JPS60149713A - Endothermic type gas converter - Google Patents

Endothermic type gas converter

Info

Publication number
JPS60149713A
JPS60149713A JP59003228A JP322884A JPS60149713A JP S60149713 A JPS60149713 A JP S60149713A JP 59003228 A JP59003228 A JP 59003228A JP 322884 A JP322884 A JP 322884A JP S60149713 A JPS60149713 A JP S60149713A
Authority
JP
Japan
Prior art keywords
air
gas
retort
catalyst
butane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59003228A
Other languages
Japanese (ja)
Other versions
JPH0418009B2 (en
Inventor
Masayoshi Taki
正佳 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59003228A priority Critical patent/JPS60149713A/en
Publication of JPS60149713A publication Critical patent/JPS60149713A/en
Publication of JPH0418009B2 publication Critical patent/JPH0418009B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • C21D1/763Adjusting the composition of the atmosphere using a catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To convert efficiently the endothermic type gas in an equil. state by a catalyst reaction by mixing quickly gaseous hydrocarbon with the air preheated to a high temp. so that the quick heating-up of the gaseous hydrocarbon is made possible. CONSTITUTION:A titled converter supplies air 2 and gaseous hydrocarbon 1 such as butane or the like into a retort 6 maintained at a high temp. and converts the gas by mixing the same. Said retort 6 is made into the cylindrical shape like a Laval nozzle having a throttling part 6d at the center. The inside of the retort 6 is segmented by a meshed diaphragm 6c into a catalyst packed part 6b and an air preheating chamber 6a with the part 6d as a boundary. A supply pipe for supplying the air 2 to the chamber 6a through an air flowmeter 5 is connected to the end part on the chamber 6a side. A supply pipe for the gas 1 through a flowmeter 4 which measures and controls the supply rate of the gas 1 is connected to said part 6d side. A cooler 8 for cooling the modified gas 3 is provided to the end of the part 6b side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸熱型ガス変成装置に藺し、詳しくは、鋼部
品の焼入れ・焼もどし、あるいは、浸炭焼入等の熱処理
時に使用する吸熱型ガスを、低温活性触媒を用いて85
0〜950℃の比較的低温で変成させることのできる吸
熱型ガス変成装置にかかる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an endothermic gas conversion device, and more specifically, to an endothermic gas conversion device used for hardening and tempering steel parts, or during heat treatment such as carburizing and quenching. type gas using a low-temperature activated catalyst.
The present invention relates to an endothermic gas shift device that can perform metamorphosis at a relatively low temperature of 0 to 950°C.

〔従来技術〕[Prior art]

鋼部品の焼入れ・焼もどし、あるいは、浸炭焼入等の熱
処理時に用いる吸熱型ガスは、従来、いわゆる、RXガ
ス発生炉と呼ばれる、吸熱型ガス変成装置によって製造
されている。
Endothermic gas used during heat treatment such as hardening and tempering of steel parts or carburizing and quenching is conventionally produced by an endothermic gas conversion device called a so-called RX gas generating furnace.

そして、このRXガス発生炉は、ニッケル触媒を充填し
、850〜1100°Cの高温に保持したレトルト内へ
、メタン(CH4)、エタン(c3H,)、ブタン(c
 4 HI。)等の炭化水素ガスと、空気との混合ガス
を送給し、CO,Hz 、N2を主成分とし、微量のC
H4、Hz o、cを含む、吸熱型ガスを変成させるも
のである。
Then, this RX gas generator feeds methane (CH4), ethane (c3H,), butane (c
4 HI. ), etc., and air, the main components are CO, Hz, N2, and a trace amount of C.
It transforms endothermic gases including H4, Hz o, and c.

