JPS60149705A - Method and device for forming ultrafine alloy particles by evaporation in gas method - Google Patents

Method and device for forming ultrafine alloy particles by evaporation in gas method

Info

Publication number
JPS60149705A
JPS60149705A JP551484A JP551484A JPS60149705A JP S60149705 A JPS60149705 A JP S60149705A JP 551484 A JP551484 A JP 551484A JP 551484 A JP551484 A JP 551484A JP S60149705 A JPS60149705 A JP S60149705A
Authority
JP
Japan
Prior art keywords
metal
particles
molten metal
vapor pressure
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP551484A
Other languages
Japanese (ja)
Other versions
JPS6160121B2 (en
Inventor
Masaaki Oda
正明 小田
Hidetsugu Fuchida
英嗣 渕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP551484A priority Critical patent/JPS60149705A/en
Publication of JPS60149705A publication Critical patent/JPS60149705A/en
Publication of JPS6160121B2 publication Critical patent/JPS6160121B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form substantially all the assemblages of the cooled and captured ultrafine particles to fine alloy particles by preparing a metallic material having the lower vapor pressure as a molten metal in an evaporating state into a vessel and supplying continuously the other metallic material thereto. CONSTITUTION:A metallic ingot 2 having the lower pressure is prepd. in a crucible 2 provided in a treating vessel 1. An induction heating coil 5a is activated to heat and melt the metallic ingot (a) in the crucible 2 until said ingot evaporates. The other metal (b) having the higher vapor pressure is continuously supplied in the form of a bar, pellet, etc. through a metallic material supply port 10 into the molten metal (a). The outside circumference of the metal (b) is enclosed with the metal (a) and is supplied in the form of a composite metallic material 16 in this case. When the tip end of the material 16 is dipped in the molten metal, the enveloping metal (a) melts and the metal (b) of the core melts and evaporates. The vapors of both metals (a), (b) collide and fuse against and to each other thus forming ultrafine alloy particles. The formed fine particles are cooled by a convectional inert gas during the ascending thereof and are grown to prescribed particles which are then stuck to the cooled sticking plate 6 in a capturing pipe 4. The particles are recovered in a receiving tray 12.

Description

【発明の詳細な説明】 従来、ガス中蒸発法により合金超微粒子を生成する方法
として、蒸気圧が太き(異なる2椋類又はそn以上の金
属全材料とする場合、例えばIi’e、 Co、 Ni
、 Or、 Ou 等の3di移金搗から選んだ1つの
金属とこれよシ蒸気圧の高いZn、 Cd、 Mg等の
金属から選んだ金属とを材料とする場合)その蒸発温度
において蒸気圧が6゛桁から8桁の差があるので、例え
ば相対的に蒸気圧の低いOuと蒸気圧の高いznとを同
−蒸発源内にチャージし蒸発させることが試みられてい
るが、先づ蒸気圧の高い溶融Znが蒸発しつくした所で
、蒸気圧の低いOuが蒸発し始めると云う現象のために
、その生成する超微粒子の殆んどば、夫々Ou、Znの
単独の超微粒子が生成され1その集合体は、夫々単独の
超微粒子の混合物として得らnるにすぎない。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, as a method for producing ultrafine alloy particles by in-gas evaporation method, the vapor pressure is large (for example, Ii'e, Co, Ni
, Or, Ou, etc., and a metal selected from metals with higher vapor pressure such as Zn, Cd, Mg, etc.) At the evaporation temperature, the vapor pressure is Since there is a difference of 6 to 8 orders of magnitude, for example, attempts have been made to charge Ou, which has a relatively low vapor pressure, and Zn, which has a relatively high vapor pressure, into the same evaporation source and evaporate it, but first, the vapor pressure Because of the phenomenon that O, which has a low vapor pressure, begins to evaporate at the point where molten Zn with a high vapor pressure has completely evaporated, most of the ultrafine particles that are generated are individual ultrafine particles of O and Zn, respectively. However, the aggregate is obtained only as a mixture of individual ultrafine particles.

