JPS60149007A - Formation of optical waveguide - Google Patents

Formation of optical waveguide

Info

Publication number
JPS60149007A
JPS60149007A JP456184A JP456184A JPS60149007A JP S60149007 A JPS60149007 A JP S60149007A JP 456184 A JP456184 A JP 456184A JP 456184 A JP456184 A JP 456184A JP S60149007 A JPS60149007 A JP S60149007A
Authority
JP
Japan
Prior art keywords
groove
substrate
refractive index
glass layer
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP456184A
Other languages
Japanese (ja)
Inventor
Shigehiro Kusumoto
楠本 茂宏
Keisuke Watanabe
敬介 渡辺
Hideaki Okayama
秀彰 岡山
Yasuo Shoji
庄司 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP456184A priority Critical patent/JPS60149007A/en
Publication of JPS60149007A publication Critical patent/JPS60149007A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify a grooving stage and to reduce the time for grooving by combining a machining using a dicing saw or wire saw and isotropic etching by a chemical etching method to perform grooving to a glass substrate. CONSTITUTION:A substrate 1 having resist 2 is machined with a tentative groove 4 having a depth d1 along a pattern 3 by an adequate machining means such as a dicing saw or wire saw, etc. After the resist 2 is removed, the groove 4 is chemically etched at an ordinary temp. by using hydrofluoric acid by which the tentative groove is trimmed and a groove 7 for an optical waveguide is formed. A glass layer 8 having a refractive index n2 larger than the refractive index n1 of the glass substrte 1 is deposited on the grooved substrate 1 by using a technique of CVD method, etc. The part 8a on the substrate surface 1b of the deposited glass layer 8, a part of the part 8b in the groove 7 and the surface 1b of the substrate 1 are removed by polishing so that the remaining glass layer part 8b in the groove 7 remains. The polished surface 1c thereof is finished to a smooth surface having optically good surface accuracy. Another glass layer 9 having the refractive index approximately equal to the refractive index of the substrate 1 is then deposited and formed on the above-mentioned layer by CVD method and the remaining glass layer part 8b in the groove 7 is formed as the optical waveguide.

Description

【発明の詳細な説明】 (発明の技術分野) この発明はマルチモードの光導波路の形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for forming a multimode optical waveguide.

(技術的背景) 従来よりこの種の光導波路の色々な形成方法が提案され
ている。例えば、文献= 「電子通信学会技術研究報告
 OQ E 80−1354 (1981年2月20日
発行)に開示されている方法で代表されるように、従来
方法では、石英等のガラス基板に対してCF4等の反応
性ガスを使用したドライエツチング法(例えば、Rea
ctive Ton Etching、以下RIEとい
う)により、横断面の形状が角型の溝を形成し、このガ
ラス基板の屈折率よりも屈折率の大きい別のガラス材料
をCvD等の方法でこの角型溝に堆積させて光導波路を
形成していた。
(Technical Background) Various methods for forming this type of optical waveguide have been proposed. For example, in the conventional method, as typified by the method disclosed in the document "IEICE Technical Research Report OQ E 80-1354 (published February 20, 1981), Dry etching method using reactive gas such as CF4 (for example, Rea
A groove with a square cross section is formed by active ton etching (hereinafter referred to as RIE), and another glass material having a refractive index higher than that of the glass substrate is formed into this square groove by a method such as CvD. They were deposited to form optical waveguides.

ところで、通常伝送用として使用されているマルチモー
ド光ファイバのコアの直径は50井11程度である。こ
れがため、光ファイバとの接合に好適な同程度の寸法を
有する溝の加工をに連した従来のようにRIE法による
エツチングのみで行うとすると、このRIE法での加工
速度が遅いため、加工に長時問掛ってしまうという欠点
がある。
Incidentally, the core diameter of a multimode optical fiber normally used for transmission is about 50mm. For this reason, if a groove with similar dimensions suitable for bonding to an optical fiber is processed only by etching using the RIE method, as in the past, the processing speed of this RIE method is slow, so the processing speed is low. The problem is that it takes a long time to answer questions.