ところで、上記従来のRXガス発生炉に用いられるニッ
ケル触媒に比して、比較的低温の850〜950℃で活
性なコバルト触媒を使用した場合、従来のニッケル触媒
使用時には、850−1100℃の高温でしが反応させ
ることのできなかった吸熱型ガス変成反応を、850〜
950 ℃の比較的低温にて、上述のニッケル触媒と同
様の吸熱型ガスを変成できることが明らがとなった。
By the way, compared to the nickel catalyst used in the conventional RX gas generator mentioned above, when using a cobalt catalyst that is active at a relatively low temperature of 850 to 950 degrees Celsius, when using a conventional nickel catalyst, the high temperature of 850 to 1100 degrees Celsius is used. 850~
It has become clear that an endothermic gas similar to the above-mentioned nickel catalyst can be converted at a relatively low temperature of 950°C.

さて、炭化水素ガスとして、ブタンに例をとって、その
変成反応を観察すると、レトルト内では、C4HIO+
202 +7.52N2 →4CO+ 5 H2+7.
52Nなる反応が進行し、この時、以下の平衡反応が維
持されている。
Now, if we take butane as an example of a hydrocarbon gas and observe its modification reaction, in the retort, C4HIO+
202 +7.52N2 →4CO+ 5 H2+7.
52N reaction progresses, and at this time the following equilibrium reaction is maintained.

H2+ C()2#CO+ H20 CHa + CO2:2 CO+ 2 H2CHq 十
Hz O:G O+3 )fz ’従って、各成分の間
には、co=23%、H2#29%、CH4−微m〜0
.2%、C○z=Wlft〜2.0%、残部N2で、互
いに平衡状態にある。
H2+ C()2#CO+ H20 CHa + CO2:2 CO+ 2 H2CHq 10 Hz O:G O+3 )fz' Therefore, between each component, co=23%, H2#29%, CH4-minimal ~ 0
.. 2%, C○z=Wlft~2.0%, and the remainder N2, which are in equilibrium with each other.

そして、ブタンと空気との混合比を変化させると、その
混合比に応じて、CH4、COz 、H2−0等の平衡
値は変化する。
When the mixing ratio of butane and air is changed, the equilibrium values of CH4, COz, H2-0, etc. change depending on the mixing ratio.

同時に、CO,H2、N2等の平衡値も変化するが、そ
の割合は少ない。
At the same time, the equilibrium values of CO, H2, N2, etc. also change, but at a small rate.

ところで、この従来の吸熱型ガス変成法においては、炭
化水素ガスと空気の混合ガスが、触媒と接触して変成反
応が進行する前に、炭化水素ガスが熱分解して、すす(
C)を生成すると、平衡状態がくずれて平衡ガスが得ら
れなくなり、co1CO2によるカーボンポテンシャル
の制御が困難となる欠点がある。
By the way, in this conventional endothermic gas shift method, before the mixed gas of hydrocarbon gas and air contacts the catalyst and the shift reaction proceeds, the hydrocarbon gas is thermally decomposed and soot (
If C) is produced, the equilibrium state is disrupted, making it impossible to obtain an equilibrium gas, and there is a drawback that it becomes difficult to control the carbon potential by co1CO2.

さらに、上述のようにして生成されたすす(C)が触媒
に付着して、触媒活性の低下をきたすという欠点がある
Furthermore, there is a drawback that the soot (C) produced as described above adheres to the catalyst, resulting in a decrease in catalytic activity.

上述のような、従来技術の欠点を、具体的な従来装置に
基づいて説明すると、第1図において、ブタン1の0.
86 E /minと空気2の8.6 j2 /min
からなる混合ガスを、930°Cのレトルト6に送給す
ると、100 ccの触媒7のもとで、154/min
の吸熱型ガス3が変成できるものである。
The above-mentioned drawbacks of the prior art will be explained based on a specific conventional device. In FIG.
86 E/min and 8.6 J2/min of air 2
When a mixed gas consisting of
The endothermic gas 3 can be metamorphosed.

