JPS60149773A - Formation of cvd film - Google Patents

Formation of cvd film

Info

Publication number
JPS60149773A
JPS60149773A JP516984A JP516984A JPS60149773A JP S60149773 A JPS60149773 A JP S60149773A JP 516984 A JP516984 A JP 516984A JP 516984 A JP516984 A JP 516984A JP S60149773 A JPS60149773 A JP S60149773A
Authority
JP
Japan
Prior art keywords
raw material
ultrafine powder
cvd
furnace
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP516984A
Other languages
Japanese (ja)
Other versions
JPH05470B2 (en
Inventor
Miharu Kayane
茅根 美治
Toshitsugu Oi
大井 利継
Fusao Fujita
房雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP516984A priority Critical patent/JPS60149773A/en
Publication of JPS60149773A publication Critical patent/JPS60149773A/en
Publication of JPH05470B2 publication Critical patent/JPH05470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Abstract

PURPOSE:To form a CVD film contg. mixedly ultrafine powder of a specific material and having excellent resistance to heat, wear and corrosion on the surface of a plated base material by supplying the ultrafine powder and gaseous raw material into the reaction furnace of a CVD device and forming the fluidized atmosphere of the ultrafine powder in the furnace. CONSTITUTION:A gas of a volatile metallic compd. which sublimates or evaporates at a prescribed temp., for example, SiCl4, WF6, TiCl4, ZrCl4 and a gaseous raw material mixed such as H2, Ar or the like as a carrier gas are supplied from a device 1 for supplying gaseous raw material into a reaction furnace 3. Ultrafine particles 2 of SiC, ZrO2, Al2O3, etc. having <=10mum grain size are simultaneously supplied into the furnace 3 and a base material 6 on a graphite heating board 5 is heated by a heater 4 to a prescribed temp. A CVD layer of SiC, TiC, W, etc. contg. mixedly ultrafine particles of SiC, ZrO2, Al2O3, etc. is formed on the surface of the material 6.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、耐熱性、耐摩耗性、耐食性に優れた表面被
膜を化学的蒸着(以下、CVDという)により形成する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for forming a surface coating with excellent heat resistance, wear resistance, and corrosion resistance by chemical vapor deposition (hereinafter referred to as CVD).

〔発明の背景〕[Background of the invention]

近年、メッキ技術は着実な進歩をしており、特に液相メ
ッキ分野で見られる有害廃棄物の処理の難かしさあるい
は電解メッキに可能な材料が限られていること等から、
気相メッキ技術の研究開発が多方面で盛んに行なわれて
おり、一部では実用化の段階に入っている。
In recent years, plating technology has made steady progress, especially due to the difficulty of disposing of hazardous waste seen in the liquid phase plating field and the limited materials that can be electrolytically plated.
Research and development of vapor phase plating technology is actively being carried out in many fields, and some of them have reached the stage of practical application.

CVDは金属材料の表面を硬化する有効な手段の一つで
あるが、そのメカニズムが複雑であるため、安定した性
状の被膜を形成するには蒸着温度、送入ガス温度、組成
および系内圧力等の精密な制御が必要である。
CVD is one of the effective means of hardening the surface of metal materials, but its mechanism is complex, so forming a film with stable properties depends on the deposition temperature, gas supply temperature, composition, and system pressure. etc., precise control is required.

一方、工業化のための重要な因子として蒸着速度がある
。CvDの蒸着速度は対象材料あるいは対象材料が同じ
でも使用する原料の種類にもよシ異なるが、大体0.0
1〜2■/hr 程度である。
On the other hand, the deposition rate is an important factor for industrialization. The deposition rate of CvD varies depending on the target material or the type of raw material used even if the target material is the same, but it is approximately 0.0
It is about 1 to 2 ■/hr.

この蒸着速度はP V Dの一方であるスパッタリング
と比べれば優れているものの、工業的には性状の良い膜
が可能な限り早く形成されることが望ましい。
Although this vapor deposition rate is superior to sputtering, which is one of the PVD methods, from an industrial perspective it is desirable to form a film with good properties as quickly as possible.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、核発生を与えることにより柱状晶の
ない厚いCVD膜を速い見かけ上の蒸着速度で形成する
方法を提供することである。
It is an object of this invention to provide a method for forming thick CVD films without columnar crystals at a high apparent deposition rate by providing nucleation.

