはArc
m点以下の温度域で20%以上の加工を施し、その後室
温まで放冷し、次いで別ラインで通雷の球状化焼鈍を施
して良好な球状化組織を得ることを特徴とする、棒鋼お
よび線材の製造方法が提供される。すなわち、この製造
方法は、鋼の球状化焼鈍性を向上させ、別ラインでの球
状化焼鈍処理時間を短縮化セしめようとするものである
Furthermore, according to the present invention, steel containing 2% or less of C is
In the processing step of adding deformation after heating to C3 point or Accm point or higher, Ar3 point or A r cm ,
H, "J over the moon, 8 r3 + 100℃ or 8 rcm
The austenite grain size before ferrite or pro-eutectoid cementite precipitates is reduced to 25 Am or less by applying 1()% or more processing in the temperature range of +100°C, and then 3 points or Arc
A steel bar, which is processed by 20% or more in a temperature range below the m point, then allowed to cool to room temperature, and then subjected to lightning spheroidizing annealing on a separate line to obtain a good spheroidized structure. A method of manufacturing a wire is provided. That is, this manufacturing method is intended to improve the spheroidizing annealing properties of steel and to shorten the time required for spheroidizing annealing on a separate line.

以下に本発明の要件について詳細に説明する。The requirements of the present invention will be explained in detail below.

(1)C曜を2%以下にした理由 CMが2%を越えると状態図におけるオーステナイト相
の領域が非常に狭くなると共に、初析セメンタイトのオ
ーステナイト粒界上への析出量が多くなるため、熱間加
工中に割れが生じ易くなるのでC子を2%以下とした。
(1) Reason for setting C to 2% or less When CM exceeds 2%, the austenite phase region in the phase diagram becomes very narrow and the amount of pro-eutectoid cementite precipitated on the austenite grain boundaries increases. Since cracks are likely to occur during hot working, the carbon content was set to 2% or less.

更Gこ、本発明の方法を適用する鋼は所望の強度、延性
を与えるため、S+sMnの他、Cr、 Mo等の合金
元素を含むことができる。更に脱酸剤として5olAI
を含むほか、P、S等の不純物元素は製品の所望の特性
および!lI!l造方法より適正な範囲に限定されるが
、これらは発明の特徴ではないのでこれ以上6゛C述し
ない。
Furthermore, the steel to which the method of the present invention is applied can contain alloying elements such as Cr and Mo in addition to S+sMn in order to provide desired strength and ductility. Furthermore, 5olAI is used as a deoxidizing agent.
In addition to containing impurity elements such as P and S, the desired characteristics of the product and! lI! However, since these are not characteristics of the invention, they will not be discussed further.

(21A C3点またはArcm点以上に加熱する理由
加熱温度については、後述する加工温度の制約から、加
熱温度をAc3点またはArC11I点以上に限定した
(21A Reason for heating above C3 point or Arcm point Regarding the heating temperature, the heating temperature was limited to above Ac3 point or ArC11I point due to processing temperature constraints described later.

(3)第1段階の加工の限定理由について本発明では第
1段階の加工として、613点またはへrcm点を越え
月一つ八r3+100℃または八rcm +100℃以
下の温度域で10%以−ヒの加工を行ない、フェライi
・または初析セメンタイトが析出するAi+のオーステ
ナイト粒径を25JII11以下にする。まず、この第
1段階の加工工程の条件限定理由を説明する。
(3) Reasons for limiting the first stage processing In the present invention, as the first stage processing, the temperature range exceeding 613 points or Hercm point and less than 10% - After processing the
-Or the austenite grain size of Ai+ where pro-eutectoid cementite precipitates is set to 25JII11 or less. First, the reason for limiting the conditions of this first stage processing step will be explained.

^r3またはArcm点を越え且つAr3+ 100℃
または^rcm + 100℃以下の温度域内での加工
は2つの効果がある。
^R3 or beyond the Arcm point and Ar3+ 100℃
Processing within a temperature range of ^rcm + 100°C or lower has two effects.

その第1の効果は第1図に示すよ・)に、加工によりA
3またはAcm変態を誘起せしめ、c、 c T tI
b線を短時間側にシフトさせることによって後述の等温
保持あるいは徐冷過程でのA1変態ずなわち球状セメン
タイトの析出を促進せしめる効果である。第1図におい
て、実線は加工前のCCT曲IJilを、破線は上記t
M1度域での加工後のCCT曲線を示す。
The first effect is shown in Figure 1.
3 or Acm metamorphosis, c, c T tI
By shifting the b line to the short time side, the effect is to promote the A1 transformation, that is, the precipitation of spherical cementite during the isothermal holding or slow cooling process described below. In Fig. 1, the solid line represents the CCT curve IJil before processing, and the broken line represents the above t.
The CCT curve after processing in the M1 degree region is shown.

第2の効果は、この温度域内での加工によりオーステナ
トの再結晶化を図り、セメンタイトの球状化性を改善す
る効果である。
The second effect is the effect of recrystallizing austenite by processing within this temperature range and improving the spheroidizing property of cementite.

オーステナト粒の大きさとセメンタイトの球状化性につ
い°ζは(多連する。ただし、この場合オーステナト粒
(¥は25.um以下にしなければその効果は薄く、ま
た少なくとも10%の加工度が必要である。
Regarding the size of austenite grains and the spheroidizing property of cementite, °ζ is (multiple).However, in this case, the effect is weak unless the austenite grains (\) are 25.um or less, and a working degree of at least 10% is required. be.

従って、上記温度域内で10%以上の加工を行ってオー
ステナi・粒径を25JJmツ下にすると限定した。
Therefore, it was limited to 10% or more processing within the above temperature range to reduce the austener i/grain size to 25 JJm or less.

不明♀Ill W中で加工度とは[折面減少率を意味し
、1パス圧延(または1パス伸線)の場合には圧延(ま
たは伸線)前後の断面の減少率を、多バス圧延(または
多パス伸線)の場合には圧延(または伸線)前と最終バ
ス通過後の断面の累積減少率のことをいう。
Unknown ♀Ill In W, the degree of working refers to the reduction rate of the folded surface, and in the case of 1-pass rolling (or 1-pass wire drawing), the reduction rate of the cross section before and after rolling (or wire drawing), (or in the case of multi-pass wire drawing), it refers to the cumulative reduction rate of the cross section before rolling (or wire drawing) and after passing through the final bus.

第1段階の加工の温度範囲についてはAr3点またはA
rcm点以下になるとオーステナト1相に成らないので
、またΔr3+ 100℃またはArcs + 100
℃より高くなると、実質的にオーステナト粒径が25珊
以下にならないので、上記温度範囲とした。
Regarding the temperature range of the first stage processing, Ar3 points or A
If the temperature is below the rcm point, austenite 1 phase will not be formed, so Δr3+ 100℃ or Arcs + 100
If the temperature is higher than .degree. C., the austenite particle size will not substantially become less than 25 corals, so the above temperature range was set.