ここで、従来の変成装置では、レトルト6における炭化
水素ガスの熱分解を防止するため、急速加熱部6aは、
細径パイプ数本からなる多管構造として、加熱炉からの
熱を吸収しやすくし、ガスの急速加熱を促進するように
しである。
Here, in the conventional shift converter, in order to prevent thermal decomposition of the hydrocarbon gas in the retort 6, the rapid heating section 6a is
It has a multi-tube structure consisting of several small diameter pipes, making it easier to absorb heat from the heating furnace and promoting rapid heating of the gas.

すなわち、この急速加熱部6aでは、下記のようなブタ
ンの熱分解反応; C,H,。−C↓+2CH4+H2 によるずず(C)の生成を抑制するため、空気、ブタン
の混合ガスを急速加熱する必要がある。
That is, in this rapid heating section 6a, the following thermal decomposition reaction of butane occurs: C, H,. In order to suppress the formation of tin (C) due to -C↓+2CH4+H2, it is necessary to rapidly heat the mixed gas of air and butane.

しかし、従来の吸熱型ガス変成装置のしトルトロでは、
上述のように、細径パイプの多管構造として、急速加熱
を促進すべく考慮されているものの、すす(C)の生成
を、完全には抑制することができない欠点がある。
However, in the conventional endothermic gas shift converter,
As mentioned above, although the multi-tubular structure of small diameter pipes has been considered to promote rapid heating, it has the disadvantage that the generation of soot (C) cannot be completely suppressed.

〔発明の目的〕[Purpose of the invention]

本発明は、鋼部品の熱処理用雰囲気等に用いる吸熱型ガ
スを従来のニッケル触媒に比して低温で活性なコバルト
触媒を用いて予め高温に加熱された空気に、直接、室温
の炭化水素ガスを混合させて、炭化水素ガスを伝熱効率
よく加熱し、炭化水素ガスの加熱速度を速めることによ
って、炭化水素ガスの熱分解を確実に抑制でき、しかも
、炭化水素ガスと空気とを混合しやすい構造とすること
によって触媒反応による平衡状態の吸熱型ガスを、効率
よく変成することができる、吸熱型ガス変成装置を提供
することを目的としている。
The present invention uses a cobalt catalyst, which is active at a lower temperature than a conventional nickel catalyst, to directly convert an endothermic gas used in an atmosphere for heat treatment of steel parts into air that has been preheated to a high temperature to produce hydrocarbon gas at room temperature. By heating the hydrocarbon gas with good heat transfer efficiency and increasing the heating rate of the hydrocarbon gas, thermal decomposition of the hydrocarbon gas can be reliably suppressed, and it is easy to mix the hydrocarbon gas and air. It is an object of the present invention to provide an endothermic gas shift device that can efficiently transform endothermic gas in an equilibrium state through a catalytic reaction by virtue of its structure.

〔発明の構成〕[Structure of the invention]

このような目的は、本発明によれば、触媒を充填し、高
温に保持されたレトルト内において、空気とブタン等の
炭化水素ガスとを供給し、混合させて、吸熱型ガスを変
成させる吸熱型ガス変成装置であって、 前記レトルトはラバール管状に中央部に絞り部を有する
筒形状をなし、加熱炉内に配設されるとともに、該レト
ルト内を前記絞り部を境界として、空気余熱室と触媒を
充填した触媒充填部にメソシュ状隔膜にて区画し、レト
ルトの空気余熱室側端部には、空気供給源からの供給空
気量を測定・制御する流量針を経て、空気予熱室に送給
する空気供給管が連結され、また、レトルト内触媒充填
室の前記絞り部側には、加熱炉の炉壁部に配設された冷
却構造を有する断熱材を貫通して配設され、ブタン等の
炭化水素ガス供給量を測定・制御する流量計を経て、炉
外配管によって導かれた多方向からの複数の、ブタン等
の炭化水素ガス供給管が連結され、さらに、レトルトの
触媒充填室側端部には、変成された変成−ガスを冷却す
るクーラーを有する構造としたことを特徴とした吸熱型
ガス変成装置によって達成される。
According to the present invention, air and a hydrocarbon gas such as butane are supplied and mixed in a retort filled with a catalyst and maintained at a high temperature to convert an endothermic gas. The retort is a cylindrical Laval tubular shape having a constricted part in the center, and is disposed in a heating furnace, and an air preheating chamber is formed inside the retort with the constricted part as a boundary. A mesoche-like diaphragm separates the catalyst-filled section filled with catalyst from the retort, and the end of the retort on the air preheating chamber side is connected to the air preheating chamber through a flow needle that measures and controls the amount of air supplied from the air supply source. A feeding air supply pipe is connected to the retort catalyst filling chamber, and an air insulating material having a cooling structure provided on the furnace wall of the heating furnace is disposed on the constriction portion side of the retort catalyst filling chamber, and Through a flow meter that measures and controls the amount of hydrocarbon gas such as butane supplied, multiple butane and other hydrocarbon gas supply pipes are connected from multiple directions guided by piping outside the furnace, and then the retort is filled with catalyst. This is achieved by an endothermic gas shift device characterized by having a cooler at the chamber end for cooling the metamorphosed gas.