別の生成法として、処理容器内に、例えば、2種の金属
拐料に対応して2つの蒸発隙全設け、その夫々の蒸発源
の加熱温度1変えて、該2種の金属の蒸気圧を夫々制御
しながら夫々の蒸発を併動に行ないその生成蒸気の超微
粒子がガス中で生長する過程で衝突させ混合融着するこ
とを期待する実施が試みられたが、融着融合が十分に起
こらず、その合金超微粒子の生成は極めて少なく、その
捕集した集合体の大部分は、夫夫単独の金属の超微粒子
であった。
As another production method, for example, two evaporation gaps are provided in the processing container corresponding to two types of metal particles, and the heating temperature of each evaporation source is changed by 1 to increase the vapor pressure of the two types of metals. Attempts have been made to evaporate each of them in parallel while controlling each of them, with the hope that the ultrafine particles of the generated vapor will collide and fuse as they grow in the gas, but it has not been possible to achieve sufficient fusion and fusion. This did not occur, and the generation of ultrafine alloy particles was extremely small, and most of the collected aggregates were ultrafine particles of the metal of husbando alone.

本発明は、か\る従来法の欠点ケ改善し、ガス中蒸発法
により、合金の蒸発超微粒子音つくり易くし、その冷却
捕集した超微粒子の集合体が笑質上全てが合金超微粒子
として得られるようにした生成法を提供するもので、蒸
気圧が互に名しく異なる2元又はそrし以上の合金超微
粒子全ガス中蒸発法で生成せしめる方法において〜処理
容器内に、2種又は5種以上の金属材料のうち、最も蒸
気圧の低い金属相打を蒸発状態の溶湯に用意し、こnに
残る1椋又は2種以上の金属材料を連続的に供給するよ
うにしたこと全特徴とする。
The present invention improves the drawbacks of the conventional method, makes it easier to generate the sound of evaporated ultrafine particles of alloy by evaporation in gas, and the aggregate of the cooled and collected ultrafine particles is made up of all alloy ultrafine particles. In this method, two or more alloy ultrafine particles having different vapor pressures are generated by whole gas evaporation method. Among the seeds or five or more metal materials, a metal phase with the lowest vapor pressure is prepared in the evaporated molten metal, and the remaining one or more metal materials are continuously supplied. This is a full feature.

次に本発明の生成法の実施例會その装置の1例と共に汐
付図面につき説明する。
Next, an embodiment of the production method of the present invention and an example of its apparatus will be described with reference to the attached drawings.

第1図は、本発明の生成法を実施する1例の生成装置を
示し、(1)は1内部に蒸発源(2)全備えた処理容器
全示し1該容器+11の下面は不活性ガスの導入さ扛る
導入口(3)に接続し、その上面は超微粒子捕集管(4
)を介し真空排気系(図示しない)に接続嘔れている。
FIG. 1 shows an example of a generation apparatus for carrying out the production method of the present invention. The upper surface of the ultrafine particle collection tube (4) is connected to the inlet (3) where the
) is connected to a vacuum exhaust system (not shown).

該蒸発源(2)は、るつぼから成り、その外周に加熱手
段(5)を備える。該加熱手段(5)ぽ、例えば、誘導
加熱コイル(5aJとこれに接続さnる外部の65周波
電源(5b)とから成る。前記捕集管(4)内に冷却付
着板(6)を有し、その側方に開閉弁(7)ヲ介し回収
室(8)が連通付設さnている。(12+は回収受皿、
(131はその操作杆を示す。本発明によnば、その処
理容器(1)の上部側壁に外周に筒状シール部材(9)
を備えた金属材料供給口(101設けられている。Uυ
に1不活性ガスの排出口を示す。
The evaporation source (2) consists of a crucible and is equipped with heating means (5) around its outer periphery. The heating means (5) consists of, for example, an induction heating coil (5aJ) and an external 65-frequency power source (5b) connected to it. A collection chamber (8) is connected to the side through an on-off valve (7). (12+ is a collection tray,
(131 indicates the operating rod. According to the present invention, a cylindrical seal member (9) is provided on the outer periphery of the upper side wall of the processing container (1).
A metal material supply port (101 is provided. Uυ
Figure 1 shows the inert gas outlet.