(4)第2段階の加工の限定理由について本発明では第
2段階の加工として、Ar+点以上であり且つAr3点
またはArcm点以下の温度域で20%以上の加工を行
なう。この限定理由について説明する。
(4) Reasons for limiting the second stage processing In the present invention, the second stage processing is performed by 20% or more in a temperature range above the Ar+ point and below the Ar3 point or the Arcm point. The reason for this limitation will be explained.

Ars点以上であり且つ513点またはArcm点以下
の温度域で加工を付与するのは次の理由による。
The reason why processing is applied in a temperature range above the Ars point and below the 513 point or the Arcm point is as follows.

この温度域での鋼の組織は準安定オーステナイトとフェ
ライト(過共析鋼の場合は初析セメンタイト)の二相混
合組織になっており、これを加工すると、準安定オース
テナイトの粒界および粒内から、加工誘起変態した微細
なフェライト(過共析鋼の場合は初析声メンタイト)が
多数生成する。
The structure of steel in this temperature range is a two-phase mixed structure of metastable austenite and ferrite (proeutectoid cementite in the case of hypereutectoid steel). A large number of fine ferrites (pro-eutectoid mentite in the case of hypereutectoid steel) are generated due to deformation-induced transformation.

この結果、準安定オーステナイトは加工誘起変態したフ
ェライト(過共析鋼の場合は初析セメンタイト)によっ
て分断されるため微細になるが、本発明者等の別の知見
によると、粗大オーステナイトから析出したセメンタイ
トより、微細オーステナイトから析出したセメンタイト
の方が球状化しやすいことを見出しているから、本発明
の温度域での加工は、セメンタイトの球状化に有効であ
ることは明らかである。
As a result, metastable austenite becomes fine because it is divided by deformation-induced transformed ferrite (proeutectoid cementite in the case of hypereutectoid steel), but according to other findings of the present inventors, metastable austenite precipitates from coarse austenite. Since it has been found that cementite precipitated from fine austenite is more easily spheroidized than cementite, it is clear that processing in the temperature range of the present invention is effective in spheroidizing cementite.

Ar1点より低い温度域では、加工前に既に準安定オー
ステナイトから1−状セメンタイトが析出し終わっ一ζ
いるため、Ar+点未満の温度域での加工はセメンタイ
トの球状化には効果が小さく、さらに加工組織が残存し
°ζ強度が上がるので、Ar1点以上で加工する必要が
ある。
In the temperature range lower than the Ar1 point, 1-state cementite has already precipitated from metastable austenite before processing.
Therefore, machining in a temperature range below the Ar+ point has little effect on spheroidizing cementite, and furthermore, the machining structure remains and the °ζ strength increases, so it is necessary to perform the machining at an Ar point or higher.

また、Ar3点またはArcm点より高い温度域ではフ
ェライトあるいは初析セメンタイトの加工誘起変態が不
完全なため、セメンタイトの球状化が困ifになるので
Ar3点またはArcm点以下で加工する必要がある。
Further, in a temperature range higher than the Ar3 point or the Arcm point, the deformation-induced transformation of ferrite or pro-eutectoid cementite is incomplete, making it difficult to spheroidize the cementite, so it is necessary to process the cementite at a temperature below the Ar3 point or the Arcm point.

なお、過共析鋼の場合、加工する前に析出している初析
セメンタイトは加工中に変形破壊し、その後の等温保持
または徐冷過程で分断凝集して球状セメンタイトになる
。また、加工中に準安定オーステナイト粒内に導入され
た多数の転位は、その後の等温保持または徐冷過程で析
出する球状セメンタイトの発生核となり得る。しかし、
40点より低い温度域では、上述したように加工前に既
に層状セメンタイトが析出しているため効果がなく、A
r3点またはArcm点より高い温度域では、加工され
た準安定オーステナイトは直ちに回復し、導入された転
位が消失するため、球状化セメンタイトの発生核にはな
り得ない。
In the case of hypereutectoid steel, pro-eutectoid cementite precipitated before processing is deformed and fractured during processing, and then fragmented and agglomerated during the subsequent isothermal holding or slow cooling process to become spheroidal cementite. Moreover, a large number of dislocations introduced into the metastable austenite grains during processing can become nuclei for the generation of spheroidal cementite that precipitates during the subsequent isothermal holding or slow cooling process. but,
In the temperature range lower than 40 points, layered cementite has already precipitated before processing as mentioned above, so there is no effect, and A
In a temperature range higher than the r3 point or Arcm point, the processed metastable austenite immediately recovers and the introduced dislocations disappear, so that it cannot become a nucleus for generating spheroidized cementite.

以上述べたように、2つの理由から、Ar1点以上であ
り且つAr3点またはAr0w1点以下の温度域で加工
を付与することを限定した。
As described above, for two reasons, processing is limited to a temperature range of 1 or more Ar points and 3 points Ar or 1 point Ar0w or less.

ここで重要なことは、本発明の方法において加工を行う
温度範囲を鋼の冷却過程での変態温度、ずなわち、Ar
+ 、Δr3% Arc+nで規定したことに意味があ
り、特開昭58−27926号のように加工温度範囲を
平衡変態温度Ae+ 、、 As2、Aectnで規定
したのでは実用上はとんど意味をなさないことである。
What is important here is that the temperature range for processing in the method of the present invention is the transformation temperature in the cooling process of the steel, that is, Ar
+, Δr3%Arc+n is meaningful, and defining the processing temperature range in terms of equilibrium transformation temperature Ae+, As2, Aectn as in JP-A-58-27926 has little practical meaning. It is something not to do.

また、特開昭58−27926号に開示の方法では、加
工温度範囲をAe320℃からAe+ −30”Cと規
定し。
Furthermore, in the method disclosed in JP-A-58-27926, the processing temperature range is defined as Ae320°C to Ae+ -30''C.

でいる。しかしながら、本発明の方法を適用する線材及
びi!lu)代表的な鋼種520C,,545C,5C
r435、SCM435.5UJ2では上記の温度範囲
はいずれもAr3点以上に限定され、上述の如く、この
従来技術の温度範囲での加工だけではセメンタイトの球
状化に対し°ζ有効でない。
I'm here. However, the wire rod to which the method of the present invention is applied and the i! lu) Typical steel types 520C, 545C, 5C
For r435 and SCM435.5UJ2, the above temperature range is limited to the Ar3 point or higher, and as described above, processing within this conventional temperature range alone is not effective in spheroidizing cementite.

