JPS60147252A - Shaking type coarse splitting machine - Google Patents

Shaking type coarse splitting machine

Info

Publication number
JPS60147252A
JPS60147252A JP232084A JP232084A JPS60147252A JP S60147252 A JPS60147252 A JP S60147252A JP 232084 A JP232084 A JP 232084A JP 232084 A JP232084 A JP 232084A JP S60147252 A JPS60147252 A JP S60147252A
Authority
JP
Japan
Prior art keywords
rough
splitting
plate
split
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP232084A
Other languages
Japanese (ja)
Inventor
萩原 達雄
今井 敬司
長岡 茂徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP232084A priority Critical patent/JPS60147252A/en
Priority to US06/688,889 priority patent/US4637562A/en
Priority to CA000471611A priority patent/CA1229077A/en
Priority to DE8585300140T priority patent/DE3577406D1/en
Priority to EP85300140A priority patent/EP0148780B1/en
Priority to MX203993A priority patent/MX161441A/en
Publication of JPS60147252A publication Critical patent/JPS60147252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Crushing And Grinding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、製鉄、製鋼過程で生じる各種炉滓の処理に於
いて、鉄分含有率が50〜6096以上と高く、しかも
その寸法が3oo〜500mm以上の大塊状の炉滓を、
効率良く粗割又は変形することのできる揺動式粗割機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a large block furnace with a high iron content of 50 to 6,096 or more and a size of 30 to 500 mm or more in the treatment of various furnace slag generated during iron and steel manufacturing processes. The slag,
The present invention relates to a rocking type rough splitting machine that can efficiently perform rough splitting or deformation.

製鉄、製鋼過程で生じる高炉滓、転炉滓、電気炉滓等の
大部分は投棄処理されていたが、近年埋立地の減少と質
源有効利用の観点から、炉滓中の鉄分の回収と鉱滓の骨
材としての利用が行われている。
Most of the blast furnace slag, converter slag, electric furnace slag, etc. generated in the iron and steel manufacturing processes were disposed of by dumping, but in recent years, from the perspective of reducing landfill sites and making effective use of raw materials, efforts have been made to recover the iron content in the furnace slag. Mine slag is used as aggregate.

これ位炉滓を破砕する過程に於いて、磁気によシ鉄分を
製鉄、#鋼層精鉱として回収しまうとするものであシ、
更に製鉄、製鋼用精鉱としての鉄分含有率を高める目的
で、ロッドミル。
In the process of crushing the furnace slag, the iron content is recovered by magnetism as steel layer concentrate.
Furthermore, a rod mill is used for the purpose of increasing the iron content as a concentrate for iron and steel manufacturing.

自生粉砕ミルで磨鉱を行う工夫もなされている。Efforts have also been made to grind ore using an autogenous grinding mill.

これらの従来技術の例として、特公昭51−3.304
7号、特開昭51−147416号、特開昭51−15
1615号、特開昭52−33163号等の各公報に記
載のものがある。
As an example of these conventional techniques,
No. 7, JP-A-51-147416, JP-A-51-15
There are those described in various publications such as No. 1615 and Japanese Unexamined Patent Publication No. 52-33163.

ところで、これら従来技術例の内容をまとめると、 (1)処理する炉滓の最大寸法は、通常ao。By the way, to summarize the contents of these prior art examples, (1) The maximum dimension of the furnace slag to be treated is usually ao.

鰭、特別な場合でも500mm以下である。The fin, in special cases, is less than 500 mm.

(2)’30’OwI+以下の寸法で鉄分含有率が5゜
〜60チと高い炉滓は、通常そのまま精鉱とするか、又
はロッドミル、自生粉砕ミルで磨鉱し、鉄分含有率を9
0%以上に高めて精鉱としている。
(2) Furnace slag with dimensions below '30' OwI+ and a high iron content of 5° to 60° is usually converted into concentrate as is, or polished with a rod mill or autogenous grinding mill to reduce the iron content to 9.
The concentration is increased to more than 0% and made into concentrate.

(3)300■以下の寸法で鉄分含有率の低い炉滓は、
破砕と磁気選別及び篩分は選別を行い、そのま″i稍鉱
とするか、やはシaツドミル、自生粉砕ミルで磨鉱し、
鉄分含有率を幾分でも高めて精鉱としている。
(3) Furnace slag with dimensions of 300cm or less and low iron content is
The crushed, magnetically sorted and sieved fraction is sorted, and either it is made into "i-grade ore" or it is ground in a shudder mill or autogenous grinding mill.
It is made into concentrate by increasing the iron content to some extent.

(4)500mn以上の寸法の炉滓は、リフティングマ
グネットや目視により選別を行い、鉄分含有率の低い炉
滓のみ破砕を行って300m以下の寸法となし、各処理
を行っている。
(4) Furnace slag with a size of 500 mm or more is sorted using a lifting magnet or visually, and only the furnace slag with a low iron content is crushed to a size of 300 m or less, and various treatments are performed.