上記の本発明装置により本発明の合金超微粒子生成法の
実施例・を以下に説明する。互に蒸気圧が大きく異なる
2種類の金属の合金超微粒子の生成法につき説明するに
、蒸気圧の低い方の金属諷aを該るつぼ(2)内に用意
し、気密状態とした処理容器(1)内を、真空ポンプの
作動により臭突排気する1方不活性ガス(Ar、 He
、 Xθなど)を矢示のように導入し、そのガスの対流
下で所定の不活性ガス圧に容器内を保つ。この状態にお
いて1高周波tπ源(5bJに接続の誘電加熱コイル(
51L)ffi活性化し、前記るつぼ(2j内の金H兆
a k加熱溶融し溶湯とし且つ蒸発せしめる。1万1こ
nと合金上止ぜしめる他方の金属b1即ち、蒸気圧の高
い方の金fibi、金属材料供給口00)より気密に挿
入し前記の金Maの溶湯に連続的に供給するが、その1
つの供給形態として、その金属b′t−予め長手の棒状
体とし〜該棒状体の外周に前記の蒸気圧の低い金属aの
筒状形成体で被包し同軸の棒状の複合金属材料(161
とし、これを該供給口(101より気密に挿入しその先
端を前記のるつぼ(2)内に漬けて所要の速度で連続的
に拝送供給する。かくして、その内部の金ff1bU、
その外周の金属a(Cより、その供給途上における蒸発
源からの放射熱や溶湯から蒸発する蒸気aの熱で溶融し
或は蒸発することから保護されるようにし、その先端が
溶湯に漬った膨曲に、その被包金属aが溶けると共に芯
材−の金属すが溶融蒸発し、而してその金属蒸気すは、
確実に金属蒸気す内を上昇すること\なシ、両種金属蒸
気a、bの衝突融合の機会は充分与えらnてその合金超
微粒子をもたらす。
Examples of the method for producing ultrafine alloy particles of the present invention using the above-described apparatus of the present invention will be described below. To explain the method for producing ultrafine alloy particles of two metals with significantly different vapor pressures, the metal with the lower vapor pressure is prepared in the crucible (2), and the processing vessel (2) is kept in an airtight state. 1) One-way inert gas (Ar, He,
, Xθ, etc.) is introduced as indicated by the arrow, and the inside of the container is maintained at a predetermined inert gas pressure under the convection of the gas. In this state, one high frequency tπ source (dielectric heating coil connected to 5bJ)
51L) ffi is activated, and the gold H in the crucible (2j) is heated and melted to form a molten metal and evaporated. fibi, inserted airtightly from the metal material supply port 00) and continuously supplied to the molten gold Ma.
As one supply form, the metal b't is made into a longitudinal rod-shaped body in advance, and the outer periphery of the rod-shaped body is covered with a cylindrical formed body of the metal a having a low vapor pressure, and a coaxial rod-shaped composite metal material (161
This is airtightly inserted through the supply port (101), its tip is immersed in the crucible (2), and fed continuously at the required speed.
The metal a (C) on its outer periphery is protected from being melted or evaporated by the radiant heat from the evaporation source during its supply and the heat of steam a evaporating from the molten metal, and its tip is immersed in the molten metal. Due to the expansion, the enveloping metal a melts and the core metal vapor melts and evaporates, and the metal vapor is
By ensuring that the metal vapor rises within the chamber, sufficient opportunity is given for collision and fusion of both metal vapors a and b to produce ultrafine particles of the alloy.

このようにして生成した合金超微粒子は一対流不活性ガ
スにより、その上昇中に冷やされ、生長しながら数十X
−数μmの範囲の粒子となシ、捕集管(4)内に入り冷
却付着板(6)に付着する。こ扛衾回収受皿Q2+にか
きとり回収する。回収した超微粒子は回収室(8)内に
於いてそのま\或は”2r02など全導入バルブ(14
Jよυ導入しその表面徐酸化処理後回収室+8Jより外
部に取り出す。或はN2ガスを大気圧1で導入し、グロ
ーブを使い瓶中に封入すること゛もできる。而して、そ
の捕集した超微粒子の集団全検査しfc所、その各粒子
は、金属a、bから成る合金超微粒子でらシ、金属a、
b単独から成る超微粒子は笑賃上皆無てらった。尚、そ
の各合金超微粒子の合金組成比はばらつきが殆んどなく
均質な集会体か得らf′した。
The ultrafine alloy particles produced in this way are cooled during their ascent by a single convection inert gas, and as they grow, they are
- Particles in the range of several μm enter the collection tube (4) and adhere to the cooling adhesion plate (6). Scrape and collect in the collection tray Q2+. The collected ultrafine particles can be stored in the collection chamber (8) as is or with a full introduction valve (14) such as "2r02".
After the surface is slowly oxidized, it is taken out from the recovery chamber +8J. Alternatively, N2 gas can be introduced at atmospheric pressure 1 and sealed into the bottle using a glove. Then, the entire group of collected ultrafine particles was inspected, and each particle was found to be an alloy ultrafine particle consisting of metals a and b, metal a,
Ultrafine particles consisting of b alone were completely destroyed. The alloy composition ratio of each ultrafine alloy particle was determined as f' since a homogeneous aggregate with almost no variation was obtained.

