JPS60146835A - Preparation of olefin - Google Patents

Preparation of olefin

Info

Publication number
JPS60146835A
JPS60146835A JP58248035A JP24803583A JPS60146835A JP S60146835 A JPS60146835 A JP S60146835A JP 58248035 A JP58248035 A JP 58248035A JP 24803583 A JP24803583 A JP 24803583A JP S60146835 A JPS60146835 A JP S60146835A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
reaction
manganese dioxide
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58248035A
Other languages
Japanese (ja)
Other versions
JPH0370691B2 (en
Inventor
Tomohiro Yoshinari
知博 吉成
Fujio Suganuma
菅沼 藤夫
Hiroaki Taniguchi
博昭 谷口
Hiroshi Fujiwara
寛 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP58248035A priority Critical patent/JPS60146835A/en
Publication of JPS60146835A publication Critical patent/JPS60146835A/en
Publication of JPH0370691B2 publication Critical patent/JPH0370691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To suppress the formation of methane and obtain particularly a lower olefin in high selectivity and conversion, by bringing a mixed gas containing H2 and CO into contact with a catalyst prepared by supporting Pu on a carrier consisting of gamma type manganese dioxide. CONSTITUTION:A mixed gas containing H2 and CO is brought into contact with a catalyst, prepared by supporting Ru on a carrier consisting of gamma type MnO2, and if necessary containing a carrier substance and/or an activator to give a lower olefin. The gamma type MnO2 has a low crystallinity, and is synthesized by adding a KMnO4 solution to a boiling solution of neutral MnSO4, etc. The amount of Ru to be incorporated is preferably 0.1-30wt% (expressed in terms of Ru) based on the total weight of the catalyst.

Description

【発明の詳細な説明】 本発明は水素と一酸化炭素とからオレフィン類を製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing olefins from hydrogen and carbon monoxide.

水素と一酸化炭素との混合ガスを高めた温度および圧力
下で触媒と接触させることによシ炭化水素類を製造する
ことは、いわゆるフィッシャー・トロプシュ(FT )
法による炭化水素合成法として公知である。
The production of hydrocarbons by contacting a gas mixture of hydrogen and carbon monoxide with a catalyst at elevated temperature and pressure is known as Fischer-Tropsch (FT).
This method is known as a hydrocarbon synthesis method by method.

一酸化炭素の接触水素化は使用した触媒及び適用した反
応条件により炭素原子数1〜40個を含むパラフィンと
オレフィンとよシ成る混合物を生じ、場合によってはア
ルコール、アルデヒド、ケトン、エステルあるいは脂肪
酸のヨウな酸素を含む化合物も生じる。また選定された
合成条件下では少量の芳香族炭化水素も生成される。
Catalytic hydrogenation of carbon monoxide, depending on the catalyst used and the reaction conditions applied, gives rise to a mixture of paraffins and olefins containing from 1 to 40 carbon atoms, and in some cases of alcohols, aldehydes, ketones, esters or fatty acids. Compounds containing iodine and oxygen are also produced. Small amounts of aromatic hydrocarbons are also produced under the selected synthesis conditions.

一酸化炭素の水素化に関する著しい活性は周期律表第8
族の元素、特に鉄、コバルト、ニッケル、ルテニウムに
よって示される。これら元素の特徴は有する水素化活性
及び−次生成物としてのα−オレフィンの触媒表面への
再吸着による二次反応の程度の差によって生成物の分布
およびその組成に著しく差を生じる。ニッケル、コバル
ト及びルテニウム系触媒は主として枝分れのない飽和炭
化水素の混合物を与え、他方鉄を含む触媒を用いて多量
の不飽和脂肪族化合物、更に酸素を含む化合物特に脂肪
族第一級アルコールを含有する炭化水素を製造すること
が出来ることはすでに公知である。また約20よル多い
炭素数を有し、大気圧ないし高められた圧力で約200
〜3−00℃の反応温度で炭化水素60wt%以上含有
する混合物は困難なく公知方法によシ製造することが出
来る。鉄系触媒を用いると不飽和炭化水素成分に富む・
混合生成物を与えるが副生ずる炭酸ガス量及び含酸素化
合物量が多く炭化水素の生成選択性が悪い。一方ルテニ
ウム系触媒は鉄系触媒に比べて、金属当シのFT反応活
性は数倍高いが、水素活性も高いため、生成物中の飽和
炭化水素成分が多く、反応圧力及び反応温度に対して依
存性が高く、FT反応を論する指標として良く用いられ
るシュルツ・フローリー則の連鎖成長確率α値が反応温
度上昇と共に、その値は太きく減少する傾向にある。
Remarkable activity for the hydrogenation of carbon monoxide is found in the 8th part of the periodic table.
represented by the elements of the group, especially iron, cobalt, nickel, and ruthenium. The characteristics of these elements cause significant differences in the distribution of the products and their compositions due to the hydrogenation activity they have and the degree of secondary reaction due to readsorption of the α-olefin as the next product onto the catalyst surface. Catalysts based on nickel, cobalt and ruthenium give a mixture of predominantly unbranched saturated hydrocarbons, while iron-containing catalysts give large amounts of unsaturated aliphatic compounds and also oxygen-containing compounds, especially aliphatic primary alcohols. It is already known that it is possible to produce hydrocarbons containing . It also has about 20 more carbon atoms and about 200 carbon atoms at atmospheric pressure or elevated pressure.
Mixtures containing more than 60% by weight of hydrocarbons at reaction temperatures of ~3-00°C can be produced without difficulty by known methods. When iron-based catalysts are used, they are rich in unsaturated hydrocarbon components.
Although a mixed product is obtained, the amount of carbon dioxide gas and oxygen-containing compounds produced by-product is large, and the selectivity for hydrocarbon production is poor. On the other hand, ruthenium-based catalysts have several times higher metal-based FT reaction activity than iron-based catalysts, but they also have high hydrogen activity, so the saturated hydrocarbon component in the product is large, and the reaction pressure and temperature are The chain growth probability α value of the Schulz-Flory law, which is highly dependent and often used as an index for discussing FT reactions, tends to decrease sharply as the reaction temperature increases.

この様な理由からルテニウム系触媒を用いて02〜C4
の低級炭化水素あるいはCs以上のオレフィン系炭化水
素を多く含有する反応生成物を選択的に導くことは、非
常に困難と云われている。
For these reasons, using a ruthenium-based catalyst, 02 to C4
It is said to be extremely difficult to selectively derive a reaction product containing a large amount of lower hydrocarbons or olefinic hydrocarbons of Cs or higher.

また平衡論から一酸化炭素の水素化反応を見ると、炭化
水素生成の自由エネルギー変化ΔFと平衡定数にとの間
には一ΔF = RTlnKという関係からある温度で
一酸化炭素の水素化反応が平衡論的に見て有利かどうか
判断できる。〒般的には低温領域ではオレフィンの生成
よシ、パラフィンの生成の方が有利となる。たとえばプ
ロピレン/プロパン生成比よシもエチレン/エタン生成
比の方が小さく、FT反応生成物の選択性でプロピレン
/プロパン生成比を上げるよシもエチレン/エタン生成
比を上げる方が平衡論的に見る限り、より困難と云える
。02〜C4の低級オレフィン類の選択的生成は平衡論
的に不利であるが、この不利さを速度論的にいかに克服
するかが良い低級オレフィン選択性を得るための錠とな
っている。従って一酸化炭素を水素と接触反応させるこ
とによシ高転化率かつ高選択率でオレフィン系炭化水素
が製造できれば得られるメリットは大きい。
Also, when looking at the hydrogenation reaction of carbon monoxide from the perspective of equilibrium theory, the relationship between the free energy change ΔF for hydrocarbon production and the equilibrium constant is -ΔF = RTlnK, so the hydrogenation reaction of carbon monoxide occurs at a certain temperature. You can judge whether it is advantageous from an equilibrium perspective. Generally, in the low temperature range, it is more advantageous to produce paraffins than to produce olefins. For example, the ethylene/ethane production ratio is smaller than the propylene/propane production ratio, and even if the propylene/propane production ratio is increased by the selectivity of the FT reaction product, it is better to increase the ethylene/ethane production ratio in equilibrium theory. From what I can see, it's more difficult. The selective production of 02-C4 lower olefins is disadvantageous in equilibrium, but how to overcome this disadvantage kinetically is the key to obtaining good lower olefin selectivity. Therefore, if olefinic hydrocarbons can be produced with high conversion and high selectivity by catalytically reacting carbon monoxide with hydrogen, there will be great benefits.

従来iンガンの酸化物を含む触媒を用いてフィッシャー
・トロプシュ反応を行ない炭化水素類を製造する方法は
特公昭56−48491号、米国特許第4177203
号および米国特許第4206134号によシ公知である
。特公昭56−48491号には鉄と酸化マンガンとよ
シなる混合物を1050℃で焼成して得られる触媒を用
いるとガス状オレフィンが高収率で得られると記載され
ている。
Conventional methods for producing hydrocarbons by carrying out the Fischer-Tropsch reaction using catalysts containing oxides are disclosed in Japanese Patent Publication No. 56-48491 and U.S. Patent No. 4177203.
and US Pat. No. 4,206,134. Japanese Patent Publication No. 56-48491 describes that gaseous olefins can be obtained in high yield by using a catalyst obtained by calcining a mixture of iron and manganese oxide at 1050°C.

