JPS60152240A - Rotary electric machine - Google Patents

Rotary electric machine

Info

Publication number
JPS60152240A
JPS60152240A JP675984A JP675984A JPS60152240A JP S60152240 A JPS60152240 A JP S60152240A JP 675984 A JP675984 A JP 675984A JP 675984 A JP675984 A JP 675984A JP S60152240 A JPS60152240 A JP S60152240A
Authority
JP
Japan
Prior art keywords
field
armature
cogging force
poles
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP675984A
Other languages
Japanese (ja)
Other versions
JPH0219695B2 (en
Inventor
Tamotsu Nose
保 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP675984A priority Critical patent/JPS60152240A/en
Publication of JPS60152240A publication Critical patent/JPS60152240A/en
Publication of JPH0219695B2 publication Critical patent/JPH0219695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To obtain a rotary electric machine capable of setting a cogging force substantially to the prescribed low torque even if the magnetized state of a field is irregular by providing a projection on a salient pole. CONSTITUTION:The salient poles 22a-22c of an armature core 22 are opposed through the prescribed gap to the magnetized inner surface of a field 1. Projections 22a1-22c1 are respectively provided at the positions opposed to the field 1 of the poles 22a-22c. The projectons 22a1-22c1 are provided at the positions displaced in the circumferential direction at 360 deg./number of field poles in grooves 3a-3c for a winding. Thus, a cogging force can be reduced entirely.

Description

【発明の詳細な説明】 本発明は、給電することにより回転出力を得ることがで
きる電動機、あるいは外部から回転力を与えることによ
り電気出力を得ることができる発電機どい−)だ回転電
機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric motor that can obtain a rotational output by supplying electric power, or a rotating electric machine that is a generator that can obtain an electric output by applying a rotational force from the outside. It is.

一般に、電機子巻線を施すために電機子鉄心に溝を設け
て突極構造にした回転電機は、突極構造でない回転電機
に較べて電機子巻線に多くの界磁磁束を鎖交させること
ができるため、小型、軽量で大きな出力が得られる回転
電機どなる。しかし、電機子鉄心が突極構造の場合には
、電機子鉄心か磁気的に不均一な構造であるために、例
えは永久磁石なとにより構成される界磁部との相互作用
によってコギングを発生−・するという欠点がある。
In general, rotating electric machines that have a salient pole structure by providing grooves in the armature core for armature windings have more field magnetic flux interlinking with the armature windings than rotating electric machines that do not have a salient pole structure. As a result, it is a rotating electric machine that is small, lightweight, and can provide high output. However, when the armature core has a salient pole structure, the armature core has a magnetically non-uniform structure, so cogging may occur due to interaction with the field part composed of permanent magnets. It has the disadvantage that it occurs.

このことについて第1図および第2図を参照して説明す
る。第1図は電機子が究極構造の従来の回転電機の一例
の概略断面図である。
This will be explained with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view of an example of a conventional rotating electrical machine with an ultimate structure of the armature.

同図において、1は2極に着磁された円環状の永久磁石
で構成された界磁部、2は電機子を構成する電機子鉄心
であり、これは3つの突極部2a。
In the figure, numeral 1 denotes a field section composed of an annular permanent magnet magnetized into two poles, and numeral 2 denotes an armature core constituting an armature, which has three salient pole sections 2a.

2b、2cを有する。そして上記突極部2a、2b、2
cは前記界磁部工の着磁された内面と所要間隙あけて対
向せられ、界磁部lと電機子鉄心2のうち、いずれか一
方か他方に対して回転自在とな−)でいる。なお、3a
、3b、3cは巻線用の溝であり、また、4a、4b、
4cは突極部2a、2h、2cにそれぞれ集中巻きして
巻装された3相の電機子巻線である。
It has 2b and 2c. And the salient pole parts 2a, 2b, 2
c is opposed to the magnetized inner surface of the field part with a required gap, and is rotatable relative to either the field part l or the armature core 2, or the other. . In addition, 3a
, 3b, 3c are grooves for winding, and 4a, 4b,
4c is a three-phase armature winding wound around the salient pole portions 2a, 2h, and 2c in a concentrated manner.

ここで、第1図の回転電機を電動機と考えると。Now, if we consider the rotating electrical machine in Figure 1 to be an electric motor.

電機子巻線4.1.4 b、 4 cに順々電流を流す
こ7どにより、界磁部1との間で電磁的な相互作用を発
生させて持続的な回転[・ルクを得ることができる。
By sequentially passing current through the armature windings 4.1.4b and 4c, electromagnetic interaction is generated with the field section 1 to obtain sustained rotation. be able to.