色々実験研究の結果、るつぼに充填さnる金属aの重1
b生成すべき所定の超微粒子量の約100倍とし、一定
速度で複合金属材F−1全供給しその充填金属の最初か
ら最後1で蒸発させた所捕集さnた超微粒子中の合金組
成のばらつきは僅か0.1%程度で大きく変化すること
がなく、磁気特性として大きい変化のない合金超微粒子
か得らnることが分った。尚、不活性ガスの圧力は、不
活性ガスの供給量と排気ガLを調節することにより1ト
ール〜100トールの間で行なうのが一般である。
As a result of various experimental studies, the weight of metal a filled in the crucible is 1
(b) The amount of ultrafine particles to be generated is approximately 100 times that of the predetermined amount of ultrafine particles, and the alloy in the ultrafine particles collected when the composite metal material F-1 is completely fed at a constant rate and evaporated from the beginning to the end of the filled metal. It was found that the variation in composition was only about 0.1% and did not change significantly, and that ultrafine alloy particles with no large change in magnetic properties were obtained. Incidentally, the pressure of the inert gas is generally controlled between 1 Torr and 100 Torr by adjusting the supply amount of the inert gas and the exhaust gas L.

次に1上記の装置全使用し、更にd′を細な製造例につ
き説明する。
Next, a detailed manufacturing example of d' will be explained in which all of the above-mentioned apparatuses are used.

磨造例す るつぼ内に約5像のoumiuャージし、処理容4 器内k 1x 1o トールまで排気した後He力′ス
全下部よV導入し上部より排気し一、容器内の圧力がH
e 3.0トールとなるようにHθガスの供給量と排気
量會論節する。誘導加熱コイル内に高周波1f流を流し
るつぼ内のCu塊全全加熱溶解し、加熱昇温をつ!ける
。電源出力601(w投入後約1時間で溶湯温度が15
50’(:に辻しGuを蒸発させた。このOuu発開始
と略同時に、径6.2頭のZnの棒に外径10mg内径
4Hの肉厚5玉のOuの筒状体で被包した同軸の棒状複
合金属糊料を真空シール供給口全通して該高温のOu溶
溶湯−供給した。かくして、その棒の先端において、外
周のOuとその内部のZnの溶融、蒸発が同時に連続的
に起る。かくして、上方の捕集管に導かれた超微粒子全
捕集し、表面徐酸化処理後、大気に取シ用し翫その集会
体につき分析した所その全てかは〈均一な組成の0u−
Zn合金超微粒子がら成っていることが確認さ扛た0そ
]’11 径ハ400〜1200 A % 主[800
A )ものであった。即ち、0u−Znの組成分析は、
螢光X線分析装置を用い行なゎ扛たが、超微粒子1個1
個の中の0u−Znの成分分析のために透過型電子顕微
鏡付属の電子エネルギー損失スペクトル分析法を併用し
た。粒径は1電子顕微鏡写真により測定した。又、電子
エネルギー損失スペクトル写真による解析において、粒
子の1個1個からのスペクトルと、粒子集団からのスペ
クトルが良く一致している事が確認され、粒子間におけ
る偏析が大きくないことが判明した。
Approximately 5 images of oumiu were placed in the pot to be polished, and after exhausting the processing volume to 1 x 10 m, the pressure inside the container was raised to H.
e Adjust the Hθ gas supply amount and displacement so that it is 3.0 torr. A high-frequency 1f current is passed through the induction heating coil to fully heat and melt the Cu mass in the crucible, and the temperature is raised! Let's go. Power output 601 (w The temperature of the molten metal reached 15% in about 1 hour after turning on the power.
50' (:), Gu was evaporated. Almost at the same time as this Ouu emission started, a Zn rod with a diameter of 6.2 heads was encapsulated with an O cylinder with an outer diameter of 10 mg and an inner diameter of 4H and a wall thickness of 5 balls. The coaxial rod-shaped composite metal paste was supplied through the entire vacuum seal supply port to the high-temperature O molten metal.Thus, at the tip of the rod, the O on the outer periphery and the Zn inside were simultaneously and continuously melted and evaporated. In this way, all of the ultrafine particles introduced into the upper collection tube were collected, and after surface slow oxidation treatment, they were released into the atmosphere and their aggregates were analyzed. 0u-
It was confirmed that the material was composed of Zn alloy ultrafine particles.
A) It was. That is, the composition analysis of 0u-Zn is
This was carried out using a fluorescent X-ray analyzer, but only one ultrafine particle was detected.
For component analysis of Ou-Zn in the specimen, an electron energy loss spectrum analysis method attached to a transmission electron microscope was used. The particle size was measured using an electron micrograph. Furthermore, in analysis using electron energy loss spectrophotography, it was confirmed that the spectra from individual particles and the spectra from a group of particles were in good agreement, and it was found that there was no significant segregation between particles.