次に加工度を20%以上に限定した理由について述べる
。上述の温度域内での加工度は大きいほど、セメンタイ
トの球状化効果は大きくなる。すなわち、準安定オース
テナイトの微細化と準安定オーステナイト粒内−・の転
位の導入が促進され、その後の等温保持または徐冷過程
において球状セメンタイトの析出が容易になるが、20
%より小さい加工度では、これら効果が十分発揮されず
、層状セメンタイトが析出しやすくなるので、20%以
上の加工度に限定した。
Next, the reason for limiting the degree of processing to 20% or more will be described. The greater the degree of working within the above-mentioned temperature range, the greater the effect of spheroidizing cementite. In other words, the refinement of metastable austenite and the introduction of dislocations within the metastable austenite grains are promoted, and the precipitation of spheroidal cementite is facilitated during the subsequent isothermal holding or slow cooling process.
If the working degree is less than 20%, these effects will not be sufficiently exhibited and layered cementite will easily precipitate, so the working degree was limited to 20% or more.

(5)加工後の処理について 上述の加工後、球状セメンタイトを析出させる方法とし
ては、等温保持と徐冷の2通りある。等温保持の場合、
Aes点を越えた温度で保持しても、A1変態、すなわ
ち、セメンタイトの析出が開始しないので、保持温度は
肋1点以下にしなければならない。しかし保持温度は低
くなるほど、析出するセメンタイトは球状になりにクク
、特にAes−100℃より低い温度になるとyi層状
セメンタイト析出し始めるので、等温保持温度はAer
点以下であり且つAes 100℃以上の範囲とした。
(5) Post-processing There are two methods for precipitating spherical cementite after the above-mentioned processing: isothermal holding and slow cooling. For isothermal maintenance,
Even if held at a temperature exceeding the Aes point, A1 transformation, that is, precipitation of cementite does not start, so the holding temperature must be one point or less. However, the lower the holding temperature is, the more spherical the precipitated cementite becomes. Especially, when the temperature is lower than Aes-100℃, layered cementite begins to precipitate, so the isothermal holding temperature is
The range is below 100°C and above 100°C.

またこの温度域内の等温保持では少なくとも5分保持し
なげれば完全に球状セメンタイトの析出が終了しないの
で、5分以上等温保持することとした。
In addition, in isothermal holding within this temperature range, precipitation of spherical cementite will not be completely completed unless the temperature is held for at least 5 minutes, so it was decided to hold the temperature isothermally for 5 minutes or more.

さらに徐冷により球状セメンタイトを析出させ、るには
、速くとも100℃/分の冷却速度で冷却する必要があ
り、それより速い冷却速度で冷却すると層状セメンタイ
トが析出し始めるので、冷却速度は100℃/分以下に
限定した。徐冷範囲は圧延終了温度から球状セメンタイ
トが完全に析出し終わる温度500℃までとした。ただ
し徐冷時間を短くしたい場合は球状セメンタイトの析出
がほぼ完了する600℃までが望ましい。
Furthermore, in order to precipitate spheroidal cementite by slow cooling, it is necessary to cool at a cooling rate of at least 100°C/min. The temperature was limited to ℃/min or less. The slow cooling range was from the rolling end temperature to 500°C, the temperature at which the spherical cementite completely precipitated. However, if it is desired to shorten the slow cooling time, it is desirable to cool down to 600°C, at which precipitation of spherical cementite is almost completed.

加工後、放冷した場合にも不完全なからセメンタイトは
一部球状化しており、これを別ラインで通常の球状化焼
鈍を施した場合、球状化焼鈍処理時間は大幅に短縮され
るので、室温まで放冷し、次いで別ラインで通常の球状
化焼鈍を施すことを規定した。
Even when the cementite is left to cool after processing, it is incomplete and some of the cementite becomes spheroidized.If this is subjected to normal spheroidizing annealing on a separate line, the spheroidizing annealing time will be significantly shortened. It was specified that the material should be allowed to cool to room temperature and then subjected to normal spheroidizing annealing in a separate line.

−(シ明の 去の 16に いる1 次に本発明の方法を実施するのに用いる装置を添付の図
面を参照して説明する。
- (1 of 16) Next, the apparatus used to carry out the method of the present invention will be described with reference to the accompanying drawings.

第2図に示す設備に於いて、参照番号1は鋼片の加熱炉
を示し、加熱炉lには粗圧延機2が連結している。粗圧
延機2の下流側には粗圧延された鋼材を水冷又は風冷す
る装置3と、これに並置された放冷ゾーン4が続いてい
る。
In the equipment shown in FIG. 2, reference number 1 indicates a heating furnace for steel billets, and a rough rolling mill 2 is connected to the heating furnace 1. Continuing downstream from the rough rolling mill 2 are a device 3 for water-cooling or air-cooling the rough-rolled steel material, and a cooling zone 4 juxtaposed thereto.

所定ン晶度範囲に冷却された鋼材は中間圧延fi5に送
られる。中間圧延機5の下流側には再び鋼材を冷却する
水冷又は風冷する装置3″と、これにJP置された放冷
ゾーン4゛が続いている。再び所定温度範囲に冷却され
た鋼材は仕上圧延機6に送られる。仕上圧延機6の後方
には2基の巻取装置7I及び72が並置されている。
The steel material cooled to a predetermined crystallinity range is sent to intermediate rolling fi5. On the downstream side of the intermediate rolling mill 5, there is a water cooling or air cooling device 3'' for cooling the steel material again, and a cooling zone 4'' installed in the JP.The steel material is cooled again to a predetermined temperature range. It is sent to the finishing rolling mill 6. Two winding devices 7I and 72 are arranged in parallel behind the finishing rolling mill 6.

本発明の方法のうち特許請求の範囲第1 rfiまたは
第2項に記載の方法を実施するときは、巻取装置71を
使用する。巻取装置71は連続炉8内乙こ鋼材をコイル
状に成形し、コイル状の鋼材はコンベヤ9上を移動する
。連続炉8は保温炉であっても或いは徐冷炉であっても
よい。
A winding device 71 is used when implementing the method according to claim 1 or claim 2 of the method of the present invention. The winding device 71 forms the steel material inside the continuous furnace 8 into a coil shape, and the coiled steel material moves on the conveyor 9. The continuous furnace 8 may be a heat retention furnace or a slow cooling furnace.

本発明のうち特許請求の範囲第3r0に記載の方法を実
施するとき、すなわち、球状化処理を別ラインで行うと
きは、巻取装置72でコイル状とし。
When carrying out the method described in claim 3r0 of the present invention, that is, when performing the spheroidization process on a separate line, the coil is formed into a coil shape using the winding device 72.

て、別ラインに搬送する。and transport it to another line.