〔発明の概要〕[Summary of the invention]

この発明のCVD膜の形成方法は、反応炉内に超微粉と
原料ガスを供給し、炉内に超微粉の流動雰囲気を作り、
この中で原料ガスに化学反応を起させてメッキ母材に超
微粉が混在した金属又は金属化合物を析出させることを
特徴とするものである。
The method for forming a CVD film of the present invention involves supplying ultrafine powder and raw material gas into a reactor, creating an atmosphere in which the ultrafine powder flows, and
The method is characterized in that a chemical reaction is caused in the raw material gas to precipitate a metal or metal compound mixed with ultrafine powder on the plating base material.

上記の構成によると、従来の原料ガスのみによる方法に
比べて、析出物の中に混在された超微粉の量だけ膜が厚
くなる。即ち、一定の膜厚を形成するのに、超微粉を混
在させて形成すれば見かけ上の蒸着速度は速くなる。
According to the above configuration, the film becomes thicker by the amount of ultrafine powder mixed in the precipitates, compared to the conventional method using only source gas. That is, if a film having a constant thickness is formed by mixing ultrafine powder, the apparent deposition rate will increase.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の第1実施例を示すもので、炉の外部で
作った超微粉を供給するCVDの基本プロセスである。
FIG. 1 shows a first embodiment of the present invention, which is a basic CVD process in which ultrafine powder produced outside the furnace is supplied.

原料ガス供給装置1において、所定の温度で昇華又は蒸
発させた揮発主金属化合物塩、例えば+9icz、、W
FTl I T+cJ4、Zrc14と、キャリヤカス
、際の原料となる粒径が10μm以下である超微粉体、
−−!;=↓44例えばSiC、ZrO,、At、0.
などの超微粉が装てんされる。そして前記原料ガスと超
微粉は反応炉3に供給される。反応炉3は加熱装置4に
よって反応に適した温度に加熱され、黒鉛などの加熱ボ
ード5上載置されたメッキ母材6にCV I)膜を形成
する。7は廃ガス処理装置である。
In the raw material gas supply device 1, a volatile main metal compound salt sublimated or evaporated at a predetermined temperature, for example +9icz, W
FTl I T+cJ4, Zrc14, carrier waste, and ultrafine powder with a particle size of 10 μm or less, which is the raw material for the carrier residue.
--! ;=↓44 For example, SiC, ZrO, At, 0.
It is loaded with ultra-fine powder such as. The raw material gas and the ultrafine powder are then supplied to the reactor 3. The reaction furnace 3 is heated to a temperature suitable for the reaction by a heating device 4, and a CV I) film is formed on a plating base material 6 placed on a heating board 5 made of graphite or the like. 7 is a waste gas treatment device.

つぎに、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

予じめメッキ母材6は加熱ボード5によって析出させる
金属又は金属化合物であるメッキ物質の蒸着温度に加熱
されている。そして原料ガスと超微粉が炉内に供給され
ると、超微粉は原料ガスの流□れに乗って拡散され、流
動状態が形成される。
The plating base material 6 is heated in advance by the heating board 5 to the deposition temperature of the plating material, which is a metal or metal compound, to be deposited. When the raw material gas and ultrafine powder are supplied into the furnace, the ultrafine powder is spread along with the flow of the raw material gas, forming a fluidized state.

この雰囲気の中で原料ガスは化学反応を起す。この反応
によって、 SiC,Tieなどのメッキ物質がメッキ
母材5に析出する。この析出過程において、超微粉はメ
ッキ物質に捕えられ、析出物内に混在される。従って、
メッキ母材上に形成されるCVD膜は超微粉の固体を含
んだ緻密なメッキ物質として形成される。そのため、C
VD膜は超微粉が核発生の働きをし、微粒多結晶組織が
達成され、しかも析出物に含捷れた超微粉の量に見合っ
て膜が厚く形成されるので、CVD膜の形成速度は見か
け上速くなる。
In this atmosphere, the raw material gas undergoes a chemical reaction. Due to this reaction, plating substances such as SiC and Tie are deposited on the plating base material 5. During this precipitation process, the ultrafine powder is captured by the plating material and mixed in the precipitate. Therefore,
The CVD film formed on the plating base material is formed as a dense plating material containing ultrafine solid powder. Therefore, C
In the VD film, the ultrafine powder acts as a nucleator, achieving a fine-grained polycrystalline structure, and the film is formed thickly in proportion to the amount of the ultrafine powder included in the precipitate, so the formation speed of the CVD film is Appears to be faster.