上記の実施において、別記の0u−Znの同軸複合棒の
供給速度(龍/關)1従って又、Znの重玩供給速度(
7xmりと、生成合金超微粒子中のZnの成分比との関
係を調べた所第2図のAで示す関係曲線全行た。又1高
周波電源の出カ全ふ7Mi L、Ouの溶湯温度全15
00”(:とした以外は、全く上記と同じ笑施企行なっ
た所\Bで示す関係曲線を得た。この1500”cの溶
湯温度での生成合金超微粒子の粒径に150〜450X
In the above implementation, the supply rate of the coaxial composite rod of 0u-Zn (Yu/Kan) 1, which is stated separately, and the Zn heavy rod supply rate (
7xm and the Zn component ratio in the produced ultrafine alloy particles was investigated, and all the relationship curves shown at A in FIG. 2 were obtained. In addition, the total output of the high frequency power supply is 7Mi, and the molten metal temperature of L and Ou is 15
The relationship curve shown in \B was obtained by carrying out exactly the same procedure as above except for 00" (:).
.

主VC300Aであった。こnから明らかなように、合
金超微粒子の合金成分の割合U、Zn棒の供給速度や溶
湯の蒸発温度に大きく変化することが分る。
The main one was VC300A. As is clear from the above, it can be seen that the ratio U of the alloy components of the ultrafine alloy particles, the feeding rate of the Zn rod, and the evaporation temperature of the molten metal vary greatly.

次に、3相(の金属全材料としてその5元合金超微粒子
を製造する例につき説明する。
Next, an example of producing ultrafine particles of a quinary alloy as a three-phase (all-metal material) will be described.

製造例2 製造例1と同様に、最も蒸気圧の低いN1塊を3縁るつ
ぼ内にチャージし、容器内圧力i2.0)−ル、溶湯温
度を1800″CK調節し、Niを蒸発させた。
Production Example 2 In the same manner as Production Example 1, the N1 lump with the lowest vapor pressure was charged into a three-edge crucible, and the pressure inside the container (i2.0) and the molten metal temperature were adjusted to 1800"CK to evaporate Ni. .

Ni蒸発と同時に径3.2HのPbの棒に厚さ□、5M
幅10mのテープ状のAg fテーピングの要領で看き
付け、更にその外周盆外径8tjI内径5寵の肉厚1.
5間のN1の筒状体で被包した同軸の棒状複合金属材料
全真空シール供給口を通してN1溶湯中に供給した。か
くして、その棒の先端において、外周のNiとその内部
のAg及びPbの溶融蒸発が同時に連続的に起る。かく
して上方の捕集管に導かれた超微粒子を捕集し、表面徐
酸化処理後、大気に取り出し、その集合体につき分析し
た所、その全てが略均−な組成のNi−Pb−Ag合金
超微粒子から成っていることが確ftt 3 n−た。
At the same time as Ni evaporation, a Pb rod with a diameter of 3.2H was added to a thickness of □, 5M.
Tape it in the same way as Ag f taping with a width of 10 m, and further tape the outer periphery of the tray with an outer diameter of 8 tj and an inner diameter of 5 tm and a wall thickness of 1.
A coaxial rod-shaped composite metal material encapsulated in a cylindrical body of N1 for 5 minutes was fed into the N1 molten metal through a fully vacuum-sealed supply port. Thus, at the tip of the rod, Ni on the outer periphery and Ag and Pb on the inside simultaneously and continuously melt and evaporate. The ultrafine particles thus led to the upper collection tube were collected, and after surface slow oxidation treatment, they were taken out into the atmosphere and analyzed for their aggregates, which revealed that all of them were Ni-Pb-Ag alloys with approximately uniform composition. It was confirmed that it was composed of ultrafine particles.