また、第1図の回転電機を発電機と考えるならば、回転
子である界磁部]を外部から回転させるこにより電機子
巻線4a、4b、4cに3相の交流信号を得ることがで
きる。
Furthermore, if we consider the rotating electric machine in Figure 1 to be a generator, it is possible to obtain three-phase AC signals to the armature windings 4a, 4b, and 4c by externally rotating the rotor, which is the field section. can.

ところで、コギング力は界磁部と電機子の間の磁場にt
l?えられた磁気エネルギーが両者の相対的な回転に応
じて変化することにより生じるものであり、特に、界磁
部の磁気的不均一−性(wA極に起因)と電機子鉄心の
磁気的不均一性(溝に起因)の両者に関係して発生し、
第1図のごとく界磁部1ど電機子鉄心2の突極部2 、
′++ 2 b 、 2 c、の両方に磁気的な周期性
がある場合には、一般に、その両者に共通して存在する
調波成分(整合成分)のコギング力が生じる。
By the way, the cogging force is caused by t in the magnetic field between the field part and the armature.
l? This is caused by the generated magnetic energy changing according to the relative rotation of the two, and in particular, it is caused by the magnetic non-uniformity of the field part (caused by the wA pole) and the magnetic imbalance of the armature core. Occurs in relation to both uniformity (due to grooves),
As shown in Fig. 1, the field part 1 and the salient pole part 2 of the armature core 2,
′++ When both 2 b and 2 c have magnetic periodicity, a cogging force of a harmonic component (matching component) that is common to both is generally generated.

この点に対処するものとして、」二記調波成分の次数を
高くすることにより、コギング力を小さくする手段が提
案されている(例、特公昭58−42707り公報)。
To address this problem, a method has been proposed in which the cogging force is reduced by increasing the order of the second order harmonic component (for example, Japanese Patent Publication No. 58-42707).

第2図はかかる方式の一例を示すものであって、この例
で、第1図゛の例と異なるところは、電機子鉄心]2の
突極部+2a、 12b、 +2cで、界磁部1と対向
する部分に補助溝5a+、5*2.51)1゜5b2.
5c+、 5c2を設けた点である。なお、」二記各補
助溝5 n 1〜5c2は界磁部1または電機子の回転
軸すなわち、中心点Aを通る軸心線の長手方向(図面の
紙面に対して垂直な方向)に設けら、l]、でいる。
FIG. 2 shows an example of such a system, and this example differs from the example in FIG. Auxiliary groove 5a+, 5*2.51)1°5b2.
The point is that 5c+ and 5c2 are provided. In addition, each of the auxiliary grooves 5n1 to 5c2 described in ``2'' is provided in the longitudinal direction of the rotation axis of the field part 1 or the armature, that is, the axis passing through the center point A (direction perpendicular to the paper surface of the drawing). et al., l].

この結果、補助溝を設けることにより、実質的にコギン
グ力の原因どなる溝の数を増したことになって、鉄心に
よる調波成分か、補助溝を2個設けたどすれば3倍の周
波数どなるので高周波成分どなり、コギング力か減少す
るものである。しかし、かかる手段では、界磁部の着磁
状態がある特定の場合にのみ有効であるが、この着磁状
態が変化すると、第6図に示す如くコギング力が変(ヒ
してしまう欠点がある。
As a result, by providing auxiliary grooves, the number of grooves that are the cause of cogging force is increased, and the frequency is tripled if two auxiliary grooves are provided. As a result, the high frequency components become louder and the cogging force decreases. However, this method is effective only in a certain specific case of the magnetized state of the field part, but has the disadvantage that when this magnetized state changes, the cogging force changes as shown in FIG. be.

第6図は、磁束波形の形状変化にf!トな−)で、コギ
ング力かいがように変fヒするかを示すものであり、図
において、破線QIは第1図の例の場合のコギング力変
化曲線であり、−・点In線eλは第2図の例の場合の
コギング力変化曲線である。
Figure 6 shows f! In the figure, the broken line QI is the cogging force change curve for the example shown in Figure 1, and the point In line eλ is a cogging force change curve for the example shown in FIG.