また、このRIE法でエツチングされて得られた溝の壁
面及び底面は光学的に粗面であるため、これが光の散乱
による伝搬損失の主要原因となるという欠点がある。
Furthermore, since the walls and bottom surfaces of the grooves etched by this RIE method are optically rough, there is a drawback in that they are a major cause of propagation loss due to light scattering.

さらに、このRIE法によるエツチングは異方性エツチ
ングであるため、加工された溝、すなわち、光導波路の
断面形状は角型となってしまう。
Furthermore, since etching by this RIE method is anisotropic etching, the cross-sectional shape of the processed groove, that is, the optical waveguide, becomes square.

これがため、光導波路の接合面と円形断面形状を看する
光ファイバとの接合面との完全な一致が得られず、従っ
て、接合部で断面形状の相違による接続損失が起るとい
う欠点がある。
For this reason, the bonding surface of the optical waveguide and the bonding surface of the optical fiber, which has a circular cross-sectional shape, cannot be perfectly matched, resulting in a disadvantage that splice loss occurs at the bonded portion due to the difference in cross-sectional shape. .

(発明の目的) この発明の目的は上述した従来方法の欠点を除去した先
導波路の形成方法を提供するにある。
(Object of the Invention) An object of the present invention is to provide a method for forming a leading waveguide that eliminates the drawbacks of the above-mentioned conventional methods.

(発明の構成) この目的の達成を図るため、この発明においては、ガラ
ス基板へ溝加工するに当り、グイシングンーとかワイヤ
ソーとか等による機械加工と、化学エツチング法による
等方性エツチングとを組合せて行うことを要旨とする。
(Structure of the Invention) In order to achieve this object, in the present invention, when forming grooves on a glass substrate, a combination of machining using a guissing machine, wire saw, etc., and isotropic etching using a chemical etching method are performed. The gist is that.

(実施例の説明) 以下、図面を参照してこの発明の実施例につき説明する
(Description of Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(^)〜(C)はこの発明の光導波路の形成方法
の一実施例を説明するための工程図で、それぞれ、主要
段階における光導波路の形成状態を断面図として略1Δ
的に示しである。
FIGS. 1(^) to (C) are process diagrams for explaining one embodiment of the optical waveguide forming method of the present invention, each of which is a cross-sectional view of the optical waveguide formation state at the main stage and approximately 1Δ
This is a clear indication.

先ず、第1図(A)に示すように、石莢等のガラス基板
1(屈折率をnlとする)を用意し、この基板lの表面
Ia上に、通常のホトリソグラフィ技術により、レジス
ト2を塗布し、光導波路を形成する部分にパターン3を
転写する。基板1のこのパターン3に対応する部分に光
導波路が形成される。このパターン30幅V1’+(第
1図(B))を形成すべき光導波路の幅W2(第1図(
C))よりも全体的に小さめに形成する。
First, as shown in FIG. 1(A), a glass substrate 1 (having a refractive index of nl) such as a stone pod is prepared, and a resist 2 is formed on the surface Ia of the substrate 1 by ordinary photolithography technology. is applied, and pattern 3 is transferred to the portion where the optical waveguide is to be formed. An optical waveguide is formed in a portion of the substrate 1 corresponding to this pattern 3. Width W2 (Fig. 1 (B)) of the optical waveguide to form this pattern 30 width V1' + (Fig. 1 (B))
C) The overall size is smaller than that of (C)).

次に、第1図(B)に示すように、このレジスト2を有
する基板1に対して、このレジスト2のパターン3に沿
って、タイシングツ−1或いは、ワイヤソー等の適切な
機械加工手段によって、深さdlの仮構4を機械加工形
成する。この仮構4の断面形状は壁の側面5a、5bと
底面6とか交差する角の部分が角ぼって丸みのないいわ
ゆる四角型形状となっている。
Next, as shown in FIG. 1(B), the substrate 1 having the resist 2 is processed along the pattern 3 of the resist 2 by a tying tool 1 or an appropriate machining means such as a wire saw. A temporary structure 4 having a depth dl is formed by machining. The cross-sectional shape of this temporary structure 4 has a so-called rectangular shape with rounded corners where the side surfaces 5a and 5b of the wall intersect with the bottom surface 6.