第3図は線材の2次加工ラインで本発明の方法を実施す
るときに用いる装置のJHa18rI!Jである。この
装置では、ペイオフリール10から巻き戻された線材は
高周波加熱装胃11により所定温度範囲に加熱され、下
流側に設けられた伸線ダイス12により伸線される。線
材は水冷または風冷装置13により所定の温度範囲に冷
却され、再度伸線ダイス12゜により伸線される。参照
番号14は線材をダイス12゜から引抜くピンチローラ
を示す。ついで、線材はコイラ151、又はこれと並置
された]52のいずれかに巻取られる。
FIG. 3 shows the JHa18rI! device used to carry out the method of the present invention in a wire secondary processing line. It is J. In this device, a wire rod unwound from a payoff reel 10 is heated to a predetermined temperature range by a high-frequency heating chamber 11, and drawn by a wire drawing die 12 provided on the downstream side. The wire is cooled to a predetermined temperature range by a water cooling or air cooling device 13, and drawn again by a wire drawing die 12°. Reference numeral 14 indicates a pinch roller for pulling the wire out of the die 12°. The wire is then wound onto either the coiler 151 or the coiler 52 juxtaposed therewith.

すなわち、特許請求の範囲第1項または第2項に記載の
方法を実施するときは、コイラ151を用いる。コイラ
151 は保熱炉または徐冷炉】6内に設けられている
。従って、加工後の線材は、等渚、保持或いは徐冷され
る。
That is, when carrying out the method described in claim 1 or 2, the coiler 151 is used. The coiler 151 is provided in a heat retention furnace or a slow cooling furnace. Therefore, the wire rod after processing is subjected to constant sanding, holding, or slow cooling.

更Gこ、本発明のうち特許請求の範囲第3項に記載の方
法を実施するとき、すなわち、加工後の線材を別ライン
に則送して球状化処叩するときは、コイラ152でを敗
る。
Further, when implementing the method recited in claim 3 of the present invention, that is, when the wire rod after processing is sent to another line and subjected to spheroidization treatment, the coiler 152 is used. defeat.

以下、本発明を実)lli例により説明するが、これら
の実施例は本発明を何等制限しないことは勿論である。
Hereinafter, the present invention will be explained using practical examples, but it goes without saying that these examples do not limit the present invention in any way.

実11舛 第1表に示ず各鋼について断面が60φm111の素材
を準備し、これらを第2図に示す圧延ラインで900℃
に加熱し、粗圧延機2で35φml11まで圧延した後
、圧延を中断して自然放冷し、所望の温度になってから
中間圧延機5で30φnu++まで圧延を行った。その
後水冷で所定の温度まで冷却の後、仕、[−圧延を行っ
た。仕上圧延終了後、直ちに連続保pJシ炉または連続
徐冷炉内にて巻取り、巻取ったコイルを炉内で移動しな
がら等温保持または徐冷を施° ずか、あるいは炉外で
巻取り放冷した後、通常の球状化焼鈍を施した。
For each steel not shown in Table 1, prepare materials with a cross section of 60φm111, and heat them at 900°C on the rolling line shown in Figure 2.
After rolling to 35φml11 with a rough rolling mill 2, rolling was interrupted and allowed to cool naturally, and after the desired temperature was reached, rolling was carried out with an intermediate rolling mill 5 to 30φnu++. After cooling with water to a predetermined temperature, rolling was performed. Immediately after finish rolling, the coil is wound in a continuous storage pj furnace or continuous slow cooling furnace, and the wound coil is kept isothermally or slowly cooled while moving within the furnace, or it is wound outside the furnace and left to cool. After that, normal spheroidizing annealing was performed.

仕上った線材からJIS14 A号引張試験片と直径1
0φIIIIIIX長さ15mmの冷間圧縮試験片を作
成し、引張試験と両端拘束冷間圧縮試験を行い、引張強
さ、絞り、限界圧縮率をめた。また、それらのミクロ組
織からセメンタイトの球状化率をめた。球状化率は電子
顕微鏡撮影したミクロ組織中の100個以上のセメンタ
イトについて、長径と短径を測定し、長径/短径が3.
0以上のセメンタイト数の測定した全セメンタイト数に
対する割合で示し)こ。
JIS14 No. A tensile test piece and diameter 1 from the finished wire rod
A cold compression test piece having a length of 0φIIIIIIX and 15 mm was prepared, and subjected to a tensile test and a cold compression test with both ends restrained, and the tensile strength, area of area, and critical compressibility were determined. In addition, the spheroidization rate of cementite was estimated from the microstructure. The spheroidization rate was determined by measuring the major axis and minor axis of more than 100 cementites in the microstructure photographed using an electron microscope.
This is expressed as a ratio of the number of cementites of 0 or more to the total number of cementites measured).

圧延に先立ち、Formas ter熱膨張試験機を用
いてそれぞれのAs2点、As2または^ecm点と3
5φmm素材の自然放冷に相当する冷却速度でのAr1
、Ar3またはArcm (900℃加熱)をめ、それ
らの仙°を第1表に併記する。
Prior to rolling, each As2 point, As2 or ^ecm point and 3 were tested using a Formas ter thermal expansion tester.
Ar1 at a cooling rate equivalent to natural cooling of a 5φmm material
, Ar3 or Arcm (heated at 900°C), and their temperature values are also listed in Table 1.

犬五〇彫り 第1表に示す545CおよびS CM’435について
、中間圧延により35φIIImから30φmm (加
工度−27%)まで圧延し、その後水冷により、545
Cについては670℃まで、SCM435につい”ζは
650℃まで冷却した後、引き続い゛ζ仕上圧延で20
φarmの線材にし、直ちに700℃の連続保熱炉内で
巻き取り1.そのまま20分間等温保持した。中間圧延
開始温度は第2表に示すように545Cについては85
0℃〜710”C間で、SCM435については、85
0℃〜690℃間で変更し7て行った。
545C and S CM'435 shown in Table 1 were rolled from 35φIIIm to 30φmm (working degree -27%) by intermediate rolling, and then water-cooled to 545C and S CM'435 shown in Table 1.
After cooling to 670°C for C and 650°C for SCM435, 20
It was made into a φarm wire and immediately wound in a continuous heat retention furnace at 700°C.1. The temperature was maintained for 20 minutes. The intermediate rolling start temperature is 85C for 545C as shown in Table 2.
Between 0°C and 710”C, for SCM435, 85
The temperature was varied between 0°C and 690°C, and the test was carried out 7 times.

試験材の引張強さ、絞り、限昇圧縮率、球状化率を測定
した。また同一条件で中間圧延を行った直後番、二水焼
入れを施し、旧オーステナイト粒)イの測定も実施した
。これらの測定値を第2表に記載する。
The tensile strength, reduction of area, maximum compressibility, and spheroidization rate of the test materials were measured. Immediately after performing intermediate rolling under the same conditions, double quenching was performed and the prior austenite grains were measured. These measured values are listed in Table 2.