一般に、界磁部をバラツキなく一定の状態に着磁するこ
とは困難であり、着磁ヘッドのバラツキ、同パノ1;と
界磁部の永久磁石とのキャップのバラツキ、着磁時の電
流1時間等のバラツキは必す生ずるものであり、この結
果、磁束波形が矩形波(O=0°)から三角波(0=9
0°) ノ間で変fヒしてしまい(第7図参照)、これ
があイ)ことによってコギング力に大きなバラツキを生
ずる。また。
In general, it is difficult to magnetize the field part in a constant state without variations, such as variations in the magnetizing head, variations in the cap between the permanent magnet of the field part, and current during magnetization. Variations in time, etc. inevitably occur, and as a result, the magnetic flux waveform changes from a rectangular wave (O = 0°) to a triangular wave (0 = 9°).
0°) (see Figure 7), which causes large variations in the cogging force. Also.

上記の如(、突極部に複数の補助溝を設ける際には、金
型が複雑になり、しかも補助溝の部分の金型が弱くなり
、金型の寿命も短くな−)でしまう。
As described above, when a plurality of auxiliary grooves are provided in the salient pole portion, the mold becomes complicated, and the mold in the auxiliary groove portion becomes weak, and the life of the mold is shortened.

本発明は、突極部に凸部を設けることにより、界磁部の
着磁状態にバラツキがあっても、コギングノラをほぼ一
定の低トルクにすることのできる回転電機を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rotating electric machine that can maintain a substantially constant low torque of the cogging roller even if there are variations in the magnetized state of the field part by providing a convex part in the salient pole part. do.

以下、本発明を第3図に示す実施例につき説明するに、
同図の実施例において、第1図の従来例と相異するとこ
ろは、電機子鉄心22の突極部22a。
The present invention will be described below with reference to the embodiment shown in FIG.
The embodiment shown in the figure differs from the conventional example shown in FIG. 1 in the salient pole portion 22a of the armature core 22.

22b 、 22cの界磁部1と対向する部位に、突部
22旧222bl 、22c+をそれぞれ設けたことに
ある。
The protrusions 22b and 22c+ are respectively provided at the portions 22b and 22c facing the field portion 1.

この凸部22.]+ 、 22b 1.22c+は、こ
の実施例では界磁部1の磁極数が2どなっているから1
巻線用の溝3a、3b、3cに対して、360@/ 2
 (= 180−だけ、円周方向にそれぞれすれた部位
に設けられる。
This convex portion 22. ]+ , 22b 1.22c+ is 1 because the number of magnetic poles in the field part 1 is 2 in this embodiment.
360@/2 for winding grooves 3a, 3b, 3c
(= 180-) are provided at positions that are mutually separated from each other in the circumferential direction.

即ち、コノ例の場合には、凸部22.]+、22b+、
22c+が電機子鉄心22の中心に対して、溝3 a、
 3 b、3cど相苅面した部位に設けられることにな
る。
That is, in the case of this example, the convex portion 22. ]+, 22b+,
22c+ is located in the groove 3a, with respect to the center of the armature core 22.
3b and 3c will be installed in areas facing each other.

マタ、第4図に示す如く、凸部22a+ 、22b+ 
、22c1の角度01については、溝3a、3b、3c
の角度。2と同一にすることが好ましいが1発生トルク
およびコギング力の許容範囲から、o+=(0,5〜2
)・0λの範囲であれは実用上問題はない。さらに凸部
の高さtについても、発生トルクとの相対関係から適宜
に設定され得るものであるが、tを大きくすると、コギ
ング力に対しては有効であっても、界磁部1どの間の有
効磁束が減少するのも発生トルクは減少してしまう、逆
にtを小さくすると、発生トルクは増大するが、コギン
グ力に対しては効果か小さくなる。従って、このlの値
も両者の関係から設定するのがよい。
As shown in FIG. 4, the convex portions 22a+, 22b+
, 22c1, grooves 3a, 3b, 3c
angle. It is preferable to make it the same as 2, but from the permissible range of the generated torque and cogging force, o+=(0,5~2
) · There is no practical problem within the range of 0λ. Furthermore, the height t of the convex portion can be set as appropriate from the relative relationship with the generated torque, but if t is increased, even if it is effective against cogging force, the distance between the field portion 1 If the effective magnetic flux of t decreases, the generated torque also decreases.On the other hand, if t is decreased, the generated torque increases, but the effect on the cogging force becomes smaller. Therefore, the value of l should also be set based on the relationship between the two.