次に、第1図(C)に示すように、レジスト2を除去し
た後、この仮構4に対して弗酸を用いて常温で化学エツ
チングを行って仮構の整形を行い。
Next, as shown in FIG. 1C, after removing the resist 2, the temporary structure 4 is chemically etched using hydrofluoric acid at room temperature to shape the temporary structure.

光導波路用の溝7を形成する。この場合、弗酸の濃度を
、例えば、50%の濃度とすることが出来る。この化学
エツチングは等方性エツチングであるため、仮構4の壁
の側面5a、5b及び底面6の方向にエツチングが行わ
れ、仮構4が加工整形され、幅W2及び深さd2の溝7
が得られる。この化学エツチングによる加工量、すなわ
ち、エツチングにより仮構4の壁面(5a 、5b、 
6 )及び基板面la(第1図(C)に点線で示す)か
ら掘られる量をrとすれば、第1図(C)に示すように
、整形されて最終的に得られる満7の幅W2はW、+2
rとなり、深さd2はdlと同じとなる。従って、機械
加工による切り込み深さdlは導波路の所定の寸法と同
寸に設定出来る。また、この化学エツチングにより、角
型の仮構4(第1図(C)に点線で示す)の側面5a、
5bと底面6とが交差する部分の角が取れて、この仮構
4の両面の交差する点を中心とした半径rの円弧状とな
り、従って、最終的に得られる溝7の隅の部分7a、7
bは図示のように丸くなり、溝7の断面形状はU字状と
なる。
A groove 7 for an optical waveguide is formed. In this case, the concentration of hydrofluoric acid can be, for example, 50%. Since this chemical etching is isotropic etching, etching is performed in the direction of the side surfaces 5a, 5b and bottom surface 6 of the wall of the temporary structure 4, and the temporary structure 4 is processed and shaped to form a groove 7 with a width W2 and a depth d2.
is obtained. The amount of processing by this chemical etching, that is, the wall surface of the temporary structure 4 (5a, 5b,
6) and the amount of excavation from the substrate surface la (indicated by the dotted line in Figure 1 (C)) is r, then as shown in Figure 1 (C), the final shape of the full 7 Width W2 is W, +2
r, and the depth d2 is the same as dl. Therefore, the cutting depth dl by machining can be set to be the same as the predetermined dimension of the waveguide. Also, by this chemical etching, side surfaces 5a of the square temporary structure 4 (shown by dotted lines in FIG. 1(C)),
The corner of the intersection between 5b and the bottom surface 6 is rounded to form an arc shape with radius r centered at the point where both surfaces of this temporary structure 4 intersect, and thus the corner portion 7a of the groove 7 finally obtained. 7
b is rounded as shown in the figure, and the cross-sectional shape of the groove 7 is U-shaped.

この化学エツチングによる加工量を制御して溝7の断面
を、光ファイバに対する接合に好適な大きさ及び形状と
なるようにする。
The amount of processing by this chemical etching is controlled so that the cross section of the groove 7 has a size and shape suitable for joining to the optical fiber.

また、所定の導波路寸法よりも深く切り込んで仮構4を
形成し、溝7の加工終了後に、基板1のエツチングによ
り得られた面を研摩して所定の寸法にイ1上げることも
可能である。
It is also possible to form the temporary structure 4 by cutting deeper than the predetermined waveguide dimensions, and after completing the processing of the grooves 7, polish the surface obtained by etching the substrate 1 to increase the dimensions to the predetermined dimensions. .

この化学エツチングで得られた溝7の壁の面は光学的に
面精度が良い平滑面であり、光の伝送に悪影響を及ぼす
光の散乱を効果的に減少させる。
The surface of the wall of the groove 7 obtained by this chemical etching is a smooth surface with good optical surface precision, and effectively reduces light scattering that adversely affects light transmission.