〔発明の作用〕[Action of the invention]

以下、本発明の作用について説明する。 Hereinafter, the effects of the present invention will be explained.

本発明の吸熱型ガス変成装置と従来の吸熱型ガス変成装
置の違いは、炭化水素ガスとしてのブタン加熱構造およ
びその供給構造にある。
The difference between the endothermic gas shift device of the present invention and the conventional endothermic gas shift device lies in the structure for heating butane as a hydrocarbon gas and the structure for supplying it.

従来の吸熱型ガス変成装置では、室温ブタンをその10
倍の容積の室温空気とともに急速加熱する構造としてい
るため、ブタンの加熱速度が遅くなるが、本発明の吸熱
型ガス変成装置では、予め高温に加熱されたブタン量の
10倍の容積の空気が、直接、室温のブタンと接触して
ブタンを加熱するため、伝熱効率が非常によく、従って
ブタンの加熱速度が速くなることから、ブタンの熱分解
を十分に抑制でき、平衡状態゛の吸熱型ガスを変成する
ことができるのである。
In conventional endothermic gas shift equipment, room temperature butane is
However, in the endothermic gas shift converter of the present invention, a volume of air 10 times the amount of butane that has been preheated to a high temperature is used. Since the butane is heated by direct contact with butane at room temperature, the heat transfer efficiency is very high, and the heating rate of butane is therefore fast, so the thermal decomposition of butane can be sufficiently suppressed, and the endothermic type in an equilibrium state is achieved. It can transform gases.

さらに、本発明の吸熱型ガス変成装置においては、ブタ
ンが空気と混合される以前に単独に加熱されることを防
止するため、ブタン供給管と炉の間に断熱材が配設され
ており、かつ、その断熱材は水冷却される構造となって
いる。
Furthermore, in the endothermic gas shift apparatus of the present invention, in order to prevent butane from being heated independently before being mixed with air, a heat insulating material is provided between the butane supply pipe and the furnace. Moreover, the insulation material is water-cooled.

また、本発明の吸熱型ガス変成装置においては、空気と
ブタンを均一に混合させる必要があることから、第2図
に示すように、空気とブタンの合流部において、レトル
ト6の絞り部6dを形成して、この絞り部6dに多方向
からブタンを供給して、均一な混合ガスとして触媒充填
室6bへ送給する構造としている。
In addition, in the endothermic gas conversion apparatus of the present invention, since it is necessary to mix air and butane uniformly, as shown in FIG. 2, the constriction part 6d of the retort 6 is The structure is such that butane is supplied to this constricted portion 6d from multiple directions and is delivered as a uniform mixed gas to the catalyst filling chamber 6b.

〔実施例〕〔Example〕

以下、添付図面に基づいて、本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第2図に、本発明の吸熱型ガス変成装置の概略図を示す
FIG. 2 shows a schematic diagram of the endothermic gas shift apparatus of the present invention.