その粒径は200〜60OA、主に40OAのものでβ
った。Ni−Pb−Agの組成分析に、前記と仝様に螢
光X線分析装置及び透過型電子顕微鏡付属の電子エネル
ギー損失スペクトル分析法を伴用した。その結果Ni−
Pb−Ag超@粒子の粒子間における偏析が大きくない
ことが判明した。
The particle size is 200~60OA, mainly 40OA and β
It was. For the compositional analysis of Ni-Pb-Ag, a fluorescent X-ray spectrometer and an electron energy loss spectrum analysis method attached to a transmission electron microscope were used in the same manner as described above. As a result, Ni-
It was found that the segregation between the Pb-Ag super@ particles was not large.

上記の実施例において、前記のNi−Pb−Agの同軸
複合棒の供給速度(mm / min )と生成合金超
微粒子中の成分比との関係を調べた所第3図示の結果を
得た。上記の実施例においては、蒸気圧の高い側の金属
材料は、供給途上での容器内の熱による溶融、蒸発を防
止するに、溶湯の金属材料と同じ材料で被覆することを
示したが、これに代え、例えば、断熱性や耐熱性パイプ
を使用できる。この場合は、供給金属材料は、ペレット
状、粉状等であっても、そのパイプ内を通し溶湯に連続
的に供給できる。溶湯蒸発源用の金属材料全加熱溶融す
るには、直接抵抗加熱−、間接抵抗加熱アーク法、その
他任意の加熱手段が選択使用できる。
In the above example, the relationship between the feed rate (mm/min) of the Ni-Pb-Ag coaxial composite rod and the component ratio in the produced ultrafine alloy particles was investigated, and the results shown in Figure 3 were obtained. In the above example, it was shown that the metal material on the side with higher vapor pressure is coated with the same material as the metal material of the molten metal in order to prevent melting and evaporation due to heat in the container during supply. Alternatively, for example, insulating or heat-resistant pipes can be used. In this case, even if the supplied metal material is in the form of pellets, powder, etc., it can be continuously supplied to the molten metal through the pipe. To completely heat and melt the metal material for the molten metal evaporation source, direct resistance heating, indirect resistance heating arc method, and any other heating means can be selected and used.

多くの実験研究の結果、溶湯蒸発源用の金員の蒸気圧と
供給用金員材料の蒸気圧との差は少くとも4桁の大きい
差がある場合に、本発明の方法は〜従来法に比し、効果
が顕著にあられ詐ることが分った。両種の金属関係とし
て、蒸気圧の小さい万の系としては1上記のOu対Zn
の他に、例えは、Au、 Ag、 Pt 等の責金民、
Fe、 Co、 Or等の磁性材料、A!等の導電性材
料、蒸気圧の大きい方の系としては、Od、 P b+
 Mn、’ Mg、 N a 等の金属或はSm、 O
e、 La等の希土類金呂冶から選択使用される。この
関係を満足する限り、2種以上の供給側の金属の相互の
蒸気圧の差は4桁以下であってもよく2桁でも差支えな
いことに勿論である)好ましくは3桁以上がよい。
As a result of many experimental studies, it has been found that when the difference between the vapor pressure of the metal material for the molten metal evaporation source and the vapor pressure of the metal material for supply is at least four orders of magnitude large, the method of the present invention can be applied to the conventional method. It was found that the effect was significantly greater than that of the previous one. Regarding the relationship between the two types of metals, as a system of 1,000 with a small vapor pressure, the above Ou vs. Zn
In addition, for example, metals such as Au, Ag, Pt, etc.
Magnetic materials such as Fe, Co, Or, A! Conductive materials such as Od, Pb+ as systems with higher vapor pressure
Metals such as Mn, Mg, Na or Sm, O
It is used selectively from rare earth metals such as e and La. As long as this relationship is satisfied, the difference in vapor pressure between two or more types of metals on the supply side may be 4 digits or less, or 2 digits or less (of course), but preferably 3 digits or more.