しかしながら後述の比較例5で示すようにiンガン酸化
物と鉄とよシなる触媒は一酸化炭素転化率が極端に低く
触媒活性は非常に低いし、これを1050℃で焼成して
もやはり触媒活性は非常に低いことがわかった。米国特
許第4177203号にもマンガン50%以上と鉄50
%以下とからなる触媒を用いるとC2〜C4炭化水素が
選択率よく生成すると記載されているが、後述比較例5
に示すようにマンガンと鉄とよシなる触媒は活性が非常
に低い。そして米国特許第4206134号にはルテニ
ウムを一酸化マンガンに担持した触媒を用いてFT反応
を行なうとC2〜C4オレフインの生成が多く、またメ
タンの生成は少ないと記載されている。しかしながら後
述比較例1に示したように一酸化マンガンにルテニウム
を担持した触媒はオレフィン類の生成量は非常に低い。
However, as shown in Comparative Example 5 below, the carbon monoxide conversion rate and catalyst activity of iron and other catalysts are extremely low, and even if they are calcined at 1050°C, the catalyst is still catalytic. The activity was found to be very low. U.S. Patent No. 4,177,203 also states that 50% or more of manganese and 50% of iron
It is stated that C2 to C4 hydrocarbons are produced with good selectivity when a catalyst consisting of % or less is used, but in Comparative Example 5 described below
As shown in the figure, catalysts similar to manganese and iron have very low activity. Further, US Pat. No. 4,206,134 describes that when an FT reaction is carried out using a catalyst in which ruthenium is supported on manganese monoxide, a large amount of C2 to C4 olefin is produced, and a small amount of methane is produced. However, as shown in Comparative Example 1 below, the catalyst in which ruthenium is supported on manganese monoxide produces a very low amount of olefins.

今回状々は、マンガン醗化物の荷電数及びその結晶性に
着目し、代表的な均一同相酸化還元系として認識すべき
二酸化マンガン(MnO2)のユニークな物性と興味深
い挙動を一酸化炭素と水素との接触反応(FT反応)に
見い出した。
This time, we will focus on the charge number of manganese fluoride and its crystallinity, and study the unique physical properties and interesting behavior of manganese dioxide (MnO2), which should be recognized as a typical homogeneous in-phase redox system, in conjunction with carbon monoxide and hydrogen. It was discovered in the catalytic reaction (FT reaction).

本発明の主な目的はオレフィン系炭化水素、殊にC2〜
c4のような低級オレフィン類を選択率よく製造する方
法を提供することにあシ、他の目的はメタンの生成を抑
えてオレフィン類を選択率よく製造する方法を提供する
ことにあシ、また他の目的はオレフィン類に富む炭化水
素を転化率よく製造する方法を提供することにある。
The main object of the present invention is to treat olefinic hydrocarbons, especially C2-
Another purpose is to provide a method for producing lower olefins such as c4 with high selectivity, and another purpose is to provide a method for producing olefins with high selectivity by suppressing the production of methane. Another object is to provide a method for producing hydrocarbons rich in olefins at a high conversion rate.

すなわち本発明の要旨は、r型二酸化マンガンよシなる
担体にルテニウムを担持することにより調製した触媒に
水素および一酸化炭素を含む混合ガスを接触させてオレ
フィン類を製造することを特徴とするオレフィン類の製
造法に存する。
That is, the gist of the present invention is to produce olefins by contacting a mixed gas containing hydrogen and carbon monoxide with a catalyst prepared by supporting ruthenium on a carrier such as r-type manganese dioxide. It consists in the manufacturing method of the class.

本発明の触媒はr型二酸化マンガンよりなる担体にルテ
ニウムを担持して調製されるもので−あるが、必要によ
シキャリャー物質およびまたは活性化剤を含有させても
よい。
Although the catalyst of the present invention is prepared by supporting ruthenium on a carrier made of r-type manganese dioxide, it may contain a carrier substance and/or an activator if necessary.

触媒調製に用いる二酸化マンガンは結晶化度の低い型に
属するr型の二酸化マンガンであ夛、これはヨウ化カド
ミウム型の層状格子構造に類似である。
The manganese dioxide used in the preparation of the catalyst is mostly r-type manganese dioxide, which belongs to a type with low crystallinity, which is similar to the layered lattice structure of the cadmium iodide type.

ここで使用されるr型二酸化マンガンは例えばマンガン
塩溶液の化学的酸化法に属するの中性MnSO4の沸と
う溶液にKMnO4溶液の添加による合成方法 ■硫酸マンガン(Illと硫酸との混合沸とう水溶液に
過硫酸アンモニウムを加えて合成する方法■硫酸マンガ
ン(II)と硝酸カリウムとの混合温水溶液に過マンガ
ン酸カリウムを加えて合成する方法 マンガン塩溶液の電解酸化法に属する ■熱酸性MnSO4溶液のグラファイト電極による陽極
酸化による合成方法 ■熱酸性MnSO4溶液の白金電極による陽極酸化によ
る合成方法 および焼成と酸処理法に属する ■β−Mn02を600℃に加熱、沸とう希H2SO4
で浸出による合成方法 0MnC0a (0−1%NaOH添加)を酸素ガス中
350℃で焼成、希硫酸で処理する合成方法 によシ合成される。他の公知γ型二酸化マンガン合成法
及び変成法で合成されるr型二酸化マンガンでもよい。
The r-type manganese dioxide used here is synthesized by adding a KMnO4 solution to a boiling solution of neutral MnSO4, which belongs to the chemical oxidation method of manganese salt solution. A method of synthesis by adding ammonium persulfate to a mixture of manganese (II) sulfate and potassium nitrate A method of synthesis by adding potassium permanganate to a mixed warm aqueous solution of manganese (II) sulfate and potassium nitrate A graphite electrode of a thermally acidic MnSO4 solution, which belongs to the electrolytic oxidation method of a manganese salt solution ■Synthesis method by anodic oxidation of thermally acidic MnSO4 solution with a platinum electrode and calcination and acid treatment method ■Heat β-Mn02 to 600℃ and boil dilute H2SO4
Synthesis by leaching 0MnC0a (0-1% NaOH added) is calcined at 350°C in oxygen gas and treated with dilute sulfuric acid. It may also be r-type manganese dioxide synthesized by other known γ-type manganese dioxide synthesis methods and modification methods.

これらの物質上に支持されたルテニウムのFT炭化水素
合成特性を実質上、阻害しないような他の難溶物質をキ
ャリヤー物質として触媒中に含有させることも可能であ
る。たとえばTi0z、5iOz、Al2O3、Cr2
O3、V2O5、WOa、Mo0a等の金属酸化物やゼ
オライトをキャリヤー物質として二酸化マンガンと均質
混合することも出来る。
It is also possible to include other sparingly soluble substances in the catalyst as carrier substances that do not substantially inhibit the FT hydrocarbon synthesis properties of ruthenium supported on these substances. For example, Ti0z, 5iOz, Al2O3, Cr2
Metal oxides such as O3, V2O5, WOa, Mo0a and zeolites can also be homogeneously mixed with manganese dioxide as carrier materials.