なお、同実施例において、前記第1図の従来例と、同一
または相当部分については、第1図と同一の符号を付す
ることにより説明を省略する。
In this embodiment, the same or corresponding parts as those in the conventional example shown in FIG. 1 are designated by the same reference numerals as in FIG. 1, and the explanation thereof will be omitted.

また、この実施例では、炭化水素ガスとして、ブタンに
例をとって説明する。
Further, in this example, explanation will be given using butane as an example of the hydrocarbon gas.

本発明の吸熱型ガス変成装置の構成は、第2図から明ら
かなように、ブタン流量計4、空気流量計5、空気予熱
室5a′と触媒充填室6bが、耐熱性メツシュ状隔膜6
Cによって区画されたレトルト6、触媒7、クーラ8、
加熱炉9からなっている。
As is clear from FIG. 2, the configuration of the endothermic gas shift apparatus of the present invention is such that a butane flow meter 4, an air flow meter 5, an air preheating chamber 5a', and a catalyst filling chamber 6b are connected to a heat-resistant mesh-like diaphragm 6.
A retort 6, a catalyst 7, a cooler 8, partitioned by C.
It consists of a heating furnace 9.

そして、従来の吸熱型ガス変成装置と異なる点は、ブタ
ン1の供給構造である。
The difference from conventional endothermic gas shift converters is the butane 1 supply structure.

さらに、本発明の吸熱型ガス変成装置のポイントとして
、空気2とブタン1を均一に混合させる必要があること
から、空気2とブタン1の合流部において、レトルト6
の絞り部6dを形成し、そこへ直交する4方向からブタ
ン1を供給し、均一な混合ガスとして、触媒充填室6b
に送給する構造としている。
Furthermore, as a key point of the endothermic gas shift device of the present invention, it is necessary to mix air 2 and butane 1 uniformly.
The butane 1 is supplied from four directions perpendicular to the constricted part 6d to form a constricted part 6d, and the butane 1 is supplied as a uniform mixed gas to the catalyst filling chamber 6b.
The structure is such that it is fed to

このようにして本発明の吸熱型ガス変成装置では、空気
予熱室6dにおいて、930℃の高温に加熱した、空気
2の3.54! /min中に、炉外配管によって室温
に保持された、ブタン1の0.86n−/minを、加
熱炉9を貫通して配設された断熱材10に穿設された直
交する4方向の孔から供給し、触媒充填室6bにおいて
、ブタン1を急速に加熱した後、酸素過剰率を1.05
として、空気2と混合させて、コバルト触媒7により変
成された組成を下表に示す。
In this manner, in the endothermic gas shift apparatus of the present invention, the air 2 is heated to a high temperature of 930° C. in the air preheating chamber 6d at 3.54° C. 0.86 n-/min of butane 1, which was maintained at room temperature by piping outside the furnace, was heated in four orthogonal directions drilled in a heat insulating material 10 that penetrated the heating furnace 9. After the butane 1 is supplied through the hole and rapidly heated in the catalyst filling chamber 6b, the oxygen excess rate is reduced to 1.05.
The composition obtained by mixing with air 2 and modifying with cobalt catalyst 7 is shown in the table below.

表から明らかなように、従来の吸熱型ガス変成装置で変
成された吸熱型ガス組成は、COlおよびH2が平衡吸
熱ガス組成に比べ、低目の値であり、しかも、変成反応
に伴い、すす(C)の生成が認められるのに対し、本発
明の吸熱型カス変成装置によって変成された吸熱型ガス
組成は、はぼ、平衡吸熱型ガス組成に近似しており、し
かも、変成反応に伴う、ずず(C)の生成は認められな
い。
As is clear from the table, the endothermic gas composition transformed by the conventional endothermic gas shift equipment has lower COl and H2 values than the equilibrium endothermic gas composition, and moreover, due to the transformation reaction, soot On the other hand, the endothermic gas composition transformed by the endothermic scum transformation apparatus of the present invention is very close to the equilibrium endothermic gas composition, and moreover, it is accompanied by the transformation reaction. , No formation of zuzu (C) was observed.