尚1図示しないが、金属材料の供給は、上記の棒状材料
による供給に代え、例えば、断熱材等から成るすベシ台
を設け、その上端部に用意した円球などのペレント状金
属杓料の多数を順次すべり台上k J1g+次ころがし
て連続的にるつぼ内の溶湯金属拐料に供給するように゛
してもよい。
1. Although not shown in the drawings, the metal material can be supplied by using a pellet-shaped metal scoop such as a round sphere prepared at the upper end of a base made of a heat insulating material, etc., for example, instead of the above-mentioned supply using a rod-shaped material. A large number of particles may be sequentially rolled on a slide and then continuously supplied to the molten metal particles in the crucible.

このように本発明によるときは、2種又はそれ以上の金
属材料全ガス中蒸発法により2元又はそれ以上の合金超
微粒子を製造するに当り、こnら材料中、最も蒸気圧の
低い金属材料を蒸発状態の溶湯とし、この溶湯に、外部
から残る金属材料を連続的に供給するようにしたので、
両者の蒸気か同時に生成し且つ互に混合接触し得ら扛、
全体として良好な合金超微粒子の集団が得らn〜その供
給速度音度えることにより、合金組成比の異なる所望の
合金超微粒子を容易に得ることができる等の効果を有す
る。
As described above, according to the present invention, when producing ultrafine alloy particles of two or more metal materials by the whole gas evaporation method, the metal with the lowest vapor pressure among these materials is used. The material is molten metal in an evaporated state, and the remaining metal material is continuously supplied to this molten metal from the outside.
Both vapors can be generated simultaneously and come into mixed contact with each other,
By controlling the supply rate so that a good population of ultrafine alloy particles is obtained as a whole, it is possible to easily obtain desired ultrafine alloy particles having different alloy composition ratios.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法と装置を示す1例の1部を截除
した側面閃、第2図は1桁判供給速度と生成する合金超
微粒子の組成比の関係曲線全示すグラフ、第3図は他の
実施例における第2図と仝様の関係曲線を示すグラフで
ある。 (1)・・・・・・処理容器 (2)・・・・・・る 
つ ぼ(3)・・・・・・不活性ガス導入口 (4)・
・・・・・捕 集 管(5)・・・・・・加熱手段 (
6)・・・・・・冷却付着板(101・・・・・・金属
材料供給口 a・・・・・・溶湯用金目材料b・・・・
・・供紹用金h(材料 特許出願人 新技術開発事業団 同 上 小 1) 正 開 開 上 渕 1) 英 嗣
FIG. 1 is a partially cut-out side view of an example showing the method and apparatus of the present invention, and FIG. 2 is a graph showing the entire relationship curve between the single-digit feed rate and the composition ratio of ultrafine alloy particles produced. FIG. 3 is a graph showing a relationship curve similar to that of FIG. 2 in another embodiment. (1)... Processing container (2)...
Pot (3)... Inert gas inlet (4).
...Collection tube (5) ... Heating means (
6)...Cooling adhesion plate (101...Metal material supply port a...Metal material for molten metal b...
...Provided money h (Material patent applicant New Technology Development Corporation 1st grade) Kaikai Masaru Kamibuchi 1) Hidetsugu

Claims (1)