図中エツチングで得られた基板表面をIbで示す。In the figure, the substrate surface obtained by etching is indicated by Ib.

第2図(A)〜(C)はこのようにして加工された先導
波路用溝に光学的に透明な光伝送に好適な物質を堆積し
てコア部である光導波路を形成する工程を説明する工程
図である。
Figures 2 (A) to (C) explain the process of depositing an optically transparent material suitable for light transmission into the leading waveguide groove processed in this way to form an optical waveguide, which is the core part. This is a process diagram.

第2図(A)に示すように、この溝伺き基板lに対して
CVD法等の通常の技術を用いてガラス3板lの屈折率
n、より大きな屈折率n2のカラス層8(基板表面Ib
上の部分を8aとし、IIq7内の部分8bとする)を
堆積させる。
As shown in FIG. 2(A), the refractive index n of the three glass plates l and the glass layer 8 (substrate Surface Ib
The upper portion is designated as 8a and the portion within IIq7 is designated as 8b).

次に、第2図CB)に示すように、基板lに堆積したカ
ラス層8の基板表面lb上の部分8aと、溝7内の部分
8bの一部分と、基板1の表面1bを研摩して除去し、
溝7内の残りのガラス層部分8bを残存させて、その研
摩面1cを光学的に面精度の良い平滑面にする。
Next, as shown in FIG. 2 CB), the portion 8a on the substrate surface lb of the glass layer 8 deposited on the substrate l, a part of the portion 8b inside the groove 7, and the surface 1b of the substrate 1 are polished. remove,
The remaining glass layer portion 8b in the groove 7 is left to make the polished surface 1c a smooth surface with optically good surface precision.

次に、第2図(C)に示すように、CVD法によりカラ
ス基板1と同程度の屈折率の別のガラス層9を堆積して
形成し、溝7内の残存ガラス層部分8bを光導波路とし
て形成する。
Next, as shown in FIG. 2(C), another glass layer 9 having a refractive index similar to that of the glass substrate 1 is deposited and formed by the CVD method, and the remaining glass layer portion 8b in the groove 7 is used as a light guide. Form as a wave path.

」二連した溝7に充填する光導波路用の物質は光学的に
透明で基板より屈折率が大きく光伝送に実害を与えない
物質であれば良く1例えば、樹脂等でも良い。
The material for the optical waveguide filled in the double grooves 7 may be any material as long as it is optically transparent, has a higher refractive index than the substrate, and does not cause actual damage to optical transmission.For example, it may be a resin or the like.

(発明の効果) 上述した説明からも明らかなように、この発明の光導波
路形成方法によれば、光導波路作成時のガラス基板の溝
加工をグイシングツ−とかワイヤソーとか等による機械
加工と、化学エツチング法による等方性エツチング工程
とで行う。この機械加工工程は、エツチングと異なり、
金属保護膜を不用とし、また、次に行われる弗酸による
エツチング丁二程も、エツチング液と接触する面が均等
にエツチングされて所定の溝構造が得られるので、エツ
チング用の保護膜を不用とし、従って、この発明によれ
ば、これら保護膜の■タイイは工程を省略出来、よって
、溝加工工程の簡単化と、溝加工時間の短縮化とを図れ
るという利点がある。
(Effects of the Invention) As is clear from the above description, according to the method for forming an optical waveguide of the present invention, the grooves on the glass substrate are processed by mechanical processing using a cutting tool, a wire saw, etc., and by chemical etching when forming the optical waveguide. This is done using an isotropic etching process. This machining process is different from etching,
This eliminates the need for a metal protective film, and in the subsequent etching step with hydrofluoric acid, the surface that comes in contact with the etching solution is etched evenly and a predetermined groove structure is obtained, so a protective film for etching is not required. Therefore, according to the present invention, it is possible to omit the step (1) of forming these protective films, which has the advantage of simplifying the groove machining process and shortening the groove machining time.