本発明の温度範囲(Δr3〜Ar3+ 100℃または
へrcm〜へrcm +100℃)外で圧延するとオー
ステブルイト粒径が25J1fflより大きくなり、性
能が劣化することがわかる。
It can be seen that when rolling outside the temperature range of the present invention (Δr3 to Ar3+ 100°C or hercm to hercm +100°C), the austebruite grain size becomes larger than 25J1ffl and the performance deteriorates.

n准〔乙 第1表に示す各相について、それぞれ770℃での中間
圧延により35φmmから30φmmにし、水冷により
第3表に示した仕上圧延開始温度まで冷却した後、引き
続いて20φmm (加工度−56%)まで仕上圧延し
、直ちに連続保熱炉内で捲き取り、そのまま20分間等
温保持した。
Each phase shown in Table 1 was rolled from 35φmm to 30φmm by intermediate rolling at 770°C, cooled to the finish rolling start temperature shown in Table 3 by water cooling, and then rolled to 20φmm (working degree - 56%), was immediately rolled up in a continuous heat retention furnace, and maintained isothermally for 20 minutes.

各試験材の引張強さ、絞り、限界圧縮率、球状化率を第
3表6に併記する。本発明の6!!度範囲(Ar+〜A
r+またはAr+ 〜Arcm)内で圧延した線利は引
張強さが低く、絞り、限界圧縮率、球状化率に優れてい
ることがわかる。
The tensile strength, area of area, critical compressibility, and spheroidization rate of each test material are also listed in Table 3-6. 6 of the present invention! ! Degree range (Ar+~A
It can be seen that the wire yield rolled within r+ or Ar+ ~Arcm) has low tensile strength and is excellent in reduction, limit compressibility, and spheroidization rate.

ズ11吐走 545Cについて、実施例2と同様の条件で中間圧延ま
で行い、引き続いて670℃で加工度0%〜7594の
間で変更して仕上圧延を実施し、直ちに700℃の連続
保熱炉内で捲き取りそのまま20分間等温保持した。加
工度O%とは仕上圧延は施さないで、そのまま700℃
の連続保熱炉内で捲き取ったことを意味する。
For No. 11 discharge 545C, intermediate rolling was performed under the same conditions as in Example 2, and then finish rolling was performed at 670°C with the working degree changed between 0% and 7594, and immediately after continuous heat retention at 700°C. It was rolled up in a furnace and kept at an isothermal temperature for 20 minutes. Working degree O% means 700℃ without finish rolling.
This means that it was rolled up in a continuous heat retention furnace.

各試験材の引張強さ、絞り、限界圧縮率、球状化率を第
4図に示す。本発明の加工度の範囲(20%以上)では
、引張強さが低く、絞り、限界圧縮率、球状化率が優れ
ていることがわかる。特に、限界圧縮率、球状化率につ
いては、本発明範囲外になると急激に劣化している。
Figure 4 shows the tensile strength, reduction of area, critical compressibility, and spheroidization rate of each test material. It can be seen that within the working degree range of the present invention (20% or more), the tensile strength is low and the reduction, limit compressibility, and spheroidization rate are excellent. In particular, the critical compression ratio and spheroidization ratio deteriorate rapidly outside the range of the present invention.

災五桝↓ 545CおよびSCM4354こついて、それぞれ実施
例2における試料陽8 (仕上圧延開始温度−670℃
)および試料陽18(仕上圧延開始温度−650℃)と
同一条件で圧延した後、直ちに連続保熱炉内で等温保持
し7たが、保持時間を0分から20分まで変化させた。
545C and SCM4354 stuck, respectively, sample positive 8 in Example 2 (finish rolling start temperature -670℃
) and Sample No. 18 (finish rolling start temperature -650° C.) were rolled under the same conditions and immediately held isothermally in a continuous heat retention furnace, but the holding time was varied from 0 minutes to 20 minutes.

さらに545Cについては等温保持時間を20分の一定
時間とし1、保持温度を550℃から750°(:まで
変化させた。
Furthermore, for 545C, the isothermal holding time was set to a constant time of 20 minutes 1, and the holding temperature was varied from 550°C to 750° (:).

これら試験材の引張強さと球状化率を第5図、第6図に
示す。これらの図から、本発明の等/I!?l保持温度
範囲内および等温保持時間範囲内に於いてのみ優れた性
能を有することがわかる。
The tensile strength and spheroidization rate of these test materials are shown in FIGS. 5 and 6. From these figures, it can be seen that the present invention's etc./I! ? It can be seen that it has excellent performance only within the isothermal holding temperature range and isothermal holding time range.

−IU勤「−イg−ζ1− 545CおよびSCM435について、それぞれ試料N
o、 8(仕」−圧延開始温度−670℃)および試料
No、 1.8(仕上圧延開始温度−650℃)と同一
条件で圧延し7に後、直ちに連続徐冷炉内でI@き欧り
、その後炉内を移動さゼながら500℃までの冷却速度
を20°(:7分から200℃/分まご変化さセーζ徐
冷し7た。
-IU Tsutomu "-Ig-ζ1- For 545C and SCM435, sample N
After rolling under the same conditions as Sample No. 8 (finish rolling start temperature - 670°C) and Sample No. 1.8 (finish rolling start temperature - 650°C), it was immediately rolled in a continuous slow cooling furnace. Then, while moving in the furnace, the cooling rate was gradually changed from 7 minutes to 200 degrees Celsius at 20 degrees (7 minutes) to 500 degrees Celsius.

各試験材の引張強さと球状化率を第7図に示す。Figure 7 shows the tensile strength and spheroidization rate of each test material.

本発明の冷却速度の範囲内においζ、低い引張強さと優
れた球状化率が得られることがわかる。
It can be seen that within the cooling rate range of the present invention, low tensile strength and excellent spheroidization rate can be obtained.

実財U引影 545CおよびSCM435につい°ζ、それぞれ試料
M8(仕上圧延開始温度−670℃)および試料11i
o、18(仕上圧延開始温度−650℃)と同一条件で
圧延した後、炉外で捲き取り自然放冷した線材と、比較
材として通常圧延−自然放冷したS 45’CおよびS
CM435の線材について、第8図に示すヒートパター
ン(徐冷速度を0.5℃/分〜2℃/分で変化)で球状
化焼鈍を施した。
Sample M8 (finish rolling start temperature -670°C) and Sample 11i for actual property U drawing 545C and SCM435, respectively.
Wire rods rolled under the same conditions as O, 18 (finish rolling start temperature -650°C) and then rolled outside the furnace and left to cool naturally, and S45'C and S which were normally rolled and left to cool naturally as comparative materials.
A CM435 wire rod was subjected to spheroidizing annealing using the heat pattern shown in FIG. 8 (the slow cooling rate was varied from 0.5° C./min to 2° C./min).