つぎに、本発明の他の実施例を第2図に基づいて説明す
る。
Next, another embodiment of the present invention will be described based on FIG. 2.

第2図は超微粉を炉内で形成するようにしだCVDの基
本プロセスである。なお、超微粉を形成する手段を除く
他の構成は第1図に示すCVDの基本プロセスと同じな
ので、同一符号を用いてその説明を省略する。
Figure 2 shows the basic process of CVD in which ultrafine powder is formed in a furnace. Note that the other configurations except for the means for forming ultrafine powder are the same as the basic CVD process shown in FIG. 1, so the same reference numerals are used and the explanation thereof will be omitted.

超微粉を作るための原料ガスを超微粉原料ガス供給装置
10で作り、この超微粉原料ガスを反応炉3に供給十り
。一方、予熱ガス供給装置11は前記原料ガスを炉内に
おいて反応を起させるための予熱カスを供給する。原料
ガスのキャリヤとしては特に限定しないが、原料カスと
キャリヤだけでは高温になった時にCVD反応を起さな
いものとする。
A raw material gas for producing ultrafine powder is produced by an ultrafine powder raw material gas supply device 10, and this ultrafine powder raw material gas is supplied to the reactor 3. On the other hand, the preheating gas supply device 11 supplies preheating dregs for causing the raw material gas to react in the furnace. The carrier for the raw material gas is not particularly limited, but it is assumed that the raw material residue and the carrier alone do not cause a CVD reaction when the temperature reaches a high temperature.

炉内には超微粉原料ガスの噴射ノズル12と高温の予熱
ガスの噴射ノズル13が近接して配置され、前記原料ガ
スの噴出と同時に、予熱ガスが吹き込まれる構造になっ
ている。原料ガスは噴射直後に予熱ガスによって高温に
熱せられ、化学反応を起し、金属又は金属化合物の超微
粉が作られる。
In the furnace, an injection nozzle 12 for ultrafine raw material gas and an injection nozzle 13 for high-temperature preheated gas are arranged close to each other, and the preheated gas is blown into the furnace at the same time as the raw material gas is ejected. Immediately after injection, the raw material gas is heated to a high temperature by preheating gas, causing a chemical reaction and producing ultrafine powder of metal or metal compound.

この超微粉はガス流に乗って炉内を流動拡散する。This ultrafine powder flows and diffuses inside the furnace on the gas flow.

この状態において、原料ガス供給装置1から原料ガスを
供給すると、第1図に示すCVDの基本プロセスと同じ
メカニズムでメッキ母材6に超微粉とメッキ物質が混在
したCVD膜が形成される。
In this state, when source gas is supplied from the source gas supply device 1, a CVD film containing a mixture of ultrafine powder and plating material is formed on the plating base material 6 using the same mechanism as the basic CVD process shown in FIG.

上記のCVDプロセスで複合材料の作り方を説明する1
、第3図(5)、の)、(Qは複合材料のCVD模式図
である。
Explaining how to make composite materials using the above CVD process 1
, FIG. 3(5), ), (Q is a CVD schematic diagram of the composite material.