なお、−に2凸部22a+、22b+、22c1は一般
汎用的には、6溝に対して、(360°/界磁極数)だ
け、円周方向にずれた部位にそれぞれ設けられることに
なる。
Note that the two negative convex portions 22a+, 22b+, and 22c1 are generally provided at positions shifted from the six grooves by (360°/number of field poles) in the circumferential direction.

ここで、第5図は第3図をモデル的に展開したものを示
しており、この図において、ます、(、I)の状態では
、鉄心22が図示右方向に移動している時には、界磁1
の中性点から突極221】の左端か煎れようとしている
。このどき、0部にてコギング力か発生するか、0部に
おいて、界磁の中性点に対して、突tM22bの凸部2
2b+の右端か入ろうとしており、■、■の各部におい
ては、コギング力の方向が互いに;φとなって、コギン
グ力は全体としては相殺される。これに対し、(h)図
の状態では。
Here, FIG. 5 shows a model development of FIG. Magnet 1
The left end of the salient pole 221 is about to rise from the neutral point of . At this time, whether a cogging force is generated at the 0 part or the convex part 2 of the protrusion tM22b is generated at the 0 part with respect to the neutral point of the field.
The right end of 2b+ is about to enter, and the directions of the cogging force in each part of ■ and ■ become ;φ, and the cogging force cancels out as a whole. On the other hand, in the state shown in (h).

コギング力は発生しない。また(C)図では、◎。No cogging force occurs. Also, in figure (C), ◎.

0部において(n)図と同様に互いに相殺されるので、
全体としてはコギング力は小さくなる。この結果、互い
に相殺されるようになるため、界磁1の波形にはほとん
ど影響されなくなり、第6図において、実線Q3で示す
如く、磁束波形が変イヒしても、コギング力はほとんど
変化しない。
In part 0, they cancel each other out as in figure (n), so
Overall, the cogging force becomes smaller. As a result, they cancel each other out, so they are almost unaffected by the waveform of field 1, and as shown by the solid line Q3 in Figure 6, even if the magnetic flux waveform changes, the cogging force hardly changes. .

以上、本発明によれば、巻線用の6溝に対して(360
°/界磁極数又はこの整数(g)たけ、すれた位置であ
って、かつ、界磁と対向する、突極部の部位に、凸部を
設けたものであるから、巻線用の溝により生じるコギン
グ力を、その凸部によって互いに相殺することかでき、
コギング力を全体において著しく減少させることができ
る。また、巻線用の溝によるコギング力を凸部により直
接的に打ち消すため、界磁の磁束波形即ち、着磁状態に
はほとんど影響されなくなり、界磁に対する着磁にバラ
ツキがあっても、コギング力を減少させることかでき、
品質の安定した回転電機が得られる。
As described above, according to the present invention, for the six winding grooves (360
°/Number of field poles or this integer (g), the convex part is provided at the part of the salient pole part that is away from the field and faces the field, so it is a groove for the winding. The cogging force generated by the convex parts can be canceled out by each other,
Cogging forces can be significantly reduced overall. In addition, since the cogging force caused by the winding groove is directly canceled by the convex part, it is almost unaffected by the magnetic flux waveform of the field, that is, the magnetization state, and even if there are variations in magnetization with respect to the field, cogging Can reduce power,
A rotating electric machine with stable quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の各側の断面図、第3図は本
発明実施例の回転電機の断面図、第4図は電機子鉄心の
要部断面図、第5図はコギング力が相殺されることを説
明するのに用いた、第3図をモデル的に展開した図、第
6図は従来例と本発明例に関するコギング力の変化曲線
図、第7図は磁束波形が変化することを説明するための
図である。 1・・・・界磁、3a、3b、3c・・・・巻線用の溝
、22−=−電機子、22L1.22+)、 22cm
突極、22+++ 、22b+ 、22cヒ・・・凸部
Figures 1 and 2 are cross-sectional views of each side of the conventional system, Figure 3 is a cross-sectional view of a rotating electrical machine according to an embodiment of the present invention, Figure 4 is a cross-sectional view of essential parts of the armature core, and Figure 5 is a cogging force. Figure 3 is a model development of Figure 3, which was used to explain that these are cancelled, Figure 6 is a diagram of changes in cogging force for the conventional example and the example of the present invention, Figure 7 is a diagram showing changes in the magnetic flux waveform. FIG. 1...Field, 3a, 3b, 3c...Groove for winding, 22-=-armature, 22L1.22+), 22cm
Salient pole, 22+++, 22b+, 22chi...convex portion.