また、この化学エツチング法でのエツチング速度は、例
えば、濃度50%の弗酸を使用したとすると、RIE法
のエツチング速度よりも10倍から20倍速いので、こ
の発明の方法によれば、従来のRIE法のみによるエツ
チングにより溝加工する場合に比べて溝加工時間を短縮
することが出来るという利点が得られる。
Furthermore, the etching speed of this chemical etching method is 10 to 20 times faster than that of the RIE method when using hydrofluoric acid with a concentration of 50%, so the method of this invention is faster than the etching speed of the RIE method. This has the advantage that the groove processing time can be shortened compared to the case where groove processing is performed by etching using only the RIE method.

才た、この化学エツチングにより、溝の面の面精度を、
従来のRIE法のみによるエツチングの場合よりも、高
< lli来、光学的に良質の平滑面が得ら、従って、
従来のような先導波路の面の荒さに起因する光の散乱も
なく伝送損失を低減出来るという利点が得られる。− さらに、化学エツチングにより、溝の断面形択を従来の
角型から角の無い丸みを有する、例えば、U字状形状と
かその他の形状、例えば、円形形状とすることが出来る
ので、光ファイバとの接合を従来の場合よりも良好に行
うことが出来、接続損失を著しく低減させるこたが出来
るという利点が得られる。
This chemical etching improves the surface accuracy of the groove surface.
Compared to conventional RIE etching alone, a smooth surface with optically good quality can be obtained since
There is an advantage that transmission loss can be reduced without scattering of light caused by the roughness of the surface of the leading waveguide as in the conventional method. - Furthermore, by chemical etching, the cross-sectional shape of the groove can be changed from the conventional square shape to a rounded shape with no corners, such as a U-shape, or another shape, such as a circular shape, so that it can be used for optical fibers. This has the advantage that the bonding can be performed better than in the conventional case, and the connection loss can be significantly reduced.

尚、この発明は上述した実施例にのみ限定されるもので
はないこと明らかである。例えば、化学エツチングを弗
酊以外のものを用いて行っても良く1例えば、アルカリ
性のものを用いることが出来る。
It is clear that the present invention is not limited only to the embodiments described above. For example, chemical etching may be carried out using something other than fluorescein; for example, an alkaline material can be used.

さらに、弗酸の濃度を50%以外の他の濃度とすること
も出来る。
Furthermore, the concentration of hydrofluoric acid can also be set to a concentration other than 50%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)はこの発明の光導波路形成方法の
溝加工の工程を示す工程図、 第2図(A)〜(C)はこの発明の光導波路形成方法の
溝に光学物質を設けて光導波路を完成させる工程を示す
工程図である。 1・・・(屈折率n、の)ガラス基板、Ia・・・(ガ
ラス基板の)表面 1b・・・(エツチングで得られた)基板表面1c・・
・(ガラス基板の)研摩面 2・・・レジスト、 3・・・(マスクの)パターン4
・・・仮構、 5a、5b・・・(仮構の)側面6・・
・(仮構の)底面、7・・・(先導波路用)溝?a 、
 7b・・・(溝の)隅の部分8・・・(屈折率n2の
)ガラス層 88・・・(基板表面上の)ガラス層部分8b・・・(
jに内の)ガラス層部分又光導波路9・・・(研磨面上
に設けられた)別のガラス層。 特許出願人 沖電気工業株式会社 ( \ \ く く ; :o Q
FIGS. 1(A) to (C) are process diagrams showing the steps of groove machining in the method for forming an optical waveguide of the present invention, and FIGS. FIG. 3 is a process diagram showing a process of providing a substance to complete an optical waveguide. 1...Glass substrate (with refractive index n), Ia...Surface 1b (of the glass substrate)...Substrate surface 1c (obtained by etching)...
・Polished surface 2 (of the glass substrate)...Resist, 3...Pattern 4 (of the mask)
...temporary structure, 5a, 5b...(temporary structure) side 6...
・(Temporary) bottom surface, 7... (for leading waveguide) groove? a,
7b... Corner portion 8 (of the groove)... Glass layer 88 (with refractive index n2)... Glass layer portion 8b (on the substrate surface)... (
Glass layer portion (inside j) or optical waveguide 9...another glass layer (provided on the polished surface). Patent applicant: Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 屈折率nlのカラス基板に溝を形成し、該溝に屈折率n
2(nl<n2)の光学的材料を堆積させて光導波路を
形成するに当り、該溝の形成を、先ず、該基板に対し機
械加工を行って仮構を形成する工程と、該仮構に対して
化学エツチング法で等方性エンチングを行って前記仮構
を整形する工程とにより行うことを特徴とする光導波路
形成方法。
A groove is formed in a glass substrate with a refractive index of nl, and a groove with a refractive index of nl is formed in the groove.
2 (nl<n2) to form an optical waveguide, the formation of the groove is first performed by machining the substrate to form a temporary structure, and then by forming a temporary structure on the substrate. 1. A method for forming an optical waveguide, comprising the step of shaping the temporary structure by performing isotropic etching using a chemical etching method.
JP456184A 1984-01-13 1984-01-13 Formation of optical waveguide Pending JPS60149007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP456184A JPS60149007A (en) 1984-01-13 1984-01-13 Formation of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP456184A JPS60149007A (en) 1984-01-13 1984-01-13 Formation of optical waveguide

Publications (1)

Publication Number Publication Date
JPS60149007A true JPS60149007A (en) 1985-08-06

Family

ID=11587451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP456184A Pending JPS60149007A (en) 1984-01-13 1984-01-13 Formation of optical waveguide

Country Status (1)

Country Link
JP (1) JPS60149007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143004A (en) * 1985-12-18 1987-06-26 Sumitomo Electric Ind Ltd Optical wavelength and its manufacture
JPH01172936A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Manufacture of optical wavelength converting element
US5465312A (en) * 1990-11-05 1995-11-07 British Telecommunications, Plc Integrated optical fibre and substrate supported optical waveguide having directly connected optical cores

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143004A (en) * 1985-12-18 1987-06-26 Sumitomo Electric Ind Ltd Optical wavelength and its manufacture
JPH01172936A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Manufacture of optical wavelength converting element
US5465312A (en) * 1990-11-05 1995-11-07 British Telecommunications, Plc Integrated optical fibre and substrate supported optical waveguide having directly connected optical cores

Similar Documents

Publication Publication Date Title
US4431260A (en) Method of fabrication of fiber optic coupler
WO2019152455A1 (en) Optical couplers for evanescent coupling of polymer clad fibers to optical waveguides using alignment features
EP0484878B1 (en) Y-branching optical circuit
US20050285216A1 (en) Etching process for micromachining materials and devices fabricated thereby
KR20140117001A (en) optical coupler and optical device module used the same
US20160223750A1 (en) System for optically coupling optical fibers and optical waveguides
US6535685B1 (en) Arcuate fiber routing using stepped grooves
JPS61279808A (en) Manufacture of lightwave guiding coupler
JPH09105824A (en) Waveguide type optical element
US6556759B2 (en) Integrated optical device
JPS60149007A (en) Formation of optical waveguide
JP3666463B2 (en) Optical waveguide device and method for manufacturing optical waveguide device
JP2771167B2 (en) Optical integrated circuit mounting method
JPH11248963A (en) Optical fiber and connection structure of optical waveguide element
JPS60129711A (en) Formation of optical waveguide
JPS63163308A (en) Optical element and its manufacture
JPH0743552A (en) Optical waveguide element for coupling semiconductor laser diode and waveguide type module using the same
JPH04140702A (en) Method and device for connection between optical fiber and optical waveguide
JPH0234806A (en) Demultiplexer/multiplexer and its manufacture
JP2003121679A (en) Optical fiber device using optical fiber having end face formed obliquely
JPS61267010A (en) Optical waveguide circuit and its manufacture
JPH09230167A (en) Connection structure for optical guide
JPH04180004A (en) Connector for optical circuit
JPS6041007A (en) Method of grinding optical fiber lengthwise and ground product
JPH10133041A (en) Waveguide with filter