例えば、複合材料としてAt203+ Zr O2を作
るには、複合材料を構成する金属化合物の一つを第3図
(A)で示すように超微粉として供給するか、又は第3
図(B)、(Qのように共に原料ガスとして供給し、炉
内においてその内の一方の原料カスから超微粉(Z r
 (+2、Az20. )を作ることにjつ”U下式ノ
CVDZrCl4+2H,+2CO,ZrO,+ 4H
Ct+ 2C02AtCl s +3 F(2+ 3 
COA40* + 6 HCl + 3002−〉 〔発明の効果」 上述のとおり、本発明によれば、CVD膜の見かけ上の
形成速度を速めることができると共に、析出過程におい
て、金属又は金属化合物の超微粉が混在するから、核発
生によ、、′Z柱状晶を防ぐことができ、安定した性状
のCVD膜が形成される。
For example, to make At203+ZrO2 as a composite material, one of the metal compounds constituting the composite material is supplied as an ultrafine powder as shown in FIG.
Figure (B), (Q) Both are supplied as raw material gases, and ultrafine powder (Z r
To make (+2, Az20.), the following formula was used: CVDZrCl4+2H, +2CO, ZrO, +4H
Ct+ 2C02AtCl s +3 F(2+ 3
COA40* + 6 HCl + 3002-> [Effects of the Invention] As described above, according to the present invention, the apparent formation speed of a CVD film can be increased, and in the precipitation process, ultrafine powder of metal or metal compound is Because of the coexistence of , 'Z columnar crystals can be prevented due to nucleation, and a CVD film with stable properties can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るCvDの基本プロセス図、第2
図は本発明に係る他の実施例のCVDの基本プロセス図
、第3図(ト)、(13)、0は複合材料を作るCVD
の模式図である。 1・・・原料ガス供給装置、2・・・超微粉供給装置、
3・・・反応炉、6・・・メッキ母材、10・・・超微
粉原料ガス供給装置、11・・・予熱カス供給装置。 第1図 第2図 第3図 □2ワワm 手続補正書 昭和59年3177日 特許庁長官 殿 1 事件の表示 昭和59年 特許願 第 5169 号2、発明の名称 CVD膜の形成方法 3 補正をする者 事件との関係 特許出願人 名称 (590)三井造船株式会社 4代理人 7、 補正の対象 明細書の発明の詳細な説明の欄。 8、補正の内容 (1)明細書第3頁第4行の「一方」を1−法」に改め
る。 (21明細書第4頁第20行の「加熱デート」を「加熱
ゲート」に改める。
Figure 1 is a basic process diagram of CvD according to the present invention;
The figure is a basic process diagram of CVD of another embodiment according to the present invention.
FIG. 1... Raw material gas supply device, 2... Ultrafine powder supply device,
3... Reaction furnace, 6... Plating base material, 10... Ultrafine powder raw material gas supply device, 11... Preheating dregs supply device. Figure 1 Figure 2 Figure 3 □2 Wawam Procedural amendment dated 3177/1980 Commissioner of the Patent Office 1 Indication of the case 1981 Patent Application No. 5169 2 Title of invention Method for forming CVD film 3 Amendment Name of patent applicant (590) Mitsui Engineering & Shipbuilding Co., Ltd. 4 Agent 7 Column for detailed explanation of the invention in the specification to be amended. 8. Contents of the amendment (1) Change "one side" in the fourth line of page 3 of the specification to "1-method". ("Heating date" on page 4, line 20 of the 21 Specification is changed to "heating gate."

Claims (1)

【特許請求の範囲】 (]、) 反応炉に低温で気化された揮発性の金属化合
物塩からなる原料ガスを供給し、高温に加熱されたメッ
キ母材に金属又は金属化合物を析出させるCVD膜の形
成方法において、前記原料ガスと共に金属又は金属化合
物の超微粉を供給し、この超微粉を炉内で流動状態にし
、この雰囲気の中で原料ガスに化学反応を起させてメッ
キ母材に超微粉が混在した金属又は金属化合物を析出さ
せるようにしたCVD膜の形成方法。 (2) 前記超微粉が原料ガスから析出されるメッキ物
質と同じ組成であることを特徴とする特許請求の範囲第
1項記載のCVD膜の形成方法。 (3)前記超微粉が原料ガスから析出されるメッキ物質
と異なる組成であることを特徴とする特許請求の範囲第
1項記載のCVD膜の形成方法。 (4)前記超微粉が炉内において作られることを特徴と
する特許請求の範囲第1項記載のCV I)膜の形成方
法。
[Claims] (],) A CVD film in which a raw material gas consisting of a volatile metal compound salt vaporized at a low temperature is supplied to a reactor, and metals or metal compounds are deposited on a plating base material heated to a high temperature. In the forming method, ultrafine powder of a metal or metal compound is supplied together with the raw material gas, this ultrafine powder is brought into a fluid state in a furnace, and the raw material gas is caused to undergo a chemical reaction in this atmosphere to form a super fine powder on the plating base material. A method for forming a CVD film in which a metal or metal compound mixed with fine powder is deposited. (2) The method for forming a CVD film according to claim 1, wherein the ultrafine powder has the same composition as a plating substance precipitated from a raw material gas. (3) The method for forming a CVD film according to claim 1, wherein the ultrafine powder has a composition different from that of the plating material deposited from the raw material gas. (4) The CV I) film forming method according to claim 1, wherein the ultrafine powder is produced in a furnace.
JP516984A 1984-01-13 1984-01-13 Formation of cvd film Granted JPS60149773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP516984A JPS60149773A (en) 1984-01-13 1984-01-13 Formation of cvd film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP516984A JPS60149773A (en) 1984-01-13 1984-01-13 Formation of cvd film