Claims (1)

【特許請求の範囲】[Claims] 偶数極に着磁された界磁と、該界磁に対向して配設され
た巻線用の溝及び突極を有する電機子とを備え、かつ、
前記界磁と電機子のうちのいずれか一方を他方に対して
回転させる電機子において、前記電機子の突極の前記界
磁に対向する部位にして、かつ、前記巻線用の各溝の位
置に対して、(360°/界磁極数又はこの整数倍)だ
け、すれた部位に凸部を設けたことを特徴どする回転電
機。
comprising a field magnetized to an even number of poles, and an armature having a winding groove and salient poles arranged opposite to the field magnet, and
In an armature in which one of the field and the armature is rotated relative to the other, a portion of the salient pole of the armature that faces the field, and each groove for the winding has a A rotating electric machine characterized in that a convex portion is provided at a portion that is deviated from the position by (360°/number of field poles or an integral multiple thereof).
JP675984A 1984-01-18 1984-01-18 Rotary electric machine Granted JPS60152240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP675984A JPS60152240A (en) 1984-01-18 1984-01-18 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP675984A JPS60152240A (en) 1984-01-18 1984-01-18 Rotary electric machine

Publications (2)

Publication Number Publication Date
JPS60152240A true JPS60152240A (en) 1985-08-10
JPH0219695B2 JPH0219695B2 (en) 1990-05-02

Family

ID=11647103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP675984A Granted JPS60152240A (en) 1984-01-18 1984-01-18 Rotary electric machine

Country Status (1)

Country Link
JP (1) JPS60152240A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171142A (en) * 1987-01-06 1988-07-14 Sankyo Seiki Mfg Co Ltd Rotary electric machine
JPS6485555A (en) * 1987-09-28 1989-03-30 Fanuc Ltd Addendum shape of armature core of motor
US5138213A (en) * 1989-12-13 1992-08-11 U.S. Philips Corporation Brushless d.c. motor
EP1047177A2 (en) * 1999-04-07 2000-10-25 Mabuchi Motor Co., Ltd Miniature motor and method for manufacturing the same
WO2001084696A1 (en) * 2000-04-28 2001-11-08 Siemens Aktiengesellschaft Brushless motor
FR2827091A1 (en) * 2001-05-07 2003-01-10 Sunonwealth Electr Mach Ind Co Stator assembly for motor, has lower and upper pole plates with radial poles that include magnetic pole faces having same or different length
JP2003143784A (en) * 2001-11-02 2003-05-16 Sankyo Seiki Mfg Co Ltd Motor with core and manufacturing method for the core
JP2007028853A (en) * 2005-07-20 2007-02-01 Yamaha Motor Co Ltd Rotary electric machine and electric wheelchair
JP2007209186A (en) * 2006-02-06 2007-08-16 Mitsubishi Electric Corp Synchronous motor and manufacturing method therefor
WO2008105049A1 (en) * 2007-02-26 2008-09-04 Mitsubishi Electric Corporation Permanent magnet motor, hermetic compressor, and fan motor
US7528521B2 (en) 2005-07-20 2009-05-05 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine and electric wheelchair mounted with rotary electric machine
US7642686B2 (en) 2005-07-20 2010-01-05 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine and electric wheelchair mounted with rotary electric machine
US20110018384A1 (en) * 2008-03-26 2011-01-27 Nidec Corporation Motor
WO2015194216A1 (en) * 2014-06-19 2015-12-23 日本電産株式会社 Motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08156858A (en) * 1994-12-01 1996-06-18 Goushi Giken Kogyo Kk Seat cover device for motorcycle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48109403U (en) * 1972-03-23 1973-12-17
JPS5122701U (en) * 1974-08-09 1976-02-19
JPS5441504U (en) * 1977-08-30 1979-03-20
JPS5470007U (en) * 1977-10-27 1979-05-18
JPS54156705U (en) * 1978-04-25 1979-10-31

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228326A (en) * 1975-08-28 1977-03-03 Hoei Kogyo Kk Paper take-out device for the electrophotographic copying machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48109403U (en) * 1972-03-23 1973-12-17
JPS5122701U (en) * 1974-08-09 1976-02-19
JPS5441504U (en) * 1977-08-30 1979-03-20
JPS5470007U (en) * 1977-10-27 1979-05-18
JPS54156705U (en) * 1978-04-25 1979-10-31