本発明においてゼオライトは結晶性アルミノけい酸塩ゼ
オライトを意味し、その例としてはY型ゼオライト、X
型ゼオライト、A型ゼオライト、モルデナイト、zSM
系ゼオライト(zsM系ゼオライトとしては例えばZS
M−4、ZSM−5、ZSM−34などがあシ、昭和5
7年1月11日日本技術経済センター出版部発行「最近
のゼオライト技術と応用の進歩総合資料集」46〜57
頁、高橋浩ほか編昭和50年2月1日講談社発行「ゼオ
ライト」46〜47頁、特開昭57−70828号明細
書等に詳述されている。)などがある。これらゼオライ
トはNa5Kなど金属置換型のものでもよいが、水素形
のものが好ましく、また合成品でも天然産のものでもよ
い。またこれらゼオライトを脱アルミニウム処理したも
のも使用できる。脱アルミニウム方法の一例はゼオライ
トを酸(塩酸、硫酸などの無機酸、酢酸、しゆう酸、ア
ジピン酸などの有機酸のいずれでもよい。)、あるいは
EDTA (エチレンジアミンテトラ酢酸ナトリウム)
などのキレート剤の水溶液中で加熱処理してゼオライト
中のアルミニウムの一部を溶出させる。モルデナイト、
 ZSM−5などのような耐酸性のあるゼオライトは酸
処理でよいが、Yffiゼオライトなどのような耐酸性
の低いゼオライトはキレート剤水溶液で処理する。処理
時の温度、酸またはキレート剤の濃度、処理時間等k特
に制限はないが、通常濃度は数%程度(例えば約1〜1
5wt%)、温度は溶液の沸とう温度、時間は約30分
〜数時間程度の条件で行なう。後必要によル乾燥、焼成
する。これらキャリヤー物質はγ型二酸化マンガンと均
質混合したシ、あるいはr型二酸化マンガンにルテニウ
ムを担持したものと物理的に混合して用いることができ
る。キャリヤー物質の好ましい配合量は触媒の全重量に
もとづき約0.01〜90wt%、特に約5〜60wt
%である。
In the present invention, zeolite means crystalline aluminosilicate zeolite, examples of which include Y-type zeolite,
Type zeolite, A type zeolite, mordenite, zSM
type zeolite (for example, ZS as a zsM type zeolite)
M-4, ZSM-5, ZSM-34, etc., Showa 5
January 11, 2007, published by the Japan Technology and Economic Center Publishing Department, “Comprehensive collection of materials on recent advances in zeolite technology and applications” 46-57
Page 46-47 of Zeolite, edited by Hiroshi Takahashi et al., published by Kodansha, February 1, 1975, and in the specification of JP-A-57-70828. )and so on. These zeolites may be of metal-substituted type such as Na5K, but hydrogen-type zeolites are preferred, and they may be synthetic or naturally produced. Additionally, dealuminated zeolites can also be used. An example of a dealumination method is to treat zeolite with an acid (either an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid, oxalic acid, or adipic acid), or EDTA (sodium ethylenediaminetetraacetate).
A part of the aluminum in the zeolite is eluted by heat treatment in an aqueous solution of a chelating agent such as zeolite. mordenite,
Zeolites with acid resistance such as ZSM-5 may be treated with acid, but zeolites with low acid resistance such as Yffi zeolite are treated with an aqueous chelating agent solution. There are no particular restrictions on the temperature during treatment, the concentration of acid or chelating agent, the treatment time, etc., but the concentration is usually around several percent (for example, about 1 to 1
5 wt%), the temperature is the boiling temperature of the solution, and the time is about 30 minutes to several hours. After that, dry and bake as necessary. These carrier substances can be used by homogeneously mixing with γ-type manganese dioxide, or by physically mixing with r-type manganese dioxide supporting ruthenium. The preferred loading of carrier material is about 0.01 to 90 wt%, especially about 5 to 60 wt%, based on the total weight of the catalyst.
%.

キャリヤー物質は触媒表面積を大きくしたシ、機械的強
度を強くしたり、あるいは触媒価格を安価にするのに有
効である。特にゼオライト、クロミアのようなキャリヤ
ー物質は生成オレフィンのオリゴマー化に有効で、より
高沸点の生成物が得られる。触媒中キャリヤー物質の配
合量が多すぎるとオレフィン生成の選択性が悪くなって
しまう。
The carrier substance is effective in increasing the surface area of the catalyst, increasing its mechanical strength, or reducing the cost of the catalyst. In particular, carrier materials such as zeolites and chromia are effective in oligomerizing the produced olefins, resulting in products with higher boiling points. If the amount of carrier material in the catalyst is too large, the selectivity of olefin production will deteriorate.

本発明の触媒はγ型二酸化マンガンよシなる担体にルテ
ニウムを担持する。ルテニウムの配合量は触媒の全重量
にもとづき約0.1〜50wt%、特に約0.1〜30
wt%(Ru換算値)が好ましい。
The catalyst of the present invention supports ruthenium on a support made of γ-type manganese dioxide. The amount of ruthenium incorporated is about 0.1 to 50 wt%, especially about 0.1 to 30 wt%, based on the total weight of the catalyst.
Wt% (Ru equivalent value) is preferable.

ルテニウムの配合量が少なすぎると触媒活性は低くなシ
、また多すぎるとオレフィン生成の選択性が低下してし
まう。触媒中のルテニウムは通常金属単体が大部分を占
めるが酸化物など化合物の形でもよい。
If the amount of ruthenium blended is too small, the catalyst activity will be low, and if it is too large, the selectivity for olefin production will be reduced. The majority of ruthenium in the catalyst is usually an elemental metal, but it may also be in the form of a compound such as an oxide.

また触媒には活性を高めるため更に活性化剤を含有させ
てもよい。活性化剤の例としてはマグネシウム、亜鉛、
アルミニウム、カドミウム、銅、チタン、鉄、コバルト
、パラジウム、ロジウム、白金、レニウム、イリジウム
、ニッケル、ランタン、銀、トリウム等があシ、触媒中
においては金属単体の形でも塩化物、アンモニウム塩、
硝酸塩、酸化物等の化合物の形をしていてもよい。触媒
調製時に原料として使用する活性化剤成分の例は塩化マ
グネシウム、塩化亜鉛、ミ 塩化アルミニウム、塩化カド嵜つム、塩化銅、三塩化チ
タン、四塩化チタ゛ン、塩化鉄、塩化コバルト、塩化パ
ラジウム、塩化ロジウム、塩化白金、塩化レニウム、塩
化イリジウム等の塩化物及びそのアンモニウム塩あるい
は硝酸銀、硝酸トリウム等の硝酸塩等がある。活性化剤
の配合量は触媒の全重量にもとづき金属単体換算で約0
.01〜35 wt%、特に約0.1〜20 wt%が
好ましい。(活性化剤とキャリヤー物質との好ましい合
計配合量は約0.01〜90wt%である。)これら活
性化剤は担体として使用する二酸化マンガン合成時に添
加したクニ酸化マンガンと混合してもよいが好適には二
酸化マンガン合成後のルテニウム担持前、担持後あるい
はルテニウムとの同時担持が好ましい。触媒生活性化剤
の配合量が多すぎると相対的にルテニウムや二酸化マン
ガンの配合量が少なくなシ、触媒活性が低下したジオレ
フィン生成の選択性が低下してしまう。
Further, the catalyst may further contain an activator to increase its activity. Examples of activators are magnesium, zinc,
Aluminum, cadmium, copper, titanium, iron, cobalt, palladium, rhodium, platinum, rhenium, iridium, nickel, lanthanum, silver, thorium, etc. are included in the catalyst.
It may be in the form of compounds such as nitrates and oxides. Examples of activator components used as raw materials during catalyst preparation include magnesium chloride, zinc chloride, aluminum dichloride, cadmium chloride, copper chloride, titanium trichloride, titanium tetrachloride, iron chloride, cobalt chloride, palladium chloride, Examples include chlorides such as rhodium chloride, platinum chloride, rhenium chloride, and iridium chloride, their ammonium salts, and nitrates such as silver nitrate and thorium nitrate. The amount of activator added is approximately 0 based on the total weight of the catalyst, calculated as a single metal.
.. 01-35 wt%, especially about 0.1-20 wt%. (The preferred total amount of the activator and carrier material is about 0.01 to 90 wt%.) These activators may be mixed with the manganese oxide added during the synthesis of manganese dioxide, which is used as a carrier. Preferably, ruthenium is supported before or after ruthenium is supported after manganese dioxide synthesis, or simultaneously supported with ruthenium. If the amount of the catalyst life-activating agent is too large, the amount of ruthenium or manganese dioxide will be relatively small, and the selectivity of diolefin production will be reduced due to the decreased catalyst activity.

本発明の方法の実施に使用されるルテニウム触媒はアル
ミナにルテニウムを担持した触媒(Ru /Al2O5
)などのような他の触媒系の製造に対して当業界に既知
の技法によって製造される。
The ruthenium catalyst used in carrying out the process of the present invention is a ruthenium supported catalyst on alumina (Ru /Al2O5
), etc., by techniques known in the art for the production of other catalyst systems, such as

二酸化マンガンよシなる担体へのルテニウムの担持は例
えば担体をルテニウム化合物の溶液中に浸漬して、担体
上に吸着させた9、イオン交換して付着させたシ、アル
カリなどの沈殿剤を加えて沈着させたシ、溶液を蒸発乾
固したシ、あるいは溶液を担体上へ滴下したシして行な
うなど、担体とルテニウム化合物を含む溶液とを接触さ
せて担持することができる。これらの場合に使用できる
ルテニウム化合物の例としては塩化ルテニウム、硝酸ル
テニウム、酢酸ルテニウム、塩化穴アンモニア・ルテニ
ウムなど水に可溶なもの、あるいはルテニウムカルボニ
ルクラスター等有機溶剤に可溶なものたどがある。
For example, ruthenium can be supported on a support such as manganese dioxide by immersing the support in a solution of a ruthenium compound and adsorbing it onto the support. The ruthenium compound can be supported by contacting the carrier with a solution containing the ruthenium compound, such as by depositing the ruthenium compound, by evaporating the solution to dryness, or by dropping the solution onto the carrier. Examples of ruthenium compounds that can be used in these cases include those soluble in water such as ruthenium chloride, ruthenium nitrate, ruthenium acetate, ammonia/ruthenium chloride, and those soluble in organic solvents such as ruthenium carbonyl cluster. .

こうして得られた生成物は常法により成型しまたは成型
することなく、乾燥する。乾燥はたとえば常温〜300
℃で約10〜48時間保持することにより行なうことが
できる。最も好ましい乾燥方法は、常温で乾燥させた後
空気中で約90〜110℃に数時間加熱するか、あるい
はただちに空気中で約90〜110℃に数時間加熱する
方法である。キャリヤー物質および活性化剤は二酸化マ
ンガンと混合したり、担体上に担持したシ、二酸化マン
ガンにルテニウムを担持したものと混合したシする。
The product thus obtained is dried in a customary manner, with or without shaping. For example, dry at room temperature to 300℃
This can be carried out by holding at a temperature of about 10 to 48 hours. The most preferred drying method is to dry at room temperature and then heat in air to about 90-110°C for several hours, or to immediately heat in air to about 90-110°C for several hours. The carrier material and activator may be mixed with manganese dioxide, supported on a carrier, or mixed with ruthenium supported on manganese dioxide.

本発明の方法において使用されるこの支持されたルテニ
ウム/二酸化iンガン系触媒は、水素ガスによる還元及
び合成ガスの導入される以前に空気中でその触媒をある
高められた温度で焼成されるか否かによって生成物分布
及び担持されるルテニウムの平均粒子径は変動する。焼
成の温度が高い程ルテニウムの平均粒子径は太きくなシ
、生成する炭化水素の分布も高級炭化水素成分をより多
く生成する。C2〜C4の低級オレフィンを目的とする
場合には、この空気中焼成処理を省略し、直接H2ガス
による還元工程に導くのが好ましい。この場合、平均ル
テニウム粒子径は2 nm以下を示す。低級オレフィン
よシもよシ高沸点成分に富むオレフィンが得たい場合は
約600℃以下好ましくは約300〜600℃の温度で
焼成する。焼成時間は約30分〜24時間が好ましい。
The supported ruthenium/dioxide-based catalyst used in the process of the present invention is prepared by calcining the catalyst in air at an elevated temperature prior to reduction with hydrogen gas and introduction of synthesis gas. The product distribution and the average particle size of supported ruthenium vary depending on whether or not the ruthenium is used. The higher the firing temperature is, the larger the average particle diameter of ruthenium becomes, and the distribution of the hydrocarbons produced increases to produce higher hydrocarbon components. When the target is a C2 to C4 lower olefin, it is preferable to omit this in-air calcination treatment and directly lead to the reduction step using H2 gas. In this case, the average ruthenium particle diameter is 2 nm or less. If it is desired to obtain an olefin rich in high-boiling components rather than lower olefins, firing is performed at a temperature of about 600°C or less, preferably about 300 to 600°C. The firing time is preferably about 30 minutes to 24 hours.

焼成はルテニウム担持前に担体のみを焼成しても、ルテ
ニウム担持後の触媒を焼成しても、あるいは担体のみを
焼成するとともに触媒−′をも焼成してもよいが、最も
好ましいのはルテニウム担持後に焼成することである。
The calcination may be performed by calcination of only the carrier before supporting ruthenium, by calcination of the catalyst after supporting ruthenium, or by calcination of only the carrier and also of the catalyst, but the most preferable method is to calcinate the carrier with ruthenium supported. It is to be fired later.

600℃をこえる高温条件下で焼成を行なうと触媒活性
は低下してしまい、オレフィン生成の選択性は低下して
しまう。
If the calcination is performed under high temperature conditions exceeding 600° C., the catalyst activity will be reduced and the selectivity for olefin production will be reduced.

本発明の実施に使用される担体は粉末、顆粒、形状、圧
出形など何れの形状でも良く、約1〜200rr?/f
好適には約10〜100 nl/を最も好適には約25
〜100 d/fのB、E、T表面積を持ちうる。ルテ
ニウムは選択された担体上に約0.1〜50wt%、好
適には約0.1〜30wt%、最も好適には0.5〜2
5wt%の濃度で沈着されるが、その百分率は、X線回
折のような標準法で測定して、約0.1〜20nm、好
適には約0.1〜lQnm、最も好適には0.1〜5 
nmの平均粒子径(球形として仮定しての直径)をもつ
ルテニウムを含んだ触媒の全重量に基づくものである。
The carrier used in carrying out the present invention may be in any form such as powder, granule, extruded form, etc., and has a mass of about 1 to 200 rr? /f
Preferably about 10-100 nl/, most preferably about 25
It can have a B, E, T surface area of ~100 d/f. Ruthenium is present on the selected support from about 0.1 to 50 wt%, preferably from about 0.1 to 30 wt%, most preferably from 0.5 to 2
Deposited at a concentration of 5 wt%, the percentage is about 0.1 to 20 nm, preferably about 0.1 to 1Q nm, most preferably 0.1 to 1 Q nm, as determined by standard methods such as X-ray diffraction. 1-5
It is based on the total weight of the catalyst containing ruthenium with an average particle size (diameter assuming a spherical shape) of nm.

好適な態様において上述されたように、あるいは同様な
方法によって製造されたルテニウム触媒は合成ガスで負
荷する前に水素あるいは一酸化炭素のような還元性雰囲
気で約360℃以上、好適には約400℃以上の温度で
約0.5〜4時間加熱処理される。この場合約1 at
mの大気圧の圧力を維持するのが好ましい。水素等で還
元処理する際、水素と同時に水、メタノールあるいはエ
タノール等の含酸素化合物あるいは硫化水素等を導入す
る前処理工程によシ触媒表面処理を導き、この活性化及
び硫化処理を実施することで生成物分布を制御すること
も可能である。
In a preferred embodiment, the ruthenium catalyst prepared as described above or by a similar method is heated in a reducing atmosphere such as hydrogen or carbon monoxide at temperatures above about 360° C., preferably at about 400° C., before loading with synthesis gas. Heat treatment is performed at a temperature of 0.degree. C. or higher for about 0.5 to 4 hours. In this case about 1 at
Preferably, a pressure of m atmospheric pressure is maintained. When performing reduction treatment with hydrogen, etc., the catalyst surface treatment is carried out through a pretreatment step in which water, an oxygen-containing compound such as methanol or ethanol, or hydrogen sulfide, etc. is introduced simultaneously with hydrogen, and this activation and sulfurization treatment is carried out. It is also possible to control the product distribution by

この加熱処理を行なう還元工程あるいは前処理工程は、
FT合成反応が還元性雰囲気で行なわれ、従って上記工
程と同じような触媒還元効果を持つであろうから、必ず
しも別の工程として行なわれる必要はないことに留意す
べきである。
The reduction step or pretreatment step for this heat treatment is
It should be noted that the FT synthesis reaction does not necessarily need to be carried out as a separate step, as it will be carried out in a reducing atmosphere and therefore have a similar catalytic reduction effect as the above steps.

本発明の方法の反応操作条件はFT合成に典型的なもの
である。圧力はθ〜100 Ky/ly? G、好適に
はO〜30 Ky/crl G 、最も好適にはO〜2
0Ky/crr? Gの範囲にある。減圧下に行なって
もよい。温度は約100〜500℃、好適には約200
〜450℃、最も好適には約250〜400℃の範囲に
ある。水素対−酸化炭素モル比(H2/CO比)は約0
.1〜10、好適には約0.5〜4最も最適には0.5
〜1でやや一酸化炭素が過剰量で存在する混合ガスであ
る。供給ガスの空間速度(GH8V)は約100 hr
−1〜50000 hr−’の範囲である。反応室を去
る混合ガスは形成された炭化水素生成物を除去した後に
装置に全部、又は部分的に再び供給する。
The reaction operating conditions of the method of the invention are typical of FT synthesis. The pressure is θ~100 Ky/ly? G, preferably O~30 Ky/crl G, most preferably O~2
0Ky/crr? It is in the range of G. It may also be carried out under reduced pressure. The temperature is about 100-500°C, preferably about 200°C.
~450<0>C, most preferably in the range of about 250-400<0>C. The hydrogen to carbon oxide molar ratio (H2/CO ratio) is approximately 0
.. 1 to 10, preferably about 0.5 to 4, most optimally 0.5
~1, it is a mixed gas in which carbon monoxide is present in a slightly excessive amount. Space velocity of supply gas (GH8V) is approximately 100 hr
-1 to 50000 hr-'. The gas mixture leaving the reaction chamber is fed completely or partially back into the device after removal of the hydrocarbon products formed.

本発明の方法において使用される触媒は一般に固定床の
型で適用する。しかしながらこれを微細に分配された型
で使用する流動床及び懸濁床なども適用できる。また触
媒は連続的又は不連続的に再生するため、反応容器から
除去しても良い。このために、これらを特別な容器中で
空気と共に燃焼することにより、触媒表面上に付着せる
不純物を除去し、引続き公知方法で還元し使用出来る。
The catalyst used in the process of the invention is generally applied in fixed bed form. However, fluidized beds, suspended beds, etc., in which they are used in finely divided form, are also applicable. The catalyst may also be removed from the reaction vessel for continuous or discontinuous regeneration. For this purpose, they are burnt with air in special containers to remove impurities deposited on the catalyst surface and can be subsequently reduced and used in known manner.

触媒の前処理としての還元工程または反応中に触媒中の
ルテニウム化合物は大部分金属単体となる。また触媒調
製時相体として使用されたγ型二酸化マンガンは反応中
地の結晶型、Mn2olIやMna04など他のマンガ
ン酸化物に変ってゆくと思われるが、γ型二酸化マンガ
ン以外のマンガン酸化物から調製した触媒では触媒選択
性が非常に低く、本発明の目的は達成されない。
During the reduction step or reaction as pretreatment of the catalyst, most of the ruthenium compound in the catalyst becomes an elemental metal. In addition, it is thought that the γ-type manganese dioxide used as a phase body during the catalyst preparation changes to other manganese oxides such as crystalline Mn2olI and Mna04 during the reaction, but manganese oxides other than γ-type manganese dioxide The prepared catalyst has very low catalyst selectivity and the object of the present invention is not achieved.

本発明方法の効果について述べる。本発明の方法は使用
される触媒が、難溶な二酸化マンガン及び活性化剤ある
いはキャリヤー物質としての各種金属酸化物からなる群
から選ばれる担体に支持されたルテニウムからなる触媒
を用いることによシー酸化炭素と水素から不飽和炭化水
素を選択的に生成する。殊に反応圧力O〜5Ky/1w
?Qではガス状の低級オレフィン類が、また約5 Ky
/cnf’ G以上では高級不飽和炭化水素が−酸化炭
素・と水素を用いて、高められた温度及び圧力下で接触
水素化することによシ良好な収率で得られ、また生成す
る炭化水素化合物の分布はC3留分以上でシュルツ・フ
ローリー則に従うものの、ルテニウム系触媒を用いたF
T合成反応では副生のさけられない、メタン生成量が極
端に少なく、C2以上の不飽和炭化水素が良好な収率で
得られることが判明した。また本発明方法では触媒調製
時の焼成条件を変えたシ、触媒中にゼオライト、クロミ
ア等のキャリヤー物質を配合することによりより高沸点
のオレフィン類を製造することができる。また本発明触
媒は耐イオウ性が強く、イオウ分を不純物として含有す
る原料ガスも使用できる。
The effects of the method of the present invention will be described. The method of the present invention is characterized by the fact that the catalyst used is ruthenium supported on a support selected from the group consisting of sparingly soluble manganese dioxide and various metal oxides as activators or carrier substances. Selectively generates unsaturated hydrocarbons from carbon oxide and hydrogen. Especially reaction pressure O~5Ky/1w
? In Q, gaseous lower olefins are also present at about 5 Ky
/cnf' G and above, higher unsaturated hydrocarbons can be obtained in good yields by catalytic hydrogenation using carbon oxide and hydrogen at elevated temperatures and pressures, and the resulting carbonization Although the distribution of hydrogen compounds follows the Schulz-Flory law in the C3 fraction and above, F
It has been found that in the T synthesis reaction, by-products are unavoidable, the amount of methane produced is extremely small, and unsaturated hydrocarbons of C2 or higher can be obtained in good yields. Furthermore, in the method of the present invention, olefins with a higher boiling point can be produced by changing the firing conditions during catalyst preparation and by incorporating a carrier material such as zeolite or chromia into the catalyst. Furthermore, the catalyst of the present invention has strong sulfur resistance, and raw material gas containing sulfur as an impurity can also be used.

以下実施例によシ本発明を説明する。以下の例中反応条
件のH2/COモル比は特記しない限り1.0で行なっ
た。
The present invention will be explained below with reference to Examples. In the following examples, the H2/CO molar ratio of the reaction conditions was 1.0 unless otherwise specified.

参考例1 本発明実施例に使用する各種マンガン酸化物は以下の方
法によシ合成した。
Reference Example 1 Various manganese oxides used in the examples of the present invention were synthesized by the following method.

r型二酸化マンガンは、炭素を陽極として硫酸マンガン
(It)と硫酸の混合温水溶液(90℃)を電解して極
板上に生成する電解二酸化マンo、1 ガン(A法)および炭酸マンガンに★%の水酸化ナトリ
ウムを添加し空気中350℃で酸化し、希硫酸で熱処理
し、濾過水洗し、0.8規定のアンモニア水でpHを4
.0以上にpH調整し、濾過し、そして乾燥して調製し
た二酸化マンガン(B法)である。
R-type manganese dioxide is produced by electrolytic manganese dioxide produced on an electrode plate by electrolyzing a mixed warm aqueous solution (90°C) of manganese sulfate (It) and sulfuric acid using carbon as an anode (method A) and manganese carbonate. Add ★% sodium hydroxide, oxidize in air at 350°C, heat treat with dilute sulfuric acid, filter and wash with water, and adjust the pH to 4 with 0.8N aqueous ammonia.
.. This is manganese dioxide (method B) prepared by adjusting the pH to 0 or more, filtering, and drying.

上記2法による二酸化マンガンは、いずれも結晶性が悪
く、第1図に示すごとくX線回折パターンを示した。第
1図のX線回折図はFeKnを光源とし、Mnをフィル
ターとして測定したもので、横軸は角度2θを、縦軸は
X線強庫をあられす。
Manganese dioxide obtained by the above two methods both had poor crystallinity and exhibited an X-ray diffraction pattern as shown in FIG. The X-ray diffraction diagram in Figure 1 was measured using FeKn as a light source and Mn as a filter, with the horizontal axis representing the angle 2θ and the vertical axis representing the X-ray intensity.

参考例2 比較例で使用するマンガン酸化物は以下の方法によシ合
成した。β−Mnへは、硫酸マンガン(It)六水和物
を空気中150〜190 ℃で2−3日間加熱し、その
後沸騰希硝酸つづいて沸騰水で洗浄し、さらに450〜
500℃の温度で再加熱し合成した。以下MnOs M
nzOa、実施例1、比較例I Ru/γ−MnOz (触媒1)を次の様に調製し評価
した。A法によるMnO288,5tを塩化ルテニウム
2.28 fを水とエタノールとの等容量混合溶液40
mLIIC溶解させた溶液中に含浸する。−昼夜放置抜
水−アスピレータ−で脱溶剤し、90〜100℃のオー
プン中で乾燥し触媒(1)とした。このように調製した
触媒(1)にはRu 1.0重量%を含んでいた。この
触媒を反応容器に2mt(2,57F)充填し、水素ガ
ス雰囲気下400℃X 2 hr還元処理した。続いて
水素ガス中で反応温度以下(約100℃)に冷却したの
ち一酸化炭素と水素よりなる反応ガスと変換し、触媒層
に流入した。同様にしてルテニウム含有i14.Owt
%の触媒(2)を調製し、この触媒についても反応ガス
を通じて反応を行なった。反応条件、生成物組成は表1
、第2〜4図に明記される。第2〜4図の反応条件は圧
力常圧、GH8V 150 hr−1H2/COモル比
1である。
Reference Example 2 A manganese oxide used in a comparative example was synthesized by the following method. To obtain β-Mn, manganese sulfate (It) hexahydrate is heated in air at 150 to 190 °C for 2 to 3 days, then washed with boiling dilute nitric acid and then boiling water, and then heated to 450 to 190 °C.
Synthesis was performed by reheating at a temperature of 500°C. Below MnOs M
nzOa, Example 1, Comparative Example I Ru/γ-MnOz (Catalyst 1) was prepared and evaluated as follows. 288.5t of MnO by method A, 2.28f of ruthenium chloride, 40% of an equal volume mixed solution of water and ethanol
Immerse in a solution containing mLIIC. - Water was left to drain day and night - The solvent was removed with an aspirator and dried in an open air at 90 to 100°C to obtain a catalyst (1). The catalyst (1) thus prepared contained 1.0% by weight of Ru. A reaction vessel was filled with 2 mt (2,57 F) of this catalyst, and a reduction treatment was performed at 400° C. for 2 hr in a hydrogen gas atmosphere. Subsequently, it was cooled to below the reaction temperature (approximately 100° C.) in hydrogen gas, and then converted into a reaction gas consisting of carbon monoxide and hydrogen, which flowed into the catalyst layer. Similarly, ruthenium-containing i14. Owt
% catalyst (2) was prepared, and this catalyst was also reacted by passing the reaction gas. Reaction conditions and product composition are shown in Table 1.
, as specified in FIGS. 2-4. The reaction conditions in FIGS. 2-4 are normal pressure, GH8V 150 hr-1H2/CO molar ratio 1.

比較のため上記触媒(1)の製法と同様な方法で触媒担
体としてMn01Mn203、MnaO<を用いるマン
ガン酸化物のマンガン荷電数を変化させた触媒+31 
(41(51を調製し評価した。表1は触媒担体として
用いるマンガン酸化物のマンガン荷電数の差異によF)
 Ru/Mn系触媒のいわゆる選択特性(オレフィン特
性)を比較して例示している。Ru /MnO2系触媒
では、そこに示された他のマンガン酸化物から調製した
触媒に較べて、メタンの生成が有意に低く、かつ02〜
C4の低級オレフィンの選択性が特に高めことに留意す
べきである。
For comparison, catalyst +31 was prepared by changing the manganese charge number of manganese oxide using Mn01Mn203 and MnaO< as catalyst carriers in the same manner as the production method of catalyst (1) above.
(41 (51) was prepared and evaluated. Table 1 shows the differences in manganese charge numbers of manganese oxides used as catalyst carriers)
The so-called selective characteristics (olefin characteristics) of Ru/Mn-based catalysts are compared and illustrated. Ru/MnO2-based catalysts produced significantly lower methane than catalysts prepared from other manganese oxides presented therein, and
It should be noted that the selectivity for C4 lower olefins is particularly high.

実施例2、比較例2 実施例(1)で用いた触媒(1)を電気炉で空気中45
0℃で24hr焼成処理した触媒(6)を実施例1と同
様に反応器に充填し還元処理をほどこして評価した。反
応条件および生成物分布、組成は表2.3、第5図に明
記した。第5図の反応条件は温度300℃、圧力10 
Ky/crr?G、GH8V 300 hr’、H2/
COモル比1である。第5図はルテニウム担持後の空気
焼成の有無によシ、生成物分布は大きく変動することを
示している。焼成することによシ生成物の炭素数は増加
し、高沸点留分を生成する。またその生成物分布は、シ
ュルツ・70一リー分則に従うものの比較例として示し
たRu/γ−A1203触媒(7H8) (いずれも4
50℃で焼成したもの。)に較べて、ルテニウム活性金
属の特徴とも云える温度依存性が少なく、かつオレフィ
ン特性に優れていることに留意すべきである。
Example 2, Comparative Example 2 The catalyst (1) used in Example (1) was heated in an electric furnace at 45% in air.
Catalyst (6) calcined at 0° C. for 24 hours was charged into a reactor in the same manner as in Example 1, subjected to reduction treatment, and evaluated. The reaction conditions, product distribution and composition are specified in Table 2.3 and Figure 5. The reaction conditions in Figure 5 are a temperature of 300°C and a pressure of 10°C.
Ky/crr? G, GH8V 300 hr', H2/
The CO molar ratio is 1. FIG. 5 shows that the product distribution varies greatly depending on whether or not air calcination is performed after supporting ruthenium. Calcining increases the carbon number of the product and produces a high boiling fraction. Although the product distribution follows the Schulz-70 Lie rule, the Ru/γ-A1203 catalyst (7H8) shown as a comparative example (both 4
Baked at 50℃. ), it should be noted that it has less temperature dependence, which is a characteristic of ruthenium active metals, and has excellent olefin properties.

実施例3、比較例3 実施例1に明示した触媒(1)の調製方法と同様にして
調製した、各種二酸化マンガンγ型、無定形、β型を担
体として用いた触媒(9)、(10)、(11)、(1
2)、(13)、(14)につき反応評価を実施した。
Example 3, Comparative Example 3 Catalysts (9) and (10) using various manganese dioxide γ-type, amorphous, and β-type as carriers were prepared in the same manner as the preparation method of catalyst (1) specified in Example 1. ), (11), (1
Reaction evaluations were conducted for 2), (13), and (14).

表4、第6.7.8図はFT反応合成における触媒のオ
レフィン特性について、各種二酸化iンガンの結晶構造
の差異による評価結果を例示している。第6〜8図の反
応東件は圧力常圧、GH8V 150 hr−1、H2
/COモル比1である。C2〜C4の低級オレフィンの
選択性は、低結晶性のγ型を用いた時、結晶性の高い他
の二酸化マンガン(β−Mn02 )および無形MnO
2に較べて、有意に高いことに注目すべきである。また
ルテニウムを担持しないγ型二酸化マンガンのみからな
る触媒05)、06)についても評価したが、転化率が
極端に低く、触媒活性がほとんどないことがわかる。
Table 4 and Figures 6.7.8 exemplify the evaluation results of the olefin properties of catalysts in FT reaction synthesis based on the differences in crystal structure of various types of carbon dioxide. The reaction conditions in Figures 6 to 8 are normal pressure, GH8V 150 hr-1, H2
/CO molar ratio is 1. The selectivity of C2-C4 lower olefins is higher than that of other highly crystalline manganese dioxide (β-Mn02) and amorphous MnO when using the low-crystalline γ type.
It should be noted that this is significantly higher than 2. Catalysts 05) and 06) consisting only of γ-type manganese dioxide without supporting ruthenium were also evaluated, and it can be seen that the conversion rate was extremely low and the catalyst activity was almost absent.

実施例4、比較例4 γ型二酸化マンガン(A法)を焼成するか焼成せず、次
に実施例1の触媒(1)と同様にしてルテニウムを担持
(ルテニウムとして1重量%担持)し、実施例1の触媒
(1)と同様にして乾燥し、最後に焼成するかもしくは
焼成せずシテ触媒(17)、08)、(19)、(20
)、(21) tr RIM 製した。触媒07)はル
テニウムを担持前に450℃で8時間焼成しかつルテニ
ウム担持後に450℃で8時間焼成したものであり、触
媒α8)はルテニウム担持前に550℃で8時間焼成し
かつルテニウム担持後に550℃で8時間焼成したもの
であり、触媒(21)はルテニウム担持前は焼成せずル
テニウム担持後に900℃で8時間焼成したものであり
、触媒(19)はルテニウム担持前に550℃で23時
間焼成しルテニウム担持後は焼成しなかったものであり
、触媒(2のはr型二酸化マンガンの代シに一酸化マン
ガンを使用した以外触媒(19)と同じ方法で調製した
ものである。
Example 4, Comparative Example 4 γ-type manganese dioxide (method A) was calcined or not calcined, and then ruthenium was supported in the same manner as catalyst (1) of Example 1 (1% by weight of ruthenium supported), The catalysts (17), 08), (19), (20
), (21) tr RIM was produced. Catalyst 07) was calcined at 450°C for 8 hours before supporting ruthenium, and calcined at 450°C for 8 hours after supporting ruthenium, and catalyst α8) was calcined at 550°C for 8 hours before supporting ruthenium, and after supporting ruthenium. Catalyst (21) was calcined at 550°C for 8 hours before supporting ruthenium, but was calcined at 900°C for 8 hours after supporting ruthenium, and catalyst (19) was calcined at 550°C for 23 hours before supporting ruthenium. It was calcined for a time and was not calcined after supporting ruthenium, and was prepared in the same manner as catalyst (19) except that catalyst (2) used manganese monoxide instead of r-type manganese dioxide.

これらの触媒を実施例1と同様にして反応器への充填、
水素還元処理をし、反応を行なった。表5に反応条件お
よび結果を5示した。
These catalysts were charged into the reactor in the same manner as in Example 1,
A hydrogen reduction treatment was performed to conduct a reaction. Table 5 shows the reaction conditions and results.

表5の結果から、触媒の焼成温度が高いほどメタン生成
率が高くなること、焼成温度が600℃をこえるとC2
〜C4の低級オレフィンの生成率が極端に低下すること
、担体にルテニウムを担持した後焼成すると生成物分布
がより高沸点成分へ移行すること、および−酸化マンガ
ンを担体として調製した触媒はオレフィン生成の選択性
が非常に低いことがわかる。
From the results in Table 5, it can be seen that the higher the calcination temperature of the catalyst, the higher the methane production rate, and that when the calcination temperature exceeds 600°C, C2
-The production rate of C4 lower olefins is extremely reduced, that when ruthenium is supported on a carrier and then calcined, the product distribution shifts to higher boiling point components, and -The catalyst prepared using manganese oxide as a carrier does not produce olefins. It can be seen that the selectivity is very low.

実施例5、比較例5 A法により合成したr −Mn0z 10 ml (2
2,79f)を、塩化ルテニウム(RuC1a ・nH
2O) 2.28tをエタノール−水の等容量混合液8
mlに溶解させた溶液中に含浸させる。−昼夜放置後、
脱溶剤し、90〜100℃のエヤーオープン中で乾燥さ
せる。次いで生成物3 mA C4,64t)をとシ塩
化第二鉄(FeC1g ・6 H2O) 0.17 f
をエタノール−水等容量混合液8縦に溶解させた溶液2
.4ml、に含浸させる。−昼夜放置後、脱溶剤し、9
0〜100℃のエヤーオープン中で乾燥することによシ
触媒(22)を調製した。触媒(23)は実施例1の触
媒(1)と同様にして調製したものである。触媒(24
)はルテニウムと鉄とを順次でなく同時に担持する以外
は触媒(22)と同様にして調製したものである。
Example 5, Comparative Example 5 r -Mn0z synthesized by method A 10 ml (2
2,79f) and ruthenium chloride (RuC1a ・nH
2O) 2.28t is an equal volume mixture of ethanol and water8
immerse in a solution dissolved in ml. - After leaving it for day and night,
The solvent is removed and dried in an open air at 90 to 100°C. The product (3 mA C4,64t) was then diluted with 0.17 f of ferric chloride (FeC1g 6 H2O).
A solution of 8 vertically dissolved ethanol-water mixture in equal volume 2
.. 4 ml. - After standing for day and night, remove the solvent, 9
A catalyst (22) was prepared by drying in an open air at 0-100°C. Catalyst (23) was prepared in the same manner as catalyst (1) in Example 1. Catalyst (24
) was prepared in the same manner as catalyst (22) except that ruthenium and iron were supported simultaneously instead of sequentially.

比較のため示した触媒(25)は鉄のみを担持する以外
は触媒(22)と同様にして調製したものである。
Catalyst (25) shown for comparison was prepared in the same manner as catalyst (22) except that only iron was supported.

これらの触媒について実施例工と同様にして反応を行な
った。その反応条件および結果を表6に示す。表6の結
果からルテニウムの代シに鉄を担持した触媒を使用する
と転化率が極端に低下し、はとんど触媒活性がないこと
がわかる。
Reactions were carried out using these catalysts in the same manner as in the examples. The reaction conditions and results are shown in Table 6. From the results in Table 6, it can be seen that when a catalyst in which iron is supported instead of ruthenium is used, the conversion rate is extremely reduced and there is almost no catalytic activity.

実施例6 FeC1a ・6H20の代シにそれぞれPdCl2、
RhCl3’ 3 H2O、NiCl2・6H20、C
OCl2 ・6H20、CuCl2・2H20、ReC
1a % HzPtCls ・6H20、Ag NOa
、MgCh、LaC1g ・7H20% TiCl3、
TiC1mおよびAlCl3・6H20を使用する以外
実施例5の触媒(22)と同様にしてγ−MnO2にル
テニウムと各種活性化剤との両者を担持した触媒(26
)〜(38)を調製した。
Example 6 PdCl2 and PdCl2 were substituted for FeCla and 6H20, respectively.
RhCl3' 3 H2O, NiCl2・6H20, C
OCl2・6H20, CuCl2・2H20, ReC
1a % HzPtCls ・6H20, Ag NOa
, MgCh, LaC1g ・7H20% TiCl3,
A catalyst (26) in which both ruthenium and various activators were supported on γ-MnO2 was prepared in the same manner as the catalyst (22) of Example 5 except that TiC1m and AlCl3.6H20 were used.
) to (38) were prepared.

これらの触媒について実施例1と同様にして反応を行な
った。その反応条件および結果を表7に示す。表6.7
の結果からRu金属と共に各種活性化剤を同時担持する
ことにより、助触媒としての効果が出現し、希望する生
成物分布および組成は、目的とする各種金属活性化剤と
の任意の組み合せで達せしめることを特徴としている。
Reactions were carried out in the same manner as in Example 1 using these catalysts. The reaction conditions and results are shown in Table 7. Table 6.7
The results show that co-supporting Ru metal and various activators produces a cocatalyst effect, and the desired product distribution and composition can be achieved by any desired combination with various metal activators. It is characterized by urging.

実施例7 本例では実施例5.6の含浸担持と異なりイオン交換で
ルテニウムを担体に担持した。
Example 7 In this example, ruthenium was supported on the carrier by ion exchange, unlike the impregnated support in Example 5.6.

A法よシ合成しfc r−Mn0210 ml (17
,74f)を2N−NH4C1および0.lN−MgC
l2を含む水溶液500 mA (NHaでpH6,8
7に調整)に懸濁させ、30℃、17hr振とうした。
Synthesize fc r-Mn0 using method A. 10 ml (17
, 74f) with 2N-NH4C1 and 0. lN-MgC
500 mA of an aqueous solution containing l2 (pH 6,8 in NHa)
7) and shaken at 30°C for 17 hours.

その後濾過し風乾した。さらに90℃エヤバス中で5h
r乾燥後、RuC1a ・nH2O0,51fを含む水
−エタノール等容量混合溶液20mL中に含浸する。−
昼夜放置抜水アスビレーターで脱溶剤し、90〜100
℃のオープン中で乾燥し、触媒(39)とした。この様
に調製した触媒(39)はRu 1.0重量%、Mg0
.6重量%を含んでいた。
It was then filtered and air-dried. Further 5 hours in 90℃ air bath
After drying, it is immersed in 20 mL of a water-ethanol mixed solution containing RuC1a .nH2O0,51f in equal volumes. −
Remove the solvent with a drain asvilator that is left standing day and night, and the
It was dried in the open at ℃ to obtain a catalyst (39). The catalyst (39) prepared in this way contained 1.0% by weight of Ru and 0% by weight of Mg0.
.. It contained 6% by weight.

MgC1+の代シにZnCl2を使用する以外上記触媒
(39)の製法と同様な方法で触媒(4のを調製し実施
例1と同様にして評価した。表8に反応条件、生成物組
成等を明示している。また表8には触媒(39)を使用
して空間速度を変えて反応を行なった例、およびH2/
CO原料モル比を変えて反応を行なった例を示した。こ
れらの結果から空間速度が大となるほどオレフィン生成
の選択性が向上すること、およびH2/CO比はCOが
やや多い方がオレフィン生成の選択性が向上すること、
反応圧力が低いほどオレフィン生成の選択性が向上する
ととがわかる。
Catalyst (4) was prepared in the same manner as the above catalyst (39) except that ZnCl2 was used in place of MgC1+ and evaluated in the same manner as in Example 1. Table 8 shows the reaction conditions, product composition, etc. In addition, Table 8 shows examples in which the reaction was carried out using the catalyst (39) and changing the space velocity, and H2/
An example was shown in which the reaction was carried out by changing the molar ratio of CO raw materials. These results show that the selectivity for olefin production improves as the space velocity increases, and that the selectivity for olefin production improves when the H2/CO ratio is slightly more CO.
It can be seen that the lower the reaction pressure, the better the selectivity of olefin production.

実施例8、比較例6 実施例5で調製した触媒(23)を反応器に2ml (
2,60f )充填し、水素ガス雰囲気下400℃X 
2 hr還元処理をした。その後反応温度以下に冷却し
たのち、反応ガスと交換し、触媒層に流入した。所定温
度に達したのち、原料ガスと共に硫化水素ガスをシリン
ジより系内に注入する。所定量の硫化水素を添加し、触
媒表面を硫化処理をほどこしたのち触媒を評価した。反
応条件および生成物分布を表9に明記した。比較例とし
てあげたRu/j −A120J触媒(7)に較べて、
対イオウ性に優れかつ、硫化処理によりオレフィンの選
択性が向上することに留意すべきである。
Example 8, Comparative Example 6 2 ml of the catalyst (23) prepared in Example 5 was placed in a reactor (
2,60f) filled and heated at 400℃ under hydrogen gas atmosphere
A reduction treatment was performed for 2 hours. After that, the gas was cooled to below the reaction temperature, exchanged with the reaction gas, and then flowed into the catalyst layer. After reaching a predetermined temperature, hydrogen sulfide gas is injected into the system together with the raw material gas from a syringe. After adding a predetermined amount of hydrogen sulfide and subjecting the catalyst surface to sulfurization treatment, the catalyst was evaluated. The reaction conditions and product distribution are specified in Table 9. Compared to the Ru/j-A120J catalyst (7) given as a comparative example,
It should be noted that it has excellent sulfur resistance and that the sulfurization treatment improves olefin selectivity.

実施例9 触媒(39) 6 nd、 (7,8f )とモルデナ
イトを脱アルミニウム処理(モルデナイトを沸とうして
いる3規定塩酸水溶液中で3時間処理して5lo2/A
l2O5比15.0とした。)したもの6ml (3,
2f )とをよく粉砕混合し、打錠機にてペレットとし
、20〜32メツシユのものを選粒して触媒(41)を
得た。また触媒(18) 6 ml(7,2F)とクロ
ミアCr20a 6 ml (9,6f )とをよく粉
砕混合し、打錠機にてペレットとし、20〜32メツシ
ユのものを選粒して触媒(42)を得た。と五らの触媒
について実施例1と同様にして反応を行なった。反応条
件および結果を表10に示す。生成物はより高沸点成分
のものが多いことがわかる。
Example 9 Catalyst (39) 6nd, (7,8f) and mordenite were dealuminated (mortenite was treated for 3 hours in a boiling 3N hydrochloric acid aqueous solution to give 5lo2/A
The l2O5 ratio was set to 15.0. ) 6ml (3,
2f) were thoroughly ground and mixed, made into pellets using a tablet machine, and 20 to 32 meshes were selected to obtain a catalyst (41). In addition, 6 ml (7,2F) of catalyst (18) and 6 ml (9,6f) of Chromia Cr20a were thoroughly ground and mixed, made into pellets using a tablet machine, and pellets of 20 to 32 meshes were selected to make the catalyst ( 42) was obtained. The reaction was carried out in the same manner as in Example 1 using the catalysts of The reaction conditions and results are shown in Table 10. It can be seen that the product contains many components with higher boiling points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は参考例1のA法によるr型二酸化マンガンのX
線回折図である。第2.3.4図は実施例1および比較
例1の生成炭化水素中のメタン重量分率、エチレン/エ
タン生成比およびC2〜C4合計生成量を示す。第5図
は実施例2の生成炭化水素中の炭素数分布を示す。第6
〜8図は実施例3および比較例3の生成炭化水素中のメ
タン重量分率、エチレン/エタン生成比およびC2〜0
4合計生成量をあられす。また図中カッコつきの数字は
触媒番号をあらゎす。 特許出願人 新燃料油開発技術研究組合第1図 第20 結3図 &応・堪l髭 (″こ2 第LFW 第5m $4m 反iこ・場L/’l(’こp 第7図 第g圓 反tシ刊狂bt支C6ご )
Figure 1 shows the
It is a line diffraction diagram. Figure 2.3.4 shows the methane weight fraction in the hydrocarbons produced, the ethylene/ethane production ratio, and the total production amount of C2 to C4 in Example 1 and Comparative Example 1. FIG. 5 shows the carbon number distribution in the hydrocarbons produced in Example 2. 6th
-8 Figures show the methane weight fraction, ethylene/ethane production ratio, and C2-0 in the hydrocarbons produced in Example 3 and Comparative Example 3.
4. Hail the total production amount. In addition, the numbers in parentheses in the figure represent the catalyst numbers. Patent Applicant New Fuel Oil Development Technology Research Association Figure 1 Figure 20 Conclusion 3 Figure & Response / Beard Part G Entai T Shikankyo bt branch C6)

Claims (1)

【特許請求の範囲】[Claims] r型二酸化マンガンよシなる担体にルテニウムを担持す
ることにより調製した触媒に水素および一酸化炭素を含
む混合ガスを接触させてオレフィン類を製造することを
特徴とするオレン、イン類の製造法。
A method for producing olefins and enes, which comprises producing olefins by contacting a mixed gas containing hydrogen and carbon monoxide with a catalyst prepared by supporting ruthenium on a carrier such as r-type manganese dioxide.
JP58248035A 1983-12-29 1983-12-29 Preparation of olefin Granted JPS60146835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248035A JPS60146835A (en) 1983-12-29 1983-12-29 Preparation of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248035A JPS60146835A (en) 1983-12-29 1983-12-29 Preparation of olefin

Publications (2)

Publication Number Publication Date
JPS60146835A true JPS60146835A (en) 1985-08-02
JPH0370691B2 JPH0370691B2 (en) 1991-11-08

Family

ID=17172224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248035A Granted JPS60146835A (en) 1983-12-29 1983-12-29 Preparation of olefin

Country Status (1)

Country Link
JP (1) JPS60146835A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508739A (en) * 2001-11-13 2005-04-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー In-situ catalyst regeneration / activation method
WO2009157260A1 (en) * 2008-06-24 2009-12-30 コスモ石油株式会社 Catalyst for fischer-tropsch synthesis, and process for production of hydrocarbon
JP2010005496A (en) * 2008-06-24 2010-01-14 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method of manufacturing hydrocarbons
JP2010221108A (en) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon
WO2011074444A1 (en) * 2009-12-18 2011-06-23 コスモ石油株式会社 Catalyst composition for production of hydrocarbons and method for producing hydrocarbons
JP2011127014A (en) * 2009-12-18 2011-06-30 Cosmo Oil Co Ltd Method for producing hydrocarbon
JP2013031850A (en) * 2012-11-01 2013-02-14 Cosmo Oil Co Ltd Method of manufacturing catalyst for fischer-tropsch synthesis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116328A (en) 2008-11-11 2010-05-27 Nippon Oil Corp Method for producing unsaturated hydrocarbon and oxygen-containing compound, catalyst and method for producing the same
US20130289145A1 (en) 2011-01-24 2013-10-31 Yasutomo Miura Catalyst for fischer-tropsch synthesis, production method therefor, and production method using fischer-tropsch synthesis catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206134A (en) * 1979-03-12 1980-06-03 Exxon Research & Engineering Co. Ruthenium supported on manganese oxide as hydrocarbon synthesis catalysts in CO/H2 reactions
JPS5867345A (en) * 1981-08-05 1983-04-21 シエ−リング・アクチエンゲゼルシヤフト Catalyst for producing linear alpha- olefin from synthetic gas mainly and production of linear alpha-olefin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206134A (en) * 1979-03-12 1980-06-03 Exxon Research & Engineering Co. Ruthenium supported on manganese oxide as hydrocarbon synthesis catalysts in CO/H2 reactions
JPS5867345A (en) * 1981-08-05 1983-04-21 シエ−リング・アクチエンゲゼルシヤフト Catalyst for producing linear alpha- olefin from synthetic gas mainly and production of linear alpha-olefin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508739A (en) * 2001-11-13 2005-04-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー In-situ catalyst regeneration / activation method
JP2010174248A (en) * 2001-11-13 2010-08-12 Exxonmobil Research & Engineering Co In situ catalyst regeneration/activation process, and hydrocarbon synthesis process
WO2009157260A1 (en) * 2008-06-24 2009-12-30 コスモ石油株式会社 Catalyst for fischer-tropsch synthesis, and process for production of hydrocarbon
JP2010005496A (en) * 2008-06-24 2010-01-14 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method of manufacturing hydrocarbons
US8598063B2 (en) 2008-06-24 2013-12-03 Cosmo Oil Co., Ltd. Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbons
JP2010221108A (en) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon
WO2011074444A1 (en) * 2009-12-18 2011-06-23 コスモ石油株式会社 Catalyst composition for production of hydrocarbons and method for producing hydrocarbons
JP2011127014A (en) * 2009-12-18 2011-06-30 Cosmo Oil Co Ltd Method for producing hydrocarbon
CN102665904A (en) * 2009-12-18 2012-09-12 克斯莫石油株式会社 Catalyst composition for production of hydrocarbons and method for producing hydrocarbons
US9656252B2 (en) 2009-12-18 2017-05-23 Cosmo Oil Co., Ltd. Catalyst composition for producing hydrocarbons and method for producing hydrocarbons
JP2013031850A (en) * 2012-11-01 2013-02-14 Cosmo Oil Co Ltd Method of manufacturing catalyst for fischer-tropsch synthesis

Also Published As

Publication number Publication date
JPH0370691B2 (en) 1991-11-08

Similar Documents

Publication Publication Date Title
Yang et al. Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia
KR101508776B1 (en) A method for Producing 1,3-Butadiene from n-Butene using Continuous-flow Dual-bed Reactor
KR101026536B1 (en) Fe-based catalyst for the reaction of Fischer-Tropsch synthesis and preparation method thereof
JP6029682B2 (en) Zinc and / or manganese aluminate catalysts useful for alkane dehydrogenation
CN101530813A (en) Method for preparing molecular sieve catalyst used in carbon 4 liquid gas aromatization reaction
WO2019183842A1 (en) Composite catalyst, preparation method therefor and method for preparing ethylene
KR20210126414A (en) Alkali Metal and/or Alkaline Earth Metal-doped Transition Metal-Hydrogen Active Metal Composite Oxide Catalyst and Process for Preparing Butadiene Using the Same
CN110603096A (en) Preparation method of high-regeneration-efficiency straight-chain light hydrocarbon dehydrogenation catalyst
JPS60146835A (en) Preparation of olefin
JP2006225201A (en) Manganese compound-supporting material and its synthesizing method
WO2019218489A1 (en) Catalyst for synthesising p-xylene, preparation method therefor, and application thereof
US4728672A (en) Process for producing hydrocarbons
CN109772436B (en) Catalyst for aromatic hydrocarbon synthesis and preparation method thereof
CN113058586A (en) Catalyst for preparing olefin by oxidizing low-carbon alkane with carbon dioxide and preparation method thereof
JP3246933B2 (en) Metal-containing crystalline aluminosilicate catalyst for disproportionation of toluene
JPH0528278B2 (en)
JPS6023330A (en) Production of hydrocarbon
KR20030080215A (en) Process for methylating naphthalenic compounds using a zeolite catalyst wherein a part of the al atom has been replaced by fe, the catalyst and a method for preparing the catalyst
JP2000037626A (en) Dehydrogenation catalyst
JPS6211548A (en) Crystalline aluminosilicate composition, manufacture thereof and utilization thereof in synthetic-gas inversion reaction to low molecular weight hydrocarbon
JPH10165818A (en) Decomposition catalyst for nitrous oxide and removing method of nitrous oxide
KR102296609B1 (en) Catalyst for manufacturing hydrocarbon and method for preparing thereof
CN108970636B (en) Preparation method of benzene alkylation catalyst
CN109718764B (en) Noble metal catalyst for preparing propylene by propane dehydrogenation and preparation and application thereof
JP4212028B2 (en) Catalyst for synthesizing isobutylene and method for producing isobutylene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees