JPS60148394A - Field pole detecting position correcting method of synchronous motor - Google Patents

Field pole detecting position correcting method of synchronous motor

Info

Publication number
JPS60148394A
JPS60148394A JP59000817A JP81784A JPS60148394A JP S60148394 A JPS60148394 A JP S60148394A JP 59000817 A JP59000817 A JP 59000817A JP 81784 A JP81784 A JP 81784A JP S60148394 A JPS60148394 A JP S60148394A
Authority
JP
Japan
Prior art keywords
torque
signal
synchronous motor
phase
field pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000817A
Other languages
Japanese (ja)
Inventor
Toru Kai
徹 甲斐
Tomoaki Tanimoto
谷本 智昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP59000817A priority Critical patent/JPS60148394A/en
Publication of JPS60148394A publication Critical patent/JPS60148394A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To simplify the circuit configuration by applying a torque disturbance signal as a torque command signal, and controlling so that the phase difference between the current applied to a synchronous motor and the detection signal of a field pole becomes zero when the torque generated in the motor becomes the specific value. CONSTITUTION:A speed command is set to zero, and a torque disturbance signal is generated by a torque disturbance generator 20. A synchronous motor 11 is rotated by the torque disturbance signal, and the speed is fed back by a speed detector 21. A pole position error detector 22 outputs a phase variation signal to a signal processor 14 so that the generated torque becomes zero. When the motor 11 is driven, the generator 20 and the detector 22 are separated with each other.

Description

【発明の詳細な説明】 く技術分野〉 本発明は同期電動機の界磁極検出位置補正方法に関する
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a field pole detection position correction method for a synchronous motor.

〈従来技術〉 同期電動機のベクトル制御は、レゾルバにより界磁極位
置を検出し、界磁部位置と同期した位相の正弦波電流の
振幅および位相の制御を行いトルク制御を行う。
<Prior Art> In vector control of a synchronous motor, a resolver detects a field pole position, and torque control is performed by controlling the amplitude and phase of a sine wave current whose phase is synchronized with the field part position.

界磁極の磁束の大きさをΦ、電流値を1.真の界磁極位
置を表わす電気信号と固定子電流のイ!曹14差をδと
すると、発生トルクTは T=K・Φ・I cosδ(K 定数)・・・・・・(
1)となる。この位相差δは、レゾルバを同期電動機に
取付ける際の機械的なずれにす1Lづく。この11′L
相差δが大きくなると、式(1)かられかるように発生
トルクTは小さくなる。
The magnitude of the magnetic flux of the field pole is Φ, and the current value is 1. The electric signal representing the true field pole position and the stator current a! If the difference in cos 14 is δ, the generated torque T is T=K・Φ・I cos δ (K constant) (
1). This phase difference δ is equal to 1L due to mechanical deviation when attaching the resolver to the synchronous motor. This 11'L
As the phase difference δ increases, the generated torque T decreases as can be seen from equation (1).

この位4’[I差δを袖IEする方法として、同期電動
機の誘起電圧と界磁極位置検出信号の位相差をカウンタ
により検出し、マイクロコンピュータ処刑!により面圧
する方法が提案されてい7.N、4Q願昭58−158
841 >。この方法では、1誘起電圧の検出回路、誘
起電圧と磁極位置検出(ii弓の位相差検出回路を必要
とし、回路構成が複雑であった。
As a method for calculating the 4'[I difference δ, a counter detects the phase difference between the induced voltage of the synchronous motor and the field pole position detection signal, and the microcomputer executes the detection signal. A method of applying surface pressure has been proposed by 7. N, 4Q Gansho 58-158
841>. This method required one induced voltage detection circuit and a phase difference detection circuit for induced voltage and magnetic pole position detection (ii), resulting in a complicated circuit configuration.

〈発明の目的〉 したがって、本発明の目的は、界磁極位置検出のだめの
誘起電圧の検出回路を不用にして、回路構成が1す)単
な、同期電動機、の界磁極検出位置補正方法を提供する
ことにある。
<Object of the Invention> Therefore, an object of the present invention is to provide a method for correcting the detected position of a field pole of a synchronous motor, which eliminates the need for an induced voltage detection circuit for detecting the field pole position and has a simple circuit configuration. It's about doing.

〈発明の構成〉 ′ 本発明は、トルク指令信号としてトルク外乱信号を与え
、同期′電動機の発生トルクが特定の値になったときに
、同期電動機に印加する電流と界磁極の真の位置を表わ
す信号との位相差が零となるように前記電流の位相を調
整するようにしたものである。
<Configuration of the Invention> The present invention provides a torque disturbance signal as a torque command signal, and calculates the current applied to the synchronous motor and the true position of the field pole when the generated torque of the synchronous motor reaches a specific value. The phase of the current is adjusted so that the phase difference with the signal being represented becomes zero.

〈実施例〉 以下、本発明の実施例を図面を参照しなから説明す−る
。′第1図は本発明の同期′電動機の界磁極検出位置補
正方法を適用した同期電動機のベクトル制御回路のブロ
ック図である。
<Examples> Examples of the present invention will be described below with reference to the drawings. 1 is a block diagram of a vector control circuit for a synchronous motor to which the field pole detection position correction method for a synchronous motor of the present invention is applied.

レゾルバ位置検出回路16はレゾルバ励磁回路15の正
弦波出力信号の1相分(α相又はβ相)とレゾルバ12
の検出信号(θ相)の位相差δ0を検出することにより
レゾルバ位置の検出を行なう。この位相差δ0の検出は
、位相差0から2πまでを1024に分割したクロック
信号をカウントすることにより行なわれる。カウント値
が“256”であれば位相差δ0はπ/2である。この
カウント値がレゾルバ位置検出回路16から出力される
The resolver position detection circuit 16 uses one phase (α phase or β phase) of the sine wave output signal of the resolver excitation circuit 15 and the resolver 12
The resolver position is detected by detecting the phase difference δ0 of the detection signal (θ phase). Detection of this phase difference δ0 is performed by counting clock signals obtained by dividing the phase difference 0 to 2π into 1024. If the count value is "256", the phase difference δ0 is π/2. This count value is output from the resolver position detection circuit 16.

信号処理回路14は、レゾルバ位置検出回路16から出
力される位相差δ0に対応したカウント値をアドレスと
して正弦関数値(α相)と余弦関数[直(β相)を記憶
したメモリ(ROM)を備えており、レゾルバ位置検出
回路16から出力されるカウント値に対する正弦関数値
(αjlJ ) 、余弦関数値(β相)を出力する。し
たがって、レゾルバ位置検出回路16から’256”が
出力されると、メモリのアドレス256がアクセスされ
てsin (π/2)。
The signal processing circuit 14 uses the count value corresponding to the phase difference δ0 outputted from the resolver position detection circuit 16 as an address to store a sine function value (α phase) and a cosine function [direct (β phase)] in a memory (ROM). It outputs a sine function value (αjlJ) and a cosine function value (β phase) for the count value output from the resolver position detection circuit 16. Therefore, when '256' is output from the resolver position detection circuit 16, address 256 of the memory is accessed and sin (π/2).

cos (π/2)の値が信号処理回路14から出力さ
れゾルパ位置検出回路16から出力された位相差δ0に
対応するカウント値にこの位相可変信号γを加算した位
相δ(−δθ+γ)に対応するアドレスの正弦関数値、
余弦関数値が出力される。乗算器16a、16bは速度
アンプ19の出力であるトルク指令信号Tと信号処理回
路14のα相の出力、β相の出力をそれぞれ乗算して電
機子電流指令信号S+ + 82を電流制御回路17に
出力する。電流制御回路17は電機子電流指令信号S+
 、 S2を人力して3相の電機子電流指令信号をパル
ス幅変調・駆動回路18に出力する。パルス幅変調・駆
動回路18は3相の電機子電流指令信号を人力して、イ
ンバータ10に駆動信号群を出力する。トルク外乱発生
回路20は振幅およびパルス幅が任意のトルク外乱信号
ΔTを出力する。このトルク外乱信号ΔTのパルス幅は
速度アンプ19の出力であるトルク指令Tが零になるま
で続くようなものでもよく、また振幅は大きい程、トル
ク指令Tの感度が高くなる。ただし、このトルク外乱信
号ΔTは運転中はトルク指令Tと区別できないため運転
中は印加することができない。このトルク外乱信号ΔT
により同期電動機11は回転し、速度検出回路21によ
り速度1’Jrbをフィードバックする。
The value of cos (π/2) is output from the signal processing circuit 14 and corresponds to the phase δ (−δθ+γ) obtained by adding this phase variable signal γ to the count value corresponding to the phase difference δ0 output from the solpa position detection circuit 16. the sine function value of the address,
The cosine function value is output. Multipliers 16a and 16b multiply the torque command signal T, which is the output of the speed amplifier 19, by the α-phase output and the β-phase output of the signal processing circuit 14, respectively, and output the armature current command signal S+ + 82 to the current control circuit 17. Output to. The current control circuit 17 receives an armature current command signal S+
, S2 is manually operated to output a three-phase armature current command signal to the pulse width modulation/drive circuit 18. The pulse width modulation/drive circuit 18 manually inputs three-phase armature current command signals and outputs a group of drive signals to the inverter 10. The torque disturbance generation circuit 20 outputs a torque disturbance signal ΔT having an arbitrary amplitude and pulse width. The pulse width of this torque disturbance signal ΔT may be such that it continues until the torque command T, which is the output of the speed amplifier 19, becomes zero, and the larger the amplitude, the higher the sensitivity of the torque command T becomes. However, since this torque disturbance signal ΔT cannot be distinguished from the torque command T during operation, it cannot be applied during operation. This torque disturbance signal ΔT
The synchronous motor 11 rotates, and the speed detection circuit 21 feeds back the speed 1'Jrb.

ここで、速度指令N r e fは零であるので、速度
アンプ19の出力であるトルク指令Tは T=に−Nib ・・・ ・・・・・・・・・・・・・
・(2)ただし、Kは速度アンプ19のゲイン となる。磁極位置誤差検出回路22は発生2トルクTが
零となるように信号処理回路14に位相可変信号γを出
力する。この発生トルクTが零となるのは、式(1)か
ら位相差δ−π/2又は3π/2のときである。第2図
は真の磁極位置を示す磁束Φの波形、固定子電流工の波
形そしてトルク外乱信号ΔTおよび位相可変信号rを向
えて磁束Φと固定子電流■の位相差がδ−δ0+γ=π
/2になったときの固定子電流■の波形である。ベクト
ル制御を行なうためにはこの位相差δを袖市してcos
δ−1又は−1にする必要がある。−π/2≦δθ≦π
/2のとき、発生トルクはT−Φ・f−cosδ0≧0
となって同期電動機11は正転し、トルク指令TはT−
−に−Nrbとなる。この点から位相aJ’ g イr
<号rをLノえて発生トルクTが零となるのはδ−δ0
+γ−π/2の点であるから、ベクトル制御を行なうた
めにはδを−π/2だけ動かす必要がある。n≦δ0≦
312のとき、発生トルクはT−Φ・■・COSδ≦0
となって同期電動機11は逆転し、トルク指令TはT二
十K・NIbとなる。この点から位相可変・信号γを与
えて発生トルクTが零となるのはδ−δθ+γ=39の
点であるから、ベクトル制御、を行なうためにはδ−」
−嗟だけ動かず必要がある。なお、第1図において一点
鎖線内は実際にはマイクロコンピュータにより処理され
る。
Here, since the speed command N r e f is zero, the torque command T, which is the output of the speed amplifier 19, becomes T= -Nib . . .
-(2) However, K is the gain of the speed amplifier 19. The magnetic pole position error detection circuit 22 outputs a variable phase signal γ to the signal processing circuit 14 so that the generated two-torque T becomes zero. The generated torque T becomes zero when the phase difference is δ-π/2 or 3π/2 from equation (1). Figure 2 shows the waveform of the magnetic flux Φ showing the true magnetic pole position, the waveform of the stator current, the torque disturbance signal ΔT, and the phase variable signal r, and the phase difference between the magnetic flux Φ and the stator current ■ is δ−δ0+γ=π
This is the waveform of the stator current ■ when it becomes /2. In order to perform vector control, this phase difference δ is converted into cos
It is necessary to set it to δ-1 or -1. −π/2≦δθ≦π
/2, the generated torque is T-Φ・f-cosδ0≧0
As a result, the synchronous motor 11 rotates forward, and the torque command T becomes T-
- becomes -Nrb. From this point, the phase aJ' g ir
<When r is exceeded by L, the generated torque T becomes zero at δ−δ0
Since the point is +γ−π/2, it is necessary to move δ by −π/2 in order to perform vector control. n≦δ0≦
312, the generated torque is T-Φ・■・COSδ≦0
As a result, the synchronous motor 11 rotates in reverse, and the torque command T becomes T20K·NIb. From this point, the phase variable signal γ is applied and the generated torque T becomes zero at the point δ - δθ + γ = 39, so in order to perform vector control, δ -
-It is necessary to remain still for a while. Note that in FIG. 1, the parts within the dashed line are actually processed by a microcomputer.

第6図は磁極位置に相当する誘導1し電力、信号処理回
路14の出力(α相)および乗算器16aの出力S10
波形を示している。乗算器16aの出力S、の波形のう
ち実線はトルク指令Tが大きいとき、一点鎖線はトルク
指令Tが小さいよき、破線はトルク指令Tが負のときを
示し、これらは速度制御を行っているときの加減速運転
に伴って表われる。
FIG. 6 shows the induction power corresponding to the magnetic pole position, the output of the signal processing circuit 14 (α phase), and the output S10 of the multiplier 16a.
It shows the waveform. Among the waveforms of the output S of the multiplier 16a, the solid line indicates when the torque command T is large, the dashed line indicates when the torque command T is small, and the broken line indicates when the torque command T is negative, and these are speed control. Appears during acceleration and deceleration.

次に、界磁極検出位置補正の動作について、第4図のフ
ローチャートを参照しながら説明する。
Next, the operation of field pole detection position correction will be explained with reference to the flowchart of FIG. 4.

ステップ1. 速度指令N refを零とする。Step 1. Set the speed command N ref to zero.

ステップ2.トルク外乱発生回路20でトルク外乱信号
ΔTを発生させる。
Step 2. A torque disturbance signal ΔT is generated by a torque disturbance generation circuit 20.

ステップ5.速度検出回路21で速度Nr、、を演算す
る。
Step 5. The speed detection circuit 21 calculates the speed Nr, .

ステップ4.速度アンプ19で発生トルクT−・K(N
 rQt N rb )を演算する。
Step 4. The torque generated by the speed amplifier 19 is T-・K(N
rQt N rb ).

ステラ151発生トルクTが零かどうか判定する。It is determined whether the torque T generated by Stella 151 is zero.

ステップ6 発生トルクTの(1す6性を判定する。こ
れは、前述のように発生トルクTが零になった時点の位
相差δがπ/2か3π/2かをチェックするために行な
う。
Step 6 Determine the (1/6) property of the generated torque T. This is done to check whether the phase difference δ at the time when the generated torque T becomes zero as described above is π/2 or 3π/2. .

ステップ7 発生トルクTか市のときのベクトル制御を
行なうための位相差δの補正;i)θCを設定する。
Step 7 Correction of the phase difference δ for vector control when the generated torque is T or less; i) Set θC.

ステップ8 発生トルクTが負のときベクI・ル制御を
行なうための位相差δのFlli iE :1′f、θ
Cを設定する。
Step 8 Flli iE of phase difference δ for performing vector I-le control when generated torque T is negative: 1'f, θ
Set C.

ステップ9 信号処理回路14内のROMのアドレスを
“1″増加させた後、ステップ2に戻る。
Step 9 After incrementing the address of the ROM in the signal processing circuit 14 by "1", return to step 2.

ステップ2からステップ9までの処理は発生トルクTが
零になるまで繰返される。
The processes from step 2 to step 9 are repeated until the generated torque T becomes zero.

ステップ10. 真の磁極位置δ−δ。+γ+θCを演
算する。すなわち、このステップではδ0+γが演算さ
れ、このγの値が信号処理回路14に記憶される。そし
て同期電動機11の駆動に入ると、トルク外乱発生回路
20および磁極位置誤差検出回路22は切離されレゾル
バ位置検出回路16からの人力δ0に記憶されていたγ
を加えδ−δo+r+θCを信号処理回路14で演算し
て(、O8δ=1となるような出力sinθ、 cos
θをは一号処理回路14から出力する。すなわち、この
ときの補正はレゾルバ位置検出回路16の出力からアド
レス(δo、+r)のROMのイ直を引くか、又は位相
π/2に相当するアドレスの値を加えることζ二より行
なう。この1市正は、正づ玄、余り玄の波形を発生する
ときに毎回行なう。
Step 10. True magnetic pole position δ−δ. +γ+θC is calculated. That is, in this step, δ0+γ is calculated, and the value of γ is stored in the signal processing circuit 14. When the synchronous motor 11 is driven, the torque disturbance generation circuit 20 and the magnetic pole position error detection circuit 22 are disconnected, and the γ stored in the human power δ0 from the resolver position detection circuit 16 is removed.
is added and δ-δo+r+θC is calculated by the signal processing circuit 14 (, output sinθ, cos such that O8δ=1)
θ is output from the No. 1 processing circuit 14. That is, the correction at this time is performed by subtracting the address (δo, +r) from the output of the resolver position detection circuit 16, or by adding the value of the address corresponding to the phase π/2. This 1-ichi correction is performed every time when generating a waveform of correctness and remainder.

〈発明の効果〉 本発明によれば界磁極位置検出のための誘起電圧の検出
回路が不用で回路構成が簡単になり、また界磁極位置誤
差を速度アンプの出力に検出しているので検出感度が副
<、高精度の界磁極位置検出の補正をすることができる
<Effects of the Invention> According to the present invention, there is no need for an induced voltage detection circuit for detecting the field pole position, which simplifies the circuit configuration.Also, since the field pole position error is detected in the output of the speed amplifier, the detection sensitivity is improved. If sub<, it is possible to correct the field pole position detection with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の同期電動機の界磁極検出位置補正方法
を適用した同期電動機のベクトルFlll制御回路のブ
ロック図、第、2図は真の磁極位置を示す磁束Φの波形
、固定子電流Iの波形そしてトルク外乱信号ΔTおよび
位相i■敦倍信号な〜えて磁束Φと固定子電流■の位相
差がδ−δ0+γ−π/2になったときの固定子電流I
の波形、第6図は6a極位置に相当する誘導起電力、信
号処理回路14の出力(α相)および乗算器16aの出
力S1の波形、第4図は界磁極検出位置補正の動作を示
すフローチャートである。 11:同期電動機、12 レゾルバ、13.レゾルバ位
置検出回路、14 信号処理回路、15、レゾルバ励磁
回路、16a + 16b :乗澹1’17;、19:
速度アンプ、20 トルク外乱発生回路、21:速度検
出回路、22°磁極位置1誤差検出回路。 第 2 図 第 3 図 第4図
Fig. 1 is a block diagram of a vector Fll control circuit for a synchronous motor to which the field pole detection position correction method for a synchronous motor of the present invention is applied, and Figs. The waveform of the torque disturbance signal ΔT and the phase i.
FIG. 6 shows the induced electromotive force corresponding to the pole position 6a, the waveforms of the output (α phase) of the signal processing circuit 14 and the output S1 of the multiplier 16a, and FIG. 4 shows the operation of field pole detection position correction. It is a flowchart. 11: Synchronous motor, 12 Resolver, 13. Resolver position detection circuit, 14 Signal processing circuit, 15, Resolver excitation circuit, 16a + 16b: 1'17;, 19:
Speed amplifier, 20: Torque disturbance generation circuit, 21: Speed detection circuit, 22° magnetic pole position 1 error detection circuit. Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 同期電動機の界磁極位置検出414号とトルク指令信号
に基づいて前記同期′電動機をベクトル制御する装置に
おいて、 前記トルク指令信号としてトルク外乱信号を与え、前記
同期電動機の発生トルクが特定の値になったときに、前
記同期′電動機に印加する電流と前記界1磁極の真の位
置を表わす信号との位相差が零となるように前記電流の
位相を、il、il整するようにしたことを特徴とする
、同期電動機の界磁極検出位置補正ん法。
[Claims] A device for vector-controlling the synchronous motor based on a field pole position detection No. 414 of a synchronous motor and a torque command signal, wherein a torque disturbance signal is given as the torque command signal to control the generated torque of the synchronous motor. The phase of the current is adjusted il, il so that the phase difference between the current applied to the synchronous motor and the signal representing the true position of the field 1 magnetic pole becomes zero when becomes a specific value. A field pole detection position correction method for a synchronous motor, characterized in that:
JP59000817A 1984-01-09 1984-01-09 Field pole detecting position correcting method of synchronous motor Pending JPS60148394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000817A JPS60148394A (en) 1984-01-09 1984-01-09 Field pole detecting position correcting method of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000817A JPS60148394A (en) 1984-01-09 1984-01-09 Field pole detecting position correcting method of synchronous motor

Publications (1)

Publication Number Publication Date
JPS60148394A true JPS60148394A (en) 1985-08-05

Family

ID=11484222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000817A Pending JPS60148394A (en) 1984-01-09 1984-01-09 Field pole detecting position correcting method of synchronous motor

Country Status (1)

Country Link
JP (1) JPS60148394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511448B2 (en) 2004-01-07 2009-03-31 Mitsubishi Electric Corporation Motor control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511448B2 (en) 2004-01-07 2009-03-31 Mitsubishi Electric Corporation Motor control device

Similar Documents

Publication Publication Date Title
US4808903A (en) Vector control system for induction motors
US6005365A (en) Motor control apparatus
EP0089208B1 (en) A.c. motor drive apparatus
US20040012367A1 (en) Apparatus for controlling brushless motor
JPH0793823B2 (en) PWM controller for voltage source inverter
EP0139006B1 (en) System for controlling synchronous motor
US6255798B1 (en) Control apparatus for electric vehicle
EP0104909A2 (en) Servomotor control method and apparatus therefor
US7135828B2 (en) System and method for controlling a permanent magnet electric motor
US6242882B1 (en) Motor control apparatus
JPS60148394A (en) Field pole detecting position correcting method of synchronous motor
US4628240A (en) Synchronous motor control system
JPS61262006A (en) Controller of induction motor for vehicle
JPH11122974A (en) Rotation position detection method and device for rotor of synchronous motor
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPH08182377A (en) Circuit for automatic phase correction of synchronous motor
JP2531607B2 (en) Detection speed correction method
JP2674024B2 (en) Servo controller
JPH02142383A (en) Brushless motor
JP3292797B2 (en) Motor drive control device
KR880001593B1 (en) Ac motor speed control system
JPH0974787A (en) Detection method for current of ac motor
JPS62126894A (en) Controller for synchronous motor
JPS6156951B2 (en)
JPH0363317B2 (en)