Publications (2)

Publication Number Publication Date
JPS60149773A true JPS60149773A (en) 1985-08-07
JPH05470B2 JPH05470B2 (en) 1993-01-06

Family

ID=11603732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP516984A Granted JPS60149773A (en) 1984-01-13 1984-01-13 Formation of cvd film

Country Status (1)

Country Link
JP (1) JPS60149773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106769A (en) * 1984-10-30 1986-05-24 Mitsubishi Electric Corp Self-lubricating hard film forming device for utilizing gas phase reaction
EP0226898A2 (en) * 1985-12-24 1987-07-01 Sumitomo Electric Industries, Ltd. Composite powder, composite bodies and process for their production
JPH02240263A (en) * 1989-03-15 1990-09-25 Ulvac Corp Method and device for chemical vapor deposition mixed with fine objects
US7854962B2 (en) * 2002-08-23 2010-12-21 Tokyo Electron Limited Gas supply method using a gas supply system
CN110182841A (en) * 2018-11-22 2019-08-30 中国科学院过程工程研究所 A kind of steady fluidization process of low temperature Jie prepares TiOxCyNzThe system and method for coated powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106769A (en) * 1984-10-30 1986-05-24 Mitsubishi Electric Corp Self-lubricating hard film forming device for utilizing gas phase reaction
JPS6346147B2 (en) * 1984-10-30 1988-09-13 Mitsubishi Electric Corp
EP0226898A2 (en) * 1985-12-24 1987-07-01 Sumitomo Electric Industries, Ltd. Composite powder, composite bodies and process for their production
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
JPH02240263A (en) * 1989-03-15 1990-09-25 Ulvac Corp Method and device for chemical vapor deposition mixed with fine objects
US7854962B2 (en) * 2002-08-23 2010-12-21 Tokyo Electron Limited Gas supply method using a gas supply system
CN110182841A (en) * 2018-11-22 2019-08-30 中国科学院过程工程研究所 A kind of steady fluidization process of low temperature Jie prepares TiOxCyNzThe system and method for coated powder

Also Published As

Publication number Publication date
JPH05470B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
US4239819A (en) Deposition method and products
JPH0892743A (en) Tool for cutting coating film and its production
KR930009353B1 (en) Method of surface treatment and apparatus used therefor
US3721577A (en) Process for the deposition of refractory metal and metalloid carbides on a base material
US4686117A (en) Method of forming a carbide layer
US4569862A (en) Method of forming a nitride layer
KR920004849B1 (en) Method and apparatus for surface treatment
JPH055172A (en) Surface treatment of metal material
EP0222241B1 (en) Deposition of titanium aluminides
US2604395A (en) Method of producing metallic bodies
Gutmanas et al. Coating of non-oxide ceramics by interaction with metal powders
US4830886A (en) Process for making cutting insert with titanium carbide coating
JPS60149773A (en) Formation of cvd film
Wood et al. Coating particles by chemical vapor deposition in fluidized bed reactors
JPS6280258A (en) Method and apparatus for surface treatment
Merzhanov Fluid dynamics phenomena in the processes of self-propagating high-temperature synthesis
Allendorf From Bunsen to VLSI
US7115240B2 (en) Method of producing nanophase WC-based powder by vapor phase reaction at atmospheric pressure
US4380479A (en) Foils of brittle alloys
Liu et al. Fabrication of core‐shell structured TiC–Fe composite powders by fluidized bed chemical vapor deposition
Kalita et al. Cermet Plasma Coatings with Titanium Carbide
Konyashin The mechanism of interaction between Cl-containing gaseous phase and cemented carbides in the chemical vapour deposition process
Kalita et al. Cermet plasma coatings based on silicon carbide
Liu et al. Low pressure chemical vapor deposition of niobium coating on silicon carbide
US3472680A (en) Low temperature process for pyrolytic deposition of zirconium oxide films