(5)300m以上の寸法で鉄分含有率の高い炉滓は、
未処理のまま山積みされているものが多く、その処理は
尋問業者に委託され、次の方法によシ行われている。
(5) Furnace slag with a size of 300 m or more and a high iron content is
Many items remain unprocessed, and their processing is entrusted to interrogation companies using the following method.

(()2〜5トン程度の重錘を落下させる。(() Drop a weight of about 2 to 5 tons.

(ロ)ガス切断する。(b) Gas cutting.

(−→ドリルで穴を穿けてダイナマイト処理する。(−→Drill a hole and treat it with dynamite.

に)ドリルで穴を十文字状に多数穿け、銅製の棒を打込
んでいく。
) Drill a number of holes in a criss-cross pattern and drive in copper rods.

従って、尋問業者による300m以上の寸法で鉄分含有
率の高い塊状炉滓の処理は、人力を 2要する非能率的
な作業であシ、また炉滓や鉄片等の飛散する危険性の高
い作業であった。
Therefore, the disposal of bulk furnace slag with dimensions of 300 m or more and high iron content by interrogators is an inefficient operation that requires two or more human resources, and is also a work with a high risk of scattering of furnace slag and iron pieces. there were.

との為、上記塊状炉滓を効率良く粗割でき、300鵡以
下の寸法にすることのできる機械の開発が待ち望まれて
いた。
Therefore, there has been a long-awaited development of a machine that can efficiently coarsely divide the above-mentioned lumpy slag into pieces with dimensions of 300 square meters or less.

そこで本発明者等は、上記塊状炉滓を効率良く粗割する
機械を開発すべ(,5005m以上の寸法で鉄分含有率
の高い炉滓に圧縮力を加える試験を行ってみた処、次の
よう々結果を得た。
Therefore, the inventors of the present invention aimed to develop a machine that can efficiently coarsely split the above-mentioned lumpy furnace slag.We conducted a test to apply compressive force to furnace slag with a size of 5005 m or more and a high iron content, and found the following results. We obtained various results.

(1)鉄分が銑の場合、鉄分含有率が100ヂ近いもの
まで銃自体や巻込まれている鉱滓の部分から粗割された
。この際、銑に付光したシ、巻込まれている鉱滓分は、
粗割された銑の寸法に比べ小さい側に分布したり法と々
つた。
(1) When the iron content was pig iron, iron content up to nearly 100 degrees was roughly divided from the gun itself and the slag involved. At this time, the slag that was attached to the pig iron and the slag that was caught in it were
It was distributed on the smaller side compared to the size of the coarsely cracked pig iron.

(2)鉄分が鋼の場合、鋼が変形することによシ、鋼に
付着したシ、巻込まれている鉱滓が分子P:l/ニジ、
また鋼自身の薄い部分や表面の凹凸及び内部の引巣のよ
うな欠陥部分から′411割された。
(2) When the iron content is steel, due to the deformation of the steel, the slag attached to the steel and the slag involved are
In addition, the steel was cracked due to thin parts of the steel itself, irregularities on the surface, and defects such as internal cavities.

(3)上記(1) 、 、(2)項で粗割された炉滓の
鉄分含有率は必ず上昇し、高いものは90チを超えた。
(3) The iron content of the furnace slag coarsely divided in items (1), , and (2) above always increased, and in some cases it exceeded 90%.

鋳鋼、鋳鉄のように均質なものではなく、表面に凹凸や
鋭い割れを多く持ち、中には鋳造欠陥で良く言われる引
は巣やブロー・1−−ルのようなものを多く含んでいる
。従づて、fil述の試験のように炉滓中の地金に圧縮
を加えれば地金の表面及び内部に存在する欠陥部に応力
集中が生じ、その鉄分固Mの圧縮強度にLLシ、数分の
−の圧縮力で粗割されることにな)、シかも地金に鉱滓
が巻込まれている関係から粗割断1i11に占める鉱滓
の比率が多ければ多い程より小さい力で粗割されるとと
になるものと認められる。
It is not homogeneous like cast steel or cast iron, but has many irregularities and sharp cracks on its surface, and contains many cavities and blow holes, which are often referred to as casting defects. . Therefore, if compression is applied to the metal in the furnace slag as in the test described in fil, stress concentration will occur on the surface and internal defects of the metal, and the compressive strength of the iron solid M will be affected by LL, Because the slag is involved in the raw metal, the larger the proportion of slag in the rough cutting 1i11, the smaller the force is required to roughly break the metal. It is recognized that this is the case.