各試験材の引張強さ、絞り、限界圧縮率、球状化率を第
4表に示す。第4表かられかるようtに、本発明材の球
状化焼鈍後の性能も優れていることは明らかである。
Table 4 shows the tensile strength, reduction of area, critical compressibility, and spheroidization rate of each test material. As can be seen from Table 4, it is clear that the performance of the material of the present invention after spheroidizing annealing is also excellent.

ソーにの実施例で説明した通り、本発明の範囲内で製造
した線材(または棒鋼)は、セメンタイトの球状化が十
分にはかられ、機械的性質にもすぐれている。
As explained in the example of the saw, the wire rod (or steel bar) manufactured within the scope of the present invention has sufficient spheroidization of cementite and excellent mechanical properties.

発」IB九釆 以」二、実施例により詳細に説明した通り、本発明の方
法により製造した線材又はPP鋼はセメンタイトの球状
化が十分に達成され、機械的性質にも優れている。
As described in detail in the Examples, the wire rod or PP steel produced by the method of the present invention has sufficient spheroidization of cementite and excellent mechanical properties.

更に、本発明の方法は熱間圧延の加工熱を利用して圧延
のままで球状化セメンタイト組織を有する線材または棒
鋼を効率よく製造しうるものであり、或いは別工程で容
易に球状化を行いうるちのである。従って、従来技術に
対して大中の省力、省エネルギーを達成できる。
Further, the method of the present invention can efficiently produce a wire rod or steel bar having a spheroidized cementite structure as rolled by using the processing heat of hot rolling, or can easily spheroidize it in a separate process. It's Uruchino. Therefore, considerable labor and energy savings can be achieved compared to the conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1段階の加工により鋼材のOCT曲
線が短時間側に移行するのを図示するグラフである。 第2図は本発明の方法を実施するために用いる装置の概
略図であり、第3図は更に線材の2次加工ラインで本発
明の方法を実施するのに用いる設備の概略図である。 第4図乃至第7図は本発明の実施例の結果を示すグラフ
である。 第8図は、本発明の1実施例に従う方法及び比較例の方
法により圧延した線材を球状化焼鈍し7た際のヒートパ
ターンを示す。 (参照番号) 1:加熱炉、 2:叩圧延機、 3.3’ :水冷または風冷装置、 4、 4’ :放冷ゾーン、5:中間圧延機、6:仕上
圧延機、 7+ 、72 :巻取装置、 8:連続保熱炉または連続徐冷炉、 9;コンベヤ、10:ペイオフリール、11:1tJi
周波加熱装置、 12.12” :伸線ダイス、13:
水冷または風冷装置、 14:ピンチローラ、15+ : 152 :フィシ、
16:保熱炉または徐冷炉。 特許用19f1人 住友金属工業株式会社代理人 弁理
士 新居 正彦 第4図 加工&j各) 第5図 第6図 等濯ν1L・(’t−) 第7図 ンタ去P速力L と’cA−> り5θ゛C 手続補正書 (自発) 1、事件の表示 昭和59年特許願第9500号2、発
明の名称 球状化組織を有する棒鋼と線材の製造法3、補正をする
者 事件との関係 特許出願人 住 所 大阪市東区北浜5丁目15番地名 称 (21
1)住友金属工業株式会社4、代理人 5、補正命令の日付 (自発) 7、補正の内容 (1)明細書第8頁の第5行の“・・・・ものである。 ″の文の後に次の文を加える。 「なお本発明に従うと、オーステナイト粒径を25μm
以下とする第1段階の加工を施した鋼を20%以上の加
工を行うAr、点〜Ar3点(又は八rcm)の温度域
に冷却するに際し、鋼の焼入性を考慮して冷却速度を決
定するのが好ましい。 すなわち、Cを0.15%以下含有する炭素鋼もしくは
Cを0.15%含有する炭素鋼の焼入性と同等以下の焼
入性を有する合金鋼の場合は、第1段階の加工終了後、
250℃/ sec以上の冷却速度でAr+点〜Ar3
点の温度域に冷却し、その温度域で20%以上の加工を
加えるのが好ましい。 Cを0.15%を越え0.4%以下含有する炭素鋼もし
くは0.15%Cの炭素鋼の焼入性を越え且つ0.4%
Cの炭素鋼の焼入性と同等以下の焼入性を有する合金鋼
の場合に於いては、第1段階の加工終了後、10℃/ 
sec以上の冷却速度でAr、点〜Ars点の温度域に
冷却し、その温度域で20%以上の加工を加えるのが好
ましい。 更に、Cを0,4%を越えて含有する炭素鋼もしくは0
.4%Cの炭素鋼の焼入性を越える焼入性を有する合金
鋼の場合は、第1段階の加工終了後、2℃/ sec以
上の冷却速度でAr+点〜A’r+点(又はArcm点
)の温度域に冷却し、その温度域で20%以上の加工を
加えるのが好ましい。 (2)明細書第13頁の第14行目のパ ・・・・限定
した。″の後に次の文を加える。 「しかしながら、上記の温度範囲で加工した場合でも、
加工前の冷却速度が異なると製品の特性が大きく異なる
ことが判明した。すなわち、第1段階の加工後であって
、Ar+5Ara (Arcm)間の加工の前の冷却速
度がある値以下になると製品の変形能が急激に低下する
。この臨界の冷却速度は鋼種によって異なっており、焼
入性の高い鋼はど低い冷却速度で冷却を行うことができ
る。従って、本発明の方法において加工を行う温度範囲
を鋼成分と加工前の冷却速度を考慮しながら決定する必
要があるので、鋼の焼入性に従って冷却速度の決定をす
るのが好ましい。このような冷却速度の限定をする冶金
的理由を次のように考える。 すなわち、セメンタイトの球状化に有効な加工温度範囲
はArt点以上でありかつAr3点またはArcm点以
下の温度域である。しかし、この温度範囲内に於いても
、温度が高いと微細フェライトの加工誘起変態析出は不
充分であり、かつ球状セメンタイトの発生核となる加工
導入転位は回復しやすいため、セメンタイトの球状析出
は困難である。 この加工誘起フェライトの変態析出並びに加工によって
導入された転位の回復までの時間は鋼の焼入性によって
著しく相違し、焼入性の低い鋼はどAr3点までの冷却
を急速に行う必要がある。こうした冷却速度の調整によ
り、セメンタイトの分散が均一になり、製品の変形能が
とくに向上する。 本発明に於いて上記20%の加工を行う温度域への鋼材
の冷却方法としては水冷、ミスト冷却、空冷、ライン上
での放冷、放冷ゾーンでの冷却がある。」 (3)明細書第20頁第4行に記載の”Aecm点と3
5φmm”を、rAecm点を測定し、更に、312C
については35φmm素材の水冷に相当する冷却速度で
のArt、A、r3を、520Cについては35φmm
素材の風冷に相当する冷却速度でのAr+5Araを、
それ以外の鋼種については35φmmJと補正する。
FIG. 1 is a graph illustrating that the OCT curve of the steel material shifts to the short time side due to the first stage processing of the present invention. FIG. 2 is a schematic diagram of the apparatus used to carry out the method of the invention, and FIG. 3 is a further schematic diagram of the equipment used to carry out the method of the invention in a wire secondary processing line. FIGS. 4 to 7 are graphs showing the results of Examples of the present invention. FIG. 8 shows heat patterns when wire rods rolled by the method according to one embodiment of the present invention and the method of the comparative example were subjected to spheroidizing annealing. (Reference numbers) 1: Heating furnace, 2: Tapping rolling mill, 3.3': Water cooling or air cooling device, 4, 4': Cooling zone, 5: Intermediate rolling mill, 6: Finishing rolling mill, 7+, 72 : Winding device, 8: Continuous heat retention furnace or continuous slow cooling furnace, 9: Conveyor, 10: Payoff reel, 11: 1tJi
Frequency heating device, 12.12”: Wire drawing die, 13:
water cooling or air cooling device, 14: pinch roller, 15+: 152: fish,
16: Heat retention furnace or slow cooling furnace. Patent 19f 1 Person Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Masahiko Arai Fig. 4 Processing & j each) Fig. 5 Fig. 6 etc. ν1L・('t-) Fig. 7 P speed L and 'cA-> 5θ゛C Procedural amendment (voluntary) 1. Indication of the case Patent Application No. 9500 of 1988 2. Name of the invention Method for manufacturing steel bars and wire rods having a spheroidized structure 3. Relationship with the person making the amendment Patent Applicant Address: 5-15 Kitahama, Higashi-ku, Osaka Name (21)
1) Sumitomo Metal Industries Co., Ltd. 4. Agent 5. Date of amendment order (voluntary) 7. Contents of amendment (1) The sentence “...” on page 8, line 5 of the specification. Add the following sentence after . "According to the present invention, the austenite grain size is 25 μm.
When cooling steel that has undergone the following first stage processing to a temperature range of Ar, point to Ar3 point (or 8 rcm) where 20% or more processing is performed, the cooling rate should be taken into account the hardenability of the steel. It is preferable to determine. In other words, in the case of carbon steel containing 0.15% or less of C or alloy steel having hardenability equal to or lower than that of carbon steel containing 0.15% of C, after the first stage processing is completed. ,
Ar+ point to Ar3 at cooling rate of 250℃/sec or more
It is preferable to cool the material to a certain temperature range and to process it by 20% or more in that temperature range. Carbon steel containing more than 0.15% C and less than or equal to 0.4%, or exceeding the hardenability of carbon steel with 0.15% C and 0.4%
In the case of alloy steels with hardenability equal to or lower than that of C carbon steel, after the first stage processing is completed, the temperature is 10℃/
It is preferable to cool to a temperature range from the Ar point to the Ar point at a cooling rate of sec or more, and to apply processing of 20% or more in that temperature range. Furthermore, carbon steel containing more than 0.4% of C or 0.
.. In the case of alloy steel with hardenability exceeding that of 4% C carbon steel, after the first stage processing is completed, the cooling rate from Ar+ point to A'r+ point (or Arcm It is preferable to cool the material to a temperature range of point) and to process it by 20% or more in that temperature range. (2) Paragraph 14th line on page 13 of the specification: Limited. Add the following sentence after “”: “However, even when processed in the above temperature range,
It was found that the properties of the product differed greatly depending on the cooling rate before processing. That is, when the cooling rate after the first stage processing and before the processing between Ar+5Ara (Arcm) becomes less than a certain value, the deformability of the product decreases rapidly. This critical cooling rate differs depending on the steel type, and steels with high hardenability can be cooled at a very low cooling rate. Therefore, it is necessary to determine the temperature range for processing in the method of the present invention while taking into account the steel components and the cooling rate before processing, and it is preferable to determine the cooling rate according to the hardenability of the steel. The metallurgical reason for limiting the cooling rate is considered as follows. That is, the processing temperature range effective for spheroidizing cementite is a temperature range above the Art point and below the Ar3 point or the Arcm point. However, even within this temperature range, if the temperature is high, the deformation-induced transformation precipitation of fine ferrite is insufficient, and the deformation-induced dislocations that form the nucleus of spherical cementite are easily recovered, so the spherical precipitation of cementite is Have difficulty. The time required for transformation precipitation of deformation-induced ferrite and recovery of dislocations introduced by deformation varies significantly depending on the hardenability of the steel, and steels with low hardenability require rapid cooling to the Ar3 point. . This adjustment of the cooling rate results in a uniform dispersion of the cementite and particularly improves the deformability of the product. In the present invention, methods of cooling the steel material to the temperature range in which the 20% processing is performed include water cooling, mist cooling, air cooling, cooling on the line, and cooling in a cooling zone. ” (3) “Aecm point and 3 stated on page 20, line 4 of the specification
5φmm” at the rAecm point, and further, 312C
For 35φmm material, Art, A, r3 at a cooling rate equivalent to water cooling of 35φmm material, for 520C, 35φmm material.
Ar+5Ara at a cooling rate equivalent to wind cooling of the material,
For other steel types, it is corrected to 35φmmJ.

Claims (1)

【特許請求の範囲】 (l)2%以下のCを含有する鋼をAC3点またはAc
cm点以上に加熱した後変形を加える加工工程において
、613点またはArcm点を越え且つAra十100
℃またはArcm+100℃以下の温度域で10%以上
の加工を付与してフェライトまたは初析セメンタイトが
析出する前のオーステナイト粒径を25um以下とし、
引き続いてAr1点以上であり且つAr3点またはAr
cm点以下の温度域で20%以上の加工を施し、その後
直ちに静1100℃以上であり且つAet点以下の温度
域に5分以上等温保持して良好な球、状化組織を得るこ
とを特徴とする、棒鋼および線材の製造方法。 (2)2%以下のCを含有する鏑をAcs点またはAc
cm点以上に加熱した後変形を加える加工工程におム)
°ζ、Ar3点または^rcm点を越え月つAr3+1
00℃または^rca+ + 1(10℃以下の温度域
で10%以上の加工を付与し7てフェライトまたは初析
セメンタイトが析出する前のオーステナイト粒径を25
JIff1以下とし、引き続い′ζAr+点以上であり
且つAr3点またはArclI1点以下の温度域で20
%以上の加工を施し、その後500”Cまでを100°
C/分以下の冷却速度で冷却して良好な球状化in織を
得ることを特j1々とする、棒鋼および線材の製造方法
。 (3)2%以−ドのCを含有する鋼をAC3点またはA
ccm点以上に加熱した後変形を加える加工工程におい
て、Ar3点またはArcm点を越えけつAr3 +1
00℃またはArcm +100℃以下の温度域で10
%辺上の加工を付与、シてフェライトまたは初析セメン
タイトが析出する前のオーステナイト粒径を25順以下
とし、引き続いてAr+点以上であり月つAr+s点ま
たはArcm点以下の温度域で20%以上の加工を施し
、その後室温まで放冷し、次いで別ラインで通密の球状
化焼鈍を施し゛ζ良好な球状化組織を得ることを特徴と
する、棒鋼および線材の製造方法。
[Claims] (l) Steel containing 2% or less C
In the process of adding deformation after heating to the cm point or above, the temperature exceeds the 613 point or the Arc point and the Ara is 1100.
The austenite grain size before ferrite or pro-eutectoid cementite is precipitated is 25 um or less by applying processing of 10% or more in a temperature range of ℃ or Arcm + 100 ℃ or less,
Subsequently, Ar is 1 point or more and Ar is 3 points or Ar
It is characterized by performing processing of 20% or more in a temperature range below the cm point, and then immediately holding the temperature isothermally at 1100°C or above and at a temperature below the Aet point for 5 minutes or more to obtain a good spherical or shaped structure. A method for producing steel bars and wire rods. (2) Acs point or Ac
The processing process that adds deformation after heating above the cm point)
°ζ, beyond Ar3 point or ^rcm point Ar3+1
00℃ or ^rca+ + 1 (by applying 10% or more processing in a temperature range of 10℃ or less), the austenite grain size before ferrite or pro-eutectoid cementite precipitates is 25
JIff1 or less, and then 20 in a temperature range of 'ζAr+ point or more and Ar3 point or ArcI1 point or less.
% or more and then 100° up to 500"C
A method for producing steel bars and wire rods, characterized in that a good spheroidized in-weave is obtained by cooling at a cooling rate of C/min or less. (3) Steel containing 2% or more of C at 3 AC or A
In the process of adding deformation after heating above the ccm point, the temperature exceeds the Ar3 point or the Ar3 +1 point.
10 in the temperature range below 00℃ or Arcm +100℃
% processing on the side, and the austenite grain size before ferrite or pro-eutectoid cementite precipitates is 25 or less, and then 20% in the temperature range above the Ar+ point and below the Ar+s point or Arcm point. A method for manufacturing steel bars and wire rods, which is characterized by performing the above processing, then cooling to room temperature, and then subjecting it to continuous spheroidizing annealing in a separate line to obtain a good spheroidized structure.
JP950084A 1984-01-13 1984-01-24 Production of steel bar and wire rod having spheroidized structure Granted JPS60155621A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP950084A JPS60155621A (en) 1984-01-24 1984-01-24 Production of steel bar and wire rod having spheroidized structure
ES534456A ES534456A0 (en) 1984-01-13 1984-07-19 PROCEDURE FOR PRODUCING STEEL BAR OR WIRE
US06/632,234 US4604145A (en) 1984-01-13 1984-07-19 Process for production of steel bar or steel wire having an improved spheroidal structure of cementite
FR848411634A FR2558174B1 (en) 1984-01-13 1984-07-20 PROCESS FOR THE PRODUCTION OF STEEL BARS OR WIRES HAVING AN IMPROVED CEMENTITE SPHEROIDAL STRUCTURE
GB08418577A GB2154476B (en) 1984-01-13 1984-07-20 Process for production of steel bar or steel wire having an improved spheroidal cementite structure
CA000459371A CA1222678A (en) 1984-01-13 1984-07-20 Process for production of steel bar or steel wire having an improved spheroidal structure of cementite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP950084A JPS60155621A (en) 1984-01-24 1984-01-24 Production of steel bar and wire rod having spheroidized structure

Publications (2)

Publication Number Publication Date
JPS60155621A true JPS60155621A (en) 1985-08-15
JPS644568B2 JPS644568B2 (en) 1989-01-26

Family

ID=11721954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP950084A Granted JPS60155621A (en) 1984-01-13 1984-01-24 Production of steel bar and wire rod having spheroidized structure

Country Status (1)

Country Link
JP (1) JPS60155621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455331A (en) * 1987-08-26 1989-03-02 Nippon Kokan Kk Manufacture of steel material having spheroidized structure
JPH0635746U (en) * 1992-06-12 1994-05-13 三菱化工機株式会社 Multi-channel switch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429369U (en) * 1990-07-02 1992-03-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455331A (en) * 1987-08-26 1989-03-02 Nippon Kokan Kk Manufacture of steel material having spheroidized structure
JPH0635746U (en) * 1992-06-12 1994-05-13 三菱化工機株式会社 Multi-channel switch

Also Published As

Publication number Publication date
JPS644568B2 (en) 1989-01-26

Similar Documents

Publication Publication Date Title
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
KR102065264B1 (en) Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
EP2883974B1 (en) Wire rod having good strength and ductility and method for producing same
JP4874369B2 (en) Continuous machining heat treatment line for medium to high carbon steel wire
JP2015175004A (en) Production method of high strength steel sheet excellent in formability
US4604145A (en) Process for production of steel bar or steel wire having an improved spheroidal structure of cementite
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JPH03240919A (en) Production of steel wire for wiredrawing
JPS60155621A (en) Production of steel bar and wire rod having spheroidized structure
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP2019527777A (en) In-line manufacturing method of steel pipe
JP3118623B2 (en) Method for producing non-heat treated electric resistance welded oil well pipe having tensile strength of 800 MPa or more
US3892602A (en) As-worked, heat treated cold-workable hypoeutectoid steel
JPH0213004B2 (en)
JP3243659B2 (en) Manufacturing method of coiled steel pipe with excellent cold workability
JP3292619B2 (en) Manufacturing method of hot rolled steel sheet with excellent stretch flangeability
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
WO2020090149A1 (en) Steel for bolts, and method for manufacturing same
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
JPS60149724A (en) Manufacture of steel bar or wire rod having spheroidized structure
JP2003268453A (en) METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION
JP2790730B2 (en) Manufacturing method of high carbon steel sheet with excellent material uniformity
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2792896B2 (en) Method for producing carbon steel or alloy steel sheet having fine spheroidized carbide