【特許請求の範囲】 1、蒸気圧が互に著しく異なる2元又はそれ以上の合金
超微粒子音ガス中蒸発法で生成せしめる方法において、
処理容器内に、2種又は3種以上の金属材料のうち、最
も蒸気圧の低い金属材料を蒸発状態の溶湯に用意し、こ
れに残る1種又は2棟以上の金属材料上連続的に供給す
るようにしたこと全特徴とするガス中蒸発法による合金
超微粒子生成法。 2溶湯に供給で扛る1種又は2種以上の金属材料は棒状
、ペレット状等の固体である特許請求の範囲1、に記載
の生成法。 &溶湯に供給さ九る金属材料の少くとも1種は、溶湯と
して用意さ庇る金属材料の蒸気圧に対し2桁以上の高い
蒸気圧の差を有する特許請求の範囲1.に記載の生成法
。 4、溶湯に供給さ扛る金属材料は、棒状、ペレット状等
であり、その外周r処理容器内の熱により溶融又は蒸発
音生じない金属材料で被dさnている特5′「請求の範
囲1.に記載の生成法。 5、該被覆金属材料は、溶湯として用慧されると同じ金
属材料である特許請求の範囲4に記載の生成法。 6、内部に溶湯を生成するための加熱装置金膜けた処理
容器に、金属材料を外部から供給する供給口を設けて成
る合金超微粒子生成法竹。
[Claims] 1. A method of producing ultrafine particles of two or more alloys having significantly different vapor pressures by evaporation in a sonic gas,
A metal material with the lowest vapor pressure among two or more types of metal materials is prepared in the molten metal in an evaporated state in a processing container, and continuously supplied onto the remaining one or more metal materials. A method for producing ultrafine alloy particles using the evaporation method in gas, which has all the characteristics that we have developed. 2. The production method according to claim 1, wherein the one or more metal materials supplied to the molten metal are solids such as rods or pellets. & At least one of the metal materials supplied to the molten metal has a vapor pressure that is two or more orders of magnitude higher than the vapor pressure of the metal material prepared as the molten metal. Generation method described in. 4. The metal material supplied to the molten metal is in the form of a rod, pellet, etc., and its outer periphery is covered with a metal material that does not produce melting or evaporation noise due to the heat in the processing container. The production method according to claim 1. 5. The production method according to claim 4, wherein the coating metal material is the same metal material used as the molten metal. 6. A bamboo alloy ultrafine particle production method consisting of a heating device, a gold-film sintered treatment container, and a supply port for supplying metal material from the outside.
JP551484A 1984-01-18 1984-01-18 Method and device for forming ultrafine alloy particles by evaporation in gas method Granted JPS60149705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP551484A JPS60149705A (en) 1984-01-18 1984-01-18 Method and device for forming ultrafine alloy particles by evaporation in gas method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP551484A JPS60149705A (en) 1984-01-18 1984-01-18 Method and device for forming ultrafine alloy particles by evaporation in gas method

Publications (2)

Publication Number Publication Date
JPS60149705A true JPS60149705A (en) 1985-08-07
JPS6160121B2 JPS6160121B2 (en) 1986-12-19

Family

ID=11613292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP551484A Granted JPS60149705A (en) 1984-01-18 1984-01-18 Method and device for forming ultrafine alloy particles by evaporation in gas method

Country Status (1)

Country Link
JP (1) JPS60149705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425779B (en) * 2004-02-16 2008-08-06 Climax Engineered Mat Llc Method and apparatus for producing nano-particles of silver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425779B (en) * 2004-02-16 2008-08-06 Climax Engineered Mat Llc Method and apparatus for producing nano-particles of silver

Also Published As

Publication number Publication date
JPS6160121B2 (en) 1986-12-19

Similar Documents

Publication Publication Date Title
CA2990362C (en) Method of manufacturing soft magnetic dust core and soft magnetic dust core
JP5676551B2 (en) Sodium / molybdenum powder compact and method for making the same
JP4773438B2 (en) Mercury-releasing composition and method for producing the same
Wada Preparation of fine metal particles by the gas evaporation method with plasma jet flame
US1814719A (en) Ductile thorium and method of making the same
WO2018169428A1 (en) Method for producing copper matrix nanocomposite materials
US4683118A (en) Process and apparatus for manufacturing a pressed powder body
US4985400A (en) Process for producing superconductive ceramics by atomization of alloy precurser under reactive atmospheres or post annealing under oxygen
JPS60149705A (en) Method and device for forming ultrafine alloy particles by evaporation in gas method
US3165396A (en) Deflection of metal vapor away from the vertical in a thermal evaporation process
US3150975A (en) Method of making intermetallic compound-composition bodies
KR20030092102A (en) Method for the preparation of higly densified superconductor massive bodies of mgb2, relevant solid end-products and their use
Devaux et al. Production of ultrafine powders of Bi Sb solid solution
Djekoun et al. Synthesis and morphological characterization of nanocrystalline powders obtained by a gas condensation method
US1469761A (en) Ingot of refractory metals and method of making same
JPH0119448B2 (en)
JP2002538071A5 (en)
US3219496A (en) Method of producing columnar crystal texture in sintered permanent magnets
RU2169960C2 (en) Evaporant gas-entrapping device with reduced activation time
JP2515346B2 (en) Process for producing block comprising PbxMoySz-Siebrel phase
DE1792453C3 (en) Method for producing a polycrystalline diamond body
JPS63162884A (en) Structural body of hydrogen occlusion alloy and its production
JPS61113703A (en) Production of pulverous powder
JP2903106B2 (en) Ultra-fine gold-copper alloy particles having a regular icosahedral structure and method for producing the same
JPS58133307A (en) Preparation of ultrafine particle