更に粗割する際に加える圧縮力の加え方を、第1図のよ
うに塊状炉滓Sを三点曲げの形式で矢印の如く圧縮力を
加えると、塊状炉滓Sを粗割するに要する力が数分の−
に減少でき、大部分の300〜500閣以上の寸法の塊
状炉滓が300間〜500鰭以下の寸法に粗割又は変形
されることが判明した。
Furthermore, as shown in Figure 1, the compressive force applied during rough splitting is as follows: If the compressive force is applied in the direction of the arrow by bending the lumpy slag S at three points, the amount required to roughly split the lumpy slag S is The force is several minutes.
It has been found that most of the lumpy furnace slag with a size of 300 to 500 fins or more can be roughly broken or transformed to a size of 300 to 500 fins or less.

本発明は、この点に脇・目してなされたもので、鉄分含
有率が50〜60チ以上と高く、シかもその寸法が30
0〜500以上の大塊状の炉滓を効率良く粗割又は変形
することのできる揺動式粗割機を提供せんとするもので
ある。
The present invention was made in view of this point, and the iron content is as high as 50 to 60 inches or more, and the size of the iron content is as high as 30 inches.
It is an object of the present invention to provide an oscillating type coarse cracker capable of efficiently coarsely splitting or deforming large lumps of furnace slag of 0 to 500 or more.

本発明の揺動式粗割機の1つを第2図及び第3図に示す
実施例によって説明すると、1はケーシング2の左側壁
に垂直に固設された固定粗割板、3は固定粗割板に相対
向して傾斜している揺動+l’f1割板で、該揺動粗割
板3は偏心軸4を支点として上下動しながら前後に揺動
運動するジョー5に固設されている。偏心軸4はその軸
端が回転4(116に直結されて一体となっておシ、回
転軸6にはVブー91が固設され、とのVプーリ7と図
示せぬ電動機の出力軸上のVプーリとの間にVベルト8
が装架されている。9は固定粗割板1と揺動粗割板3と
の間に形成された徂’JiU室である。
One of the swing-type rough splitting machines of the present invention will be explained with reference to the embodiment shown in FIGS. The swinging +l'f1 splitting plate is tilted opposite to the rough splitting plate, and the swinging rough splitting plate 3 is fixed to a jaw 5 that swings back and forth while moving up and down using an eccentric shaft 4 as a fulcrum. has been done. The eccentric shaft 4 has its shaft end directly connected to the rotating shaft 4 (116), and is integrally connected to the rotating shaft 6. A V-boo 91 is fixedly attached to the rotating shaft 6, and the V-pulley 7 is connected to the output shaft of an electric motor (not shown). V belt 8 between the V pulley of
is mounted. Reference numeral 9 denotes a 'JiU chamber formed between the fixed rough dividing plate 1 and the swinging rough dividing plate 3.

固定粗割板1と揺動粗割板3の相対向する表面形状は、
粗割機入口即ち粗割室9の上端の入口10の輻方向で山
11と谷12が向い合う波形状になされている。そして
一方の粗割板表面の山11の数が1〜3、他方の粗割板
表面の山11の数が2〜4になされている。本例では固
定粗割板1の山の数が3つ、揺動粗割板3の山の数が4
つの波形状になされている。
The opposing surface shapes of the fixed rough dividing plate 1 and the swinging rough dividing plate 3 are as follows:
It is formed into a wave shape in which peaks 11 and valleys 12 face each other in the radial direction of the entrance to the coarse splitting machine, that is, the entrance 10 at the upper end of the coarse splitting chamber 9. The number of ridges 11 on the surface of one coarsely divided plate is 1 to 3, and the number of ridges 11 on the surface of the other coarsely divided plate is 2 to 4. In this example, the number of ridges on the fixed rough dividing plate 1 is 3, and the number of ridges on the swinging rough dividing plate 3 is 4.
It is made into a wave shape.

このように一方の粗割板表面の山11の数を1〜3、他
方の粗割板表面の山11の数を2〜4とする理由は、第
1図に示されるように塊状炉滓Sを三点曲げの形式で圧
縮力を加えて粗割する為で、粗割板ム面の山11の数が
これ以上多いと三点曲げによる圧縮力の涯少が無くなシ
、粗割でき々い塊状炉滓Sが多く発生するからである。
The reason why the number of ridges 11 on the surface of one rough dividing plate is 1 to 3 and the number of ridges 11 on the surface of the other rough dividing plate is 2 to 4 is as shown in FIG. This is to roughly split S by applying compressive force in the form of three-point bending, and if the number of ridges 11 on the rough-splitting plate surface is larger than this, the compressive force due to three-point bending will not be reduced. This is because a large amount of hard lumpy slag S is generated.

この点についてさらに詳しく説明すると、300〜50
0 mn以上の塊状炉滓の一般的な寸法を500X75
GX100psnJ考えた」場合、 rこのような塊状
炉滓を受け入れる粗割室9の入口10の寸法LXWは1
500X750ma程度となシ、この寸法であれば塊状
炉滓の大半を粗割室9内に入れることができる。従って
、この塊状炉滓がいかなる向きに入っても曲げによる力
を受け易い山11の数は第4図B、b、eに示すように
2山と3山の組合わせとなる。これは50QX750X
100O瓢の塊状炉滓とL−1500mmの例を示した
ものであるが、塊状炉滓の最大辺長1000mの方向で
は縦向きにして粗割室9内に入れてやることにすればL
−j500→750祁まで小さくすることができる。こ
の場合には2山と3山の組合わせから1山と2山の組合
わせとすれば良い。
To explain this point in more detail, 300 to 50
Typical dimensions for bulk furnace slag of 0 mm or more are 500 x 75
If GX100 psnJ is considered, then the dimensions LXW of the entrance 10 of the coarse cracking chamber 9 that receives such a lumpy slag is 1
With this size, which is about 500 x 750 ma, most of the lumpy slag can be put into the coarse cracking chamber 9. Therefore, no matter what direction this lump-like furnace slag enters, the number of peaks 11 that are susceptible to bending force is a combination of two peaks and three peaks, as shown in FIGS. 4B, b, and e. This is 50QX750X
This shows an example of a 100O gourd block slag and L-1500mm, but if the block slag is placed vertically in the direction of the maximum side length of 1000m and placed in the rough-splitting chamber 9, the length will be L.
-j It can be reduced from 500 to 750. In this case, a combination of one mountain and two mountains may be used instead of a combination of two mountains and three mountains.

一方300〜500+++m以上の塊状炉滓の一般的な
寸法がもう少し小さい側にあるとすれば2山と3山の組
合わせを3山と4山の組合わせとすれば艮い。但しこれ
以上用の数を多くすることは300〜500 tan以
上の塊状炉滓を圧縮力によシ曲げを発生させて粗割する
には不適当であシ、1山と2山の組合わせよりも少ない
組合わせ、即ち谷と山の組合わせでも不適当である。
On the other hand, if the general size of lumpy furnace slag of 300 to 500 +++ m or more is on the smaller side, it would be strange to consider a combination of 2 and 3 ridges as a combination of 3 and 4 ridges. However, increasing the number of slags more than this is not suitable for coarsely splitting lumpy furnace slag of 300 to 500 tan or more by causing bending due to compressive force. Even combinations with fewer valleys and peaks are inappropriate.

ここで不適当と言う意味は、塊状炉滓の曲げ圧縮が、平
板を圧縮する学純圧1(h’4の状席に近づくことを意
味する。
Here, "inappropriate" means that the bending compression of the lumpy slag approaches the pure pressure 1 (h'4) that compresses a flat plate.

尚、上記実施例では粗割板1,3の表面が円弧状の山と
谷が続く波形状となつCいるが、これに限るものではな
く、三角形の山と谷が続く波形状でも良く、台形の山と
谷が続く波形状でも良い。
In the above embodiment, the surfaces of the coarsely divided plates 1 and 3 have a wavy shape with continuous arcuate peaks and troughs, but the shape is not limited to this, and a wavy shape with continuous triangular peaks and troughs may be used. A wavy shape with successive trapezoidal peaks and valleys may also be used.

上述の如く構成された本発明の粗割機に於いて、粗割室
90入「110から投入され/こ300〜500 tr
rm以上で鉄分官有率50〜60%以−ヒの塊状炉滓S
は、揺動運動するlt’+’b jiIb粗割板粗割上
3固定粗割板1に数回押し付けられ、両者の波形表面の
山11に挾まれて三点曲げの形式で繰返し圧縮力が加え
られ、111割又は変ゴ1φせしめられて寸法が300
〜500 ml以下に縮少せしめられ、且つ鉄分の少な
い鉱滓の一111Sが剥脱せしめられて鉄含有率が80
係μ上に高められて、出口13からvl、出される。か
くして300〜500泪以上の寸法で鉄分含有率5]]
〜60襲の塊状炉滓Sは、連続的に効率良く粗割又は変
形せしめられて300〜500m以下の寸法となシ、且
つ鉄分含有率が80チ以上に高められる。
In the coarse splitting machine of the present invention configured as described above, the coarse splitting chamber contains 90 pieces and is fed from 110 to 300 to 500 tr.
Block slag S with iron content of 50 to 60% or more at rm or higher
is pressed several times against the oscillating lt'+'b jiIb rough-split upper 3 fixed rough-split plate 1, and is held between the ridges 11 of the corrugated surfaces of both to repeatedly apply compressive force in the form of three-point bending. is added and the dimension is 300 by increasing 111% or 1φ
The 111S of the slag, which was reduced to ~500 ml or less and had a low iron content, was exfoliated and the iron content was reduced to 80.
It is raised above the coefficient μ and outputted from the outlet 13 by vl. Thus, the iron content is 5] with dimensions of 300 to 500 or more.
~60 pieces of lumpy slag S is continuously and efficiently coarsely cracked or deformed to a size of 300~500 m or less, and the iron content is increased to 80 mm or more.

次に本発明の揺動式粗割機の他の1つを第5図によって
説明する0との揺動式粗割機は第23図によって説明し
た揺動式粗割機と同一構造である他、次の構成を特徴と
するものである。
Next, another one of the rocking type rough splitting machines of the present invention will be explained with reference to FIG. In addition, it is characterized by the following configuration.

即ち、粗割室9の下端の出口13における相対向する固
定粗割板1と揺動粗割板3との間の寸法が、粗割室9の
上端の入口10における相対向する固定粗割板1と揺動
粗割板3との間の寸法の115〜215になされ、揺動
粗割板3の背面側には該揺動粗割板3が一定の圧縮力を
保ちことができると共に圧縮力に打ち勝つ反力が生じた
際後退し得る油圧機構14が設けられている0 粗割室9の出口13の寸法を入口100寸法の115〜
215とした理由について説明する。
That is, the dimension between the opposing fixed rough dividing plate 1 and the swinging rough dividing plate 3 at the outlet 13 at the lower end of the rough dividing chamber 9 is the same as that of the opposing fixed rough dividing plate 1 at the inlet 10 at the upper end of the coarse dividing chamber 9. The dimension between the plate 1 and the rocking rough dividing plate 3 is 115 to 215, and the rocking rough dividing plate 3 can maintain a constant compressive force on the back side of the rocking rough dividing plate 3. A hydraulic mechanism 14 that can retreat when a reaction force that overcomes the compression force is provided is provided.0 The dimensions of the outlet 13 of the rough splitting chamber 9 are set to 115 to 100 of the dimension of the inlet 100.
The reason why it is set to 215 will be explained.

粗割室9の入口10の間隙Wは、塊状炉滓Sの最大供給
腕で決る。一方出口130間隙W′は、塊状炉滓S中で
8i′I1割時に大きな圧m+i力を必要とする地金の
破砕比によって決る。一般に硬質で圧縮強度の高いもの
程破砕比を小さくし々ければならないと言われておシ、
地金を圧縮力によシ粗割する試験を行った処、粗割室9
の入口10の間隙Wに対し、粗割室9の出口13の間隙
W′を(0,2〜0.4)XWとすれば、大部分の地金
が粗割又は変形しながら排出されることが判明した。本
発明は、これに基いて粗割室9の出口130寸法を、入
口100寸法の115〜215と決定したものである。
The gap W at the entrance 10 of the coarse cracking chamber 9 is determined by the maximum supply arm of the block slag S. On the other hand, the gap W' at the outlet 130 is determined by the crushing ratio of the ingot, which requires a large pressure m+i force when 8i'I11 is in the block slag S. Generally speaking, it is said that the harder and higher the compressive strength, the smaller the crushing ratio.
Rough splitting room 9 where a test was conducted to roughly split the bullion using compressive force.
If the gap W' of the outlet 13 of the rough-splitting chamber 9 is (0,2 to 0.4)XW with respect to the gap W of the entrance 10 of It has been found. Based on this, in the present invention, the dimension of the outlet 130 of the rough-splitting chamber 9 is determined to be 115 to 215 of the dimension of the inlet 100.

然し乍ら、一部粗割されない塊状炉滓も有ル、このよう
な場合出口13の間隙W″′ を徐々に拡げていくと、
少量の変形又は部分的な剥靜が可能であシ、その出口1
3の間隙W′の最大値は(0,6〜0.8)XWである
ことが判明した。そこて本発明は、出口130間隙W′
 の変更を自flit (L: tい1,7□□3,8
−オ。□1□、カヤ。 ”ちことができると共に圧縮力
に打ち勝つ反力が生じた除後退し得る油圧機構14を、
揺動粗割板3の背面側に設けたものである。
However, there are some lumps of furnace slag that are not roughly cracked, and in such cases, if the gap W''' of the outlet 13 is gradually widened,
A small amount of deformation or partial peeling is possible, and the outlet 1
It was found that the maximum value of the gap W' in No. 3 was (0.6 to 0.8)XW. Therefore, the present invention provides the outlet 130 gap W'
(L: t1,7□□3,8
-Oh. □1□, Kaya. ``A hydraulic mechanism 14 that can be moved and retracted and that generates a reaction force that overcomes the compressive force.
It is provided on the back side of the rocking coarse plate 3.

この油圧機構14は、ケーシング2の右側下部に設けた
油圧シリンダー15と、該油圧シリンダー15のピスト
ンロッドの先端に取付けられたスライドブロック16と
、該スライドブロック16とスイングジョー5の下部背
面トノ間に張装したトラブルプレート17とよシ成ル。
This hydraulic mechanism 14 includes a hydraulic cylinder 15 provided at the lower right side of the casing 2, a slide block 16 attached to the tip of the piston rod of the hydraulic cylinder 15, and a space between the slide block 16 and the lower rear tonneau of the swing jaw 5. The Trouble Plate 17 is attached to the wall.

尚18はトラブルプレート1γの前後両端縁を当J妾し
たトラブルシーF −s ’−病[≠、″゛−−− −
である。
In addition, 18 is a trouble sea F-s '- disease [≠, ″゛-----
It is.

スイングジー!−15の下端部には水平な摺動杆20の
前端が枢支され、この摺動杆2oが基台21を負通して
摺動可能に設けられ、摺動杆20の後端に設けたばね受
22と基台21との間で摺動杆20にスプリング23が
嵌装されている。
Swingy! The front end of a horizontal sliding rod 20 is pivotally supported at the lower end of -15, and this sliding rod 2o is provided so as to be able to slide through the base 21, and a spring provided at the rear end of the sliding rod 20 A spring 23 is fitted to the sliding rod 20 between the receiver 22 and the base 21.

かように構成された本発明の粗割機に於いて、粗割室9
の入口1oから投入された300〜500 ff1m以
上で鉄分含有率50〜60%以上の塊状炉滓Sは、粗割
室9内で椙Kth鮪釧朋1の埋動運動によシ該揺動粗制
版3が固定粗割板1側に近づくと粗割室9内の空間が狭
くクリ、塊状炉滓Sに圧縮力が加えられ、油圧機i4#
 14の油圧シリンダー15には圧力が発生する。この
油圧シリンダー15′の圧力が油圧系統の保持力以下で
塊状炉滓S、’lr:m割すると、揺動粗割板3が固定
粗割&1側から遠のいた19(、粗割された炉滓は重力
によシ下降し、再び揺動粗割板3にょシ圧縮力を受けて
粗割さ扛、これが数回繰返されて、粗割室9の出口13
の通常の間隙W′以下の寸法となると、出口13よシ排
出落下する。
In the coarse splitting machine of the present invention configured as above, the coarse splitting chamber 9
The lumpy furnace slag S, which is 300 to 500 ff1m or more and has an iron content of 50 to 60% or more, which is input from the inlet 1o of the tuna, is shaken in the coarse cracking chamber 9 by the buried movement of the tuna 1. When the roughing plate 3 approaches the fixed roughing plate 1 side, the space in the roughing chamber 9 becomes narrower, compressive force is applied to the lumpy furnace slag S, and the hydraulic machine i4#
Pressure is generated in the 14 hydraulic cylinders 15. When the pressure of this hydraulic cylinder 15' is below the holding force of the hydraulic system and the lumpy furnace slag S,'lr:m is divided, the oscillating rough-splitting plate 3 moves away from the fixed rough-splitting &1 side. The slag descends due to gravity, is again subjected to the compressive force of the oscillating coarse-splitting plate 3, and is coarse-split.This is repeated several times until it reaches the outlet 13 of the coarse-splitting chamber 9.
If the size is smaller than the normal gap W', the liquid will be discharged through the outlet 13 and fall.

制版3の圧縮力に打ち勝つ反力が塊状fI滓Sに生じる
と、油圧シリンダー15内の圧油が油圧ユニット19に
戻り、油圧系統の保持カで塊状炉滓Sを圧縮したまま揺
動ストローク分だけ揺動粗割板3が後退し、出口13の
間隙Wが拡がる。従って、塊状炉滓Sは自重にょシ落下
し、再び揺MJhm制版3の圧縮力を受けて/J)七〜
の壱幾或いは部分的な剥離がなされる。こうして粗割で
きない炉滓は、徐々に変形成いは部分的な鉄分の少ない
鉱滓の剥離によシ、出口13を排出落下する。
When a reaction force that overcomes the compression force of the plate forming plate 3 is generated in the lump fI slag S, the pressure oil in the hydraulic cylinder 15 returns to the hydraulic unit 19, and the holding force of the hydraulic system continues to compress the lump fI slag S for the swing stroke. The oscillating coarse plate 3 retreats by the same amount, and the gap W between the outlet 13 widens. Therefore, the lumpy slag S falls under its own weight and is again subjected to the compressive force of the shaking MJhm plate 3.
One or more portions of the material are removed. The slag that cannot be roughly divided in this way is discharged through the outlet 13 and falls due to gradual deformation or partial peeling of the slag with low iron content.

かくして300〜50口■以上の寸法で鉄分含有率50
〜60チの塊状炉滓Sは、連続的に効率良く粗削又は変
形せしめられて300〜500■以下の寸法となシ、且
つ鉄分含有率が90チ以上に高められる。
Thus, the iron content is 50% for sizes of 300 to 50 cm or more.
The block S of 60 inches is continuously and efficiently rough-cut or deformed to a size of 300 to 500 inches or less, and the iron content is increased to 90 inches or more.