〔発明の作用効果〕[Function and effect of the invention]

以上により明らかなように、本発明にかかる吸熱型ガス
変成装置によれば、鋼部品の熱処理用雰囲気等に用いる
吸熱型ガスを従来のニッケル触媒に比して低温で活性な
コバルト触媒を用いて予め高温に加熱された空気に、直
接、室温の炭化水:素ガスを混合させて、炭化水素ガス
を伝熱効率よ(加熱し、炭化水素ガスの昇温速度を速め
ることによって、炭化水素ガスの熱分解を確実に抑制で
き、しかも、炭化水素ガスと空気とを混合しやすい構造
とすることによって触媒反応による平衡状態の吸熱型ガ
スを、効率よ(変成することができる利点がある。
As is clear from the above, according to the endothermic gas shift device according to the present invention, the endothermic gas used in the atmosphere for heat treatment of steel parts, etc. is made using a cobalt catalyst that is active at a lower temperature than the conventional nickel catalyst. Hydrocarbon gas at room temperature is directly mixed with air that has been preheated to a high temperature to improve the heat transfer efficiency of the hydrocarbon gas. It has the advantage that thermal decomposition can be reliably suppressed, and that endothermic gas in an equilibrium state through catalytic reaction can be efficiently (transformed) by having a structure that allows easy mixing of hydrocarbon gas and air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の吸熱型ガス変成装置の概略図、第2図
は、本発明の吸熱型ガス変成装置の概略図である。 1−−−−−−ブタン 2−・−空気 3−一−−−−−吸熱型ガス 4−−−−−−−ブタン流量計 5−−−−−−一空気流量計 6−−−−−−−レトルト 5 a−−−−−−一急速加熱部 5 a ′−−−−−−空気予熱室 6b−・−触媒充填室 6C−・−メソシュ状隔膜 6d・−−−−−一絞り部 7−−−−コバルト触媒 8−・−・−クーラ 9−−−−−−−〜加熱炉 10−−−−−−御所熱材 1’ 1−−−−−冷却水配管
FIG. 1 is a schematic diagram of a conventional endothermic gas shift device, and FIG. 2 is a schematic diagram of an endothermic gas shift device of the present invention. 1 ------- Butane 2 - Air 3 - Endothermic gas 4 ------- Butane flow meter 5 - Air flow meter 6 --- Retort 5 a --- Rapid heating section 5 a ′ --- Air preheating chamber 6 b --- Catalyst filling chamber 6 C --- Mesoche-like diaphragm 6 d --- One throttle part 7---Cobalt catalyst 8---- Cooler 9-----Heating furnace 10---- Gosho heating material 1' 1---- Cooling water piping

Claims (1)