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171142A (en) * 1987-01-06 1988-07-14 Sankyo Seiki Mfg Co Ltd Rotary electric machine
JPS6485555A (en) * 1987-09-28 1989-03-30 Fanuc Ltd Addendum shape of armature core of motor
US5138213A (en) * 1989-12-13 1992-08-11 U.S. Philips Corporation Brushless d.c. motor
US6568066B2 (en) 1999-04-07 2003-05-27 Mabuchi Motor Co., Ltd. Miniature motor and method for manufacturing the same
EP1047177A3 (en) * 1999-04-07 2002-03-06 Mabuchi Motor Co., Ltd Miniature motor and method for manufacturing the same
EP1047177A2 (en) * 1999-04-07 2000-10-25 Mabuchi Motor Co., Ltd Miniature motor and method for manufacturing the same
WO2001084696A1 (en) * 2000-04-28 2001-11-08 Siemens Aktiengesellschaft Brushless motor
US6847149B2 (en) 2000-04-28 2005-01-25 Siemens Aktiengesellschaft Brushless motor
FR2827091A1 (en) * 2001-05-07 2003-01-10 Sunonwealth Electr Mach Ind Co Stator assembly for motor, has lower and upper pole plates with radial poles that include magnetic pole faces having same or different length
JP2003143784A (en) * 2001-11-02 2003-05-16 Sankyo Seiki Mfg Co Ltd Motor with core and manufacturing method for the core
JP4712465B2 (en) * 2005-07-20 2011-06-29 ヤマハ発動機株式会社 Rotating electric machine and electric wheelchair
JP2007028853A (en) * 2005-07-20 2007-02-01 Yamaha Motor Co Ltd Rotary electric machine and electric wheelchair
US7528521B2 (en) 2005-07-20 2009-05-05 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine and electric wheelchair mounted with rotary electric machine
US7592733B2 (en) 2005-07-20 2009-09-22 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine and electric wheelchair mounted with rotary electric machine
US7642686B2 (en) 2005-07-20 2010-01-05 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine and electric wheelchair mounted with rotary electric machine
JP2007209186A (en) * 2006-02-06 2007-08-16 Mitsubishi Electric Corp Synchronous motor and manufacturing method therefor
WO2008105049A1 (en) * 2007-02-26 2008-09-04 Mitsubishi Electric Corporation Permanent magnet motor, hermetic compressor, and fan motor
JP4838348B2 (en) * 2007-02-26 2011-12-14 三菱電機株式会社 Permanent magnet motor, hermetic compressor and fan motor
US8714948B2 (en) 2007-02-26 2014-05-06 Mitsubishi Electric Corporation Permanent magnet motor, hermetic compressor, and fan motor
US20110018384A1 (en) * 2008-03-26 2011-01-27 Nidec Corporation Motor
WO2015194216A1 (en) * 2014-06-19 2015-12-23 日本電産株式会社 Motor
CN106464112A (en) * 2014-06-19 2017-02-22 日本电产株式会社 Motor
JPWO2015194216A1 (en) * 2014-06-19 2017-07-06 日本電産株式会社 motor
CN106464112B (en) * 2014-06-19 2019-03-26 日本电产株式会社 Motor

Also Published As

Publication number Publication date
JPH0219695B2 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
US5510662A (en) Permanent magnet motor
JPS60152240A (en) Rotary electric machine
JP2000041367A (en) Hybrid excitation type synchronous machine
JPS61254054A (en) Motor
JP2000116084A (en) Permanent magnet reluctance rotating electric machine
JPH01122353A (en) Synchronous ac servomotor
JPH09117081A (en) Rotor for permanent magnet synchronous motor
JPH03243155A (en) Revolving armature
JPH034133Y2 (en)
JP2598770Y2 (en) Rotating electric machine
JP2564801B2 (en) Rotating electric machine
JP2002291216A (en) Single pole rotation electric machine
JPH0691715B2 (en) Rotating electric machine
JPH07212994A (en) Permanent-magnet motor
JPS61263206A (en) Magnetizing method
JPH1028356A (en) Magnetizing method for magnetic stator in rotating machine
JPH0548064B2 (en)
JPS63161853A (en) Magnet for permanent magnet type synchronous motor
JPH07322537A (en) Rotor for salient pole rotating machine
JPH028519Y2 (en)
WO2023105551A1 (en) Rotating electric machine and aircraft provided with said rotating electric machine
JPS6248246A (en) Rotary machine of permanent magnet
JPH0398449A (en) Rotary electric machine
JPH10178766A (en) Magnetizing yoke
JPH0638412A (en) Permanent magnetic type brushless rotating electric machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term