以上の説明で判るように本発明の揺動式粗割機によれば
、300〜500簡以上の寸法で鉄分含有率50〜60
チの塊状炉滓を、効率良く粗割又は変形して300〜5
00以下の寸法で鉄分含有率80〜90%以上の炉滓を
得ることができ、しかも塊状炉滓の粗割又は変形処理が
短時間に極めて能率良く行うことができるので、製鉄、
製鋼用精鉱の回°収に貢献する処理なるものがある。ま
た本発明の揺動式粗割機によれば、炉滓や鉄片を飛散す
ることなく塊状炉滓を粗割又は変形できるので、作業が
安全である。
As can be seen from the above explanation, according to the oscillating coarse cracker of the present invention, the iron content is 50 to 60 when the size is 300 to 500 pieces or more.
Efficiently crack or deform the lumpy furnace slag of 300~500
It is possible to obtain furnace slag with an iron content of 80 to 90% or more with dimensions of 0.00 or less, and rough cracking or deformation of the block furnace slag can be carried out in a short time and extremely efficiently.
There are certain treatments that contribute to the recovery of concentrate for steelmaking. Further, according to the swing type coarse cracker of the present invention, the bulk furnace slag can be roughly divided or deformed without scattering the furnace slag or iron pieces, so the work is safe.

【図面の簡単な説明】[Brief explanation of the drawing]

M1図は塊状炉滓の三点曲げKよる粗割の原理を示す図
、第2図は本発明の揺動式粗割機の1つを示す縦断面図
、第3図はそのA−A線横断平面図、第4図a 、 b
 、 cfi夫々本発明の揺動式粗割機に於ける固定粗
割板と揺動粗割板の間に挾まれて粗割される際の寸法の
異なる塊状炉滓の状態を示す概略平面図、第5図は本発
明の揺動式粗割機の他の1つを示す縦断面図である0 1・・・固定粗割板 2・・・ケーシング 3・・・揺
動粗割板 4・・・偏心軸 5・・・ジョー6・・・回
転軸 7・・・Vプーリ 8・・・Vベルト9・・・粗
創室 10・・・人口 11・・・山12・・・谷 1
3・・・出口 14・・・油圧機構15・・・油圧シリ
ンダー 16・・・スライドブロック 17・・・トラ
ブルプレー) 18・・・ト2ッグルシード− S・・・塊状炉滓 W・・・入口の間隙 W′・・・出
口の間隙 第1図 工K 第3図 第4図 (Q) (b) (C)
Fig. M1 is a diagram showing the principle of rough splitting by three-point bending K of block furnace slag, Fig. 2 is a vertical cross-sectional view showing one of the rocking type rough splitting machines of the present invention, and Fig. 3 is its A-A. Linear cross-sectional plan view, Figure 4 a, b
, cfi is a schematic plan view showing the state of lump furnace slag of different dimensions when it is sandwiched between the fixed rough-splitting plate and the oscillating rough-splitting plate and coarse-split in the oscillating-type rough-splitting machine of the present invention; Fig. 5 is a vertical cross-sectional view showing another one of the swing type rough splitting machines of the present invention.・Eccentric shaft 5... Jaw 6... Rotating shaft 7... V pulley 8... V belt 9... Wound chamber 10... Population 11... Peak 12... Valley 1
3...Outlet 14...Hydraulic mechanism 15...Hydraulic cylinder 16...Slide block 17...Trouble play) 18...To2 gulseed-S...Lump slag W...Inlet Gap W'...Exit gap 1st drawing K Fig. 3 Fig. 4 (Q) (b) (C)

Claims (1)

【特許請求の範囲】 1)揺動式粗割機に於いて、被粗割物に圧縮力′を加え
る本固定粗割板と揺動粗割板の相対向する表面形状が、
粗割様入口の幅方向で山と谷が向い合う波形状になされ
、且つ一方の粗割板表面のU」の数が1〜3、他方の粗
割板表面の山の数が2〜4になされて、被粗割物に曲げ
荷重がかかるように構成されヤいることを特徴とする揺
動式粗割機。 2)揺動式粗割機に於いて、被粗割物に圧縮力を加える
固定粗割板と揺動粗割板の相対向する表面形状が、粗割
様入口の幅方向で山と谷が向い合う波形状になされ、且
つ一方の粗割板表面の山の数が1〜3、他方の粗割板表
面の山の数が2〜4になされて被粗割物に曲は荷重がか
かるように構成され、粗割案下端の出口における相対向
する粗割板間の寸法が粗割室−上端の入口における相対
向する粗割板間の寸法の115〜215になされ、揺動
粗割板の背面側には該揺動粗割板が一定の圧縮力を保ち
ことができると共に圧縮力に打ち勝つ反力が生じた際後
退し得る油圧機構が設けられていることを特徴とする揺
動式粗割機。
[Claims] 1) In the oscillating rough-splitting machine, the opposing surface shapes of the main fixed rough-splitting plate and the oscillating rough-splitting plate that apply compressive force to the object to be rough-split are
The rough-split-like entrance has a wavy shape with peaks and valleys facing each other in the width direction, and the number of U'' on the surface of one rough-split plate is 1 to 3, and the number of ridges on the surface of the other rough-split plate is 2-4. 1. A rocking type rough-splitting machine characterized by being configured so that a bending load is applied to a material to be roughly-split when the rough-splitting process is performed. 2) In an oscillating rough-splitting machine, the opposing surfaces of the fixed rough-splitting plate and the oscillating rough-splitting plate that apply compressive force to the material to be rough-split have peaks and valleys in the width direction of the rough-splitting entrance. are formed into opposing wave shapes, and the number of ridges on the surface of one rough-splitting plate is 1 to 3, and the number of ridges on the surface of the other rough-splitting plate is 2-4, so that the bending load is not applied to the object to be rough-split. With such a structure, the dimension between the opposing rough dividing plates at the outlet of the lower end of the rough dividing plan is set to 115 to 215 of the dimension between the opposing rough dividing plates at the entrance of the rough dividing chamber and the upper end, and the swing roughening A hydraulic mechanism is provided on the rear side of the split plate so that the oscillating rough split plate can maintain a constant compressive force and retreat when a reaction force that overcomes the compressive force is generated. Mobile rough splitting machine.
JP232084A 1984-01-10 1984-01-10 Shaking type coarse splitting machine Pending JPS60147252A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP232084A JPS60147252A (en) 1984-01-10 1984-01-10 Shaking type coarse splitting machine
US06/688,889 US4637562A (en) 1984-01-10 1985-01-04 Rocking slag breaker
CA000471611A CA1229077A (en) 1984-01-10 1985-01-07 Rocking slag breaker
DE8585300140T DE3577406D1 (en) 1984-01-10 1985-01-09 FLOATING SLAG CRUSHERS.
EP85300140A EP0148780B1 (en) 1984-01-10 1985-01-09 Rocking slag breaker
MX203993A MX161441A (en) 1984-01-10 1985-01-09 IMPROVEMENTS TO SWING OVEN SLAG CRUSHER FOR EXAMPLE OF IRON AND STEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP232084A JPS60147252A (en) 1984-01-10 1984-01-10 Shaking type coarse splitting machine

Publications (1)

Publication Number Publication Date
JPS60147252A true JPS60147252A (en) 1985-08-03

Family

ID=11526028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP232084A Pending JPS60147252A (en) 1984-01-10 1984-01-10 Shaking type coarse splitting machine

Country Status (1)

Country Link
JP (1) JPS60147252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172869A (en) * 1990-01-25 1992-12-22 Nakayama Iron Works, Ltd. Jaw crusher

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4315901Y1 (en) * 1966-07-21 1968-07-02
JPS49130558A (en) * 1973-04-23 1974-12-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4315901Y1 (en) * 1966-07-21 1968-07-02
JPS49130558A (en) * 1973-04-23 1974-12-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172869A (en) * 1990-01-25 1992-12-22 Nakayama Iron Works, Ltd. Jaw crusher

Similar Documents

Publication Publication Date Title
Lee et al. Mechanism of the ultrasonic machining of ceramic composites
Moore A review of two-body abrasive wear
US4666591A (en) Slag disposal method
EP1676930B1 (en) A method for forming a briquette for use as a steelmaking material
US3643873A (en) Process for fragmenting scrap metal
Austin et al. A preliminary analysis of smooth roll crushers
US4769211A (en) Process for compacting iron particles and subsequent breaking apart of the compacted iron band and apparatus for performing this process
Fuerstenau et al. Newer energy-efficient approach to particle production by comminution
US3180249A (en) Method of compacting, segmenting and cleaning scrap metals
JPS60147252A (en) Shaking type coarse splitting machine
JPS60251941A (en) Hydraulic mechanism of shaking type rough breaker
Yerkovic et al. Exploring the ultrasonic comminution of copper ores
Köken et al. Comparison of secondary crushing operations through cone and horizontal shaft impact crushers
JPS61114750A (en) Operation of shaking type coarse dividing machine
Abouzeid et al. Breakage behavior of quartz under compression in a piston die
JPH0128818B2 (en)
US4159907A (en) Method for melting aluminum scraps
JPS6315974B2 (en)
Austin et al. Powder technology in industrial size reduction
Blazy et al. Vibroinertial comminution—principles and performance
EP0106642A2 (en) Apparatus and method for fragmenting frangible objects
Fuerstenau et al. Comminution: assessing and enhancing its energy efficiency
JP3292271B2 (en) Waste brick treatment method for metal smelting furnace
RU51350U1 (en) PLANT FOR PROCESSING DUMPING METALLURGICAL SLAGS, IN PARTICULAR SLAGS OF STEEL-MELTING PRODUCTION
RU2688789C2 (en) Slag processing method