【特許請求の範囲】 ■、触媒を充填し、高温に保持されたレトルト内におい
て、空気とブタン等の炭化水素ガスとを供給し、混合さ
せて、吸熱型ガスを変成させる吸熱型ガス変成装置であ
って、 前記レトルトはラバール管状に中央部に絞り部を有する
筒形状をなし、加熱炉内に配設されるとともに、該レト
ルト内を前記絞り部を境界として、空気余熱室と触媒を
充填した触媒充填部にメソシュ状隔膜にて区画し、レト
ルトの空気余熱室側端部には、空気供給源からの供給空
気量を測定・制御する流量針を経て、空気予熱室に送給
する空気供給管が連結され、また、レトルト内触媒充填
室の前記絞り部側には、加熱炉の炉壁部に配設された冷
却構造を有する断熱材を貫通して配設され、ブタン等の
炭化水素ガス供給量を測定・制御する流量計を経て、炉
外配管によって導かれた多方向からの複数の、ブタン等
の炭化水素ガス供給管が連結され、さらに、レトルトの
触媒充填室側端部には、変成された変成ガスを冷却する
クーラーを有する構造としたことを特徴とした吸熱型ガ
ス変成装置。
[Claims] (1) An endothermic gas shift device that supplies and mixes air and hydrocarbon gas such as butane in a retort filled with a catalyst and maintained at a high temperature to transform an endothermic gas. The retort has a cylindrical shape in the form of a Laval tube with a constriction in the center, and is disposed in a heating furnace, and the retort is filled with an air preheating chamber and a catalyst with the constriction as a boundary. The air to be supplied to the air preheating chamber is divided into a catalyst-filled part by a mesoche-like diaphragm, and at the end of the retort on the air preheating chamber side, air is supplied to the air preheating chamber through a flow rate needle that measures and controls the amount of air supplied from the air supply source. A supply pipe is connected to the constriction part side of the catalyst filling chamber in the retort, and a heat insulating material having a cooling structure provided on the furnace wall of the heating furnace is disposed so as to pass through it. Through a flow meter that measures and controls the amount of hydrogen gas supplied, multiple hydrocarbon gas supply pipes such as butane from multiple directions led by piping outside the furnace are connected, and then the end of the retort on the catalyst filling chamber side An endothermic gas shift device characterized by having a structure including a cooler for cooling the metamorphosed gas.
JP59003228A 1984-01-10 1984-01-10 Endothermic type gas converter Granted JPS60149713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003228A JPS60149713A (en) 1984-01-10 1984-01-10 Endothermic type gas converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003228A JPS60149713A (en) 1984-01-10 1984-01-10 Endothermic type gas converter

Publications (2)

Publication Number Publication Date
JPS60149713A true JPS60149713A (en) 1985-08-07
JPH0418009B2 JPH0418009B2 (en) 1992-03-26

Family

ID=11551588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003228A Granted JPS60149713A (en) 1984-01-10 1984-01-10 Endothermic type gas converter

Country Status (1)

Country Link
JP (1) JPS60149713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299163A (en) * 2008-06-16 2009-12-24 Ntn Corp Heat-treatment method for steel, method for manufacturing machine parts, and machine parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408465B2 (en) * 2008-07-24 2014-02-05 アイシン精機株式会社 Method of carburizing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299163A (en) * 2008-06-16 2009-12-24 Ntn Corp Heat-treatment method for steel, method for manufacturing machine parts, and machine parts

Also Published As

Publication number Publication date
JPH0418009B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US3278452A (en) Production of hydrogen-containing gases
WO2022153719A1 (en) Ammonia decomposition apparatus
EP4257543A1 (en) Ammonia decomposition device
WO2022153718A1 (en) Ammonia decomposition apparatus
KR930002519A (en) Process for producing heat-treated gas body in situ using non-thermologically generated nitrogen
JPS60226596A (en) Manufacture of synthetic gas and equipment therefor
NO20023081L (en) Process and apparatus for obtaining increased production rate of thermal chemical reactions
US20220023824A1 (en) Method and reactor for producing one or more products
US4355003A (en) Two pass endothermic generator
CN114729409B (en) Method for direct reduction of iron ore
JPS5827202B2 (en) Kangengas no Seihou
GB2172011A (en) Thermal reforming of gaseous hydrocarbon
JPS60149713A (en) Endothermic type gas converter
JP2001152313A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing
JPS6081002A (en) Endothermic gas conversion process and its apparatus
US8679264B2 (en) Method for producing a gaseous atmosphere for treating metals
JPS61516A (en) Atmospheric gas generator
JP2001152314A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing
JP6133326B2 (en) Method for producing a gas mixture containing substantially equal proportions of carbon monoxide and hydrogen
JP2006022357A (en) Gas production device for carburization
JP3814780B2 (en) Carburizing method and its transformation furnace for atmospheric gas production
JP4488782B2 (en) Carburizing gas production equipment
JP4180492B2 (en) Carburizing equipment
JP2003286004A (en) Reformer and reforming method
JP2001152312A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing