JPS60146213A - Aspherical optical system - Google Patents

Aspherical optical system

Info

Publication number
JPS60146213A
JPS60146213A JP241984A JP241984A JPS60146213A JP S60146213 A JPS60146213 A JP S60146213A JP 241984 A JP241984 A JP 241984A JP 241984 A JP241984 A JP 241984A JP S60146213 A JPS60146213 A JP S60146213A
Authority
JP
Japan
Prior art keywords
aspherical
optical system
lens
optical axis
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP241984A
Other languages
Japanese (ja)
Inventor
Keiji Ikemori
敬二 池森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP241984A priority Critical patent/JPS60146213A/en
Publication of JPS60146213A publication Critical patent/JPS60146213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To constitute so that a focal surface scarcely becomes out-of-focus by forming an aspherical part to a spherical surface extending from an optical axis to a prescribed height, and forming its circumferential part by an aspherical surface. CONSTITUTION:In an optical system consisting of one or plural lenses, at least one surface is constituted of a spherical surface to a height H from an optical axis, and an aspherical surface is formed extending to the circumferential part from H, so that each of them becomes a continuous shape. Also, when the outside diameter of the lens containing the aspherical surface, a radius of curvature of the spherical surface, and a height from the optical axis in case when an axial beam of 1:4 aperture ratio is made incident to the aspherical surface are denoted as phi, (r) and (h) respectively, conditions of phi/30<H<phi/4, h/3<=H<= h, and ¦r¦<30f are satisfied.

Description

【発明の詳細な説明】 本発明は、1枚又は複数枚のレンズで構成され少なくと
も1つの面が非球面である非球面光学系に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aspherical optical system that is composed of one or more lenses and has at least one aspherical surface.

従来の非球面は一般に次の式で示されるものが多い。Conventional aspheric surfaces are generally expressed by the following formula.

X=R(1−+ 1−(H/R)2) ”:]+ a)
l 2 + bH’ +cH6、+ clH8+ eH
”たたし、a、b、c、d、eは非球面係数、Hは光軸
からの高さ、Rは近軸曲率半径、Xは面頂点を)Q ノ
ー(14とした面の光11111+方向の変位である。
X=R(1-+ 1-(H/R)2) ”:]+ a)
l 2 + bH' +cH6, + clH8+ eH
``A, b, c, d, e are aspherical coefficients, H is the height from the optical axis, R is the paraxial radius of curvature, X is the surface apex) Q No (light of the surface set to 14) This is the displacement in the 11111+ direction.

従って、第1図(a) 、 (b)に示すように、レン
ズlの非球面Aか近軸曲率半径Bと同一の部分は高さH
が無限に小さいときである。また、現在の非球面加工は
研削方式を採用していることが多く、非球面の面を微視
的に観察すると球面の面に対し相当に凹凸が存在する。
Therefore, as shown in FIGS. 1(a) and 1(b), the portion of the lens l that is the same as the aspheric surface A or the paraxial radius of curvature B has a height H.
is infinitely small. Furthermore, current aspheric surface processing often employs a grinding method, and when an aspheric surface is microscopically observed, there are considerable irregularities relative to a spherical surface.

しかし、この非球面を撮影レンズの一部に使用したとき
、軸」−開放光束の最良性能の位1t6でピントを合わ
せれば、前記凹凸は像性能に殆ど悪影響を与えることは
ない。
However, when this aspherical surface is used as a part of a photographic lens, if focusing is performed at 1t6, which is the best performance of the axis--opening luminous flux, the unevenness will have almost no adverse effect on image performance.

一方、般近のTTL35ミリ−眼レフレックスカメラに
おいては、スプリントイメージでピント合わせを行うの
が主流となっている。スプリットイメージとは全光束は
使用せずに成る幅を持った輪帯光束を用いており、その
幅はF4或いはF5.6〜F8或いはFilまでの範囲
が多い。
On the other hand, in conventional TTL 35 mm eye reflex cameras, focusing is performed using a sprint image. A split image does not use the entire luminous flux, but instead uses an annular luminous flux with a width, and the width often ranges from F4 or F5.6 to F8 or Fil.

従って、第2図に示すように輪帯光束Cに相当するレン
ズ1の非球面Aの部分に凹凸が多く存在する場合は、ス
プリット位置最良像面りは中心最良f象+′i′Ii 
Eに対し異なった位置となり、Δdのy;が生すること
になる。光学設計上では、中心最良像面Eの位置は周辺
性能もほぼ最良となるため、スプリット位置最良像面り
で撮影すると△dだけアラ)・フォーカスした像になっ
てしまう。そのため従来では、輪帯光束Cに相当する非
球面Aの部分は極めて高精度を必要とし、また非球mル
ンズをレンズ系に組み込んだ後でなければ、非球面Aの
面精度の正確な判定ができないという欠点があった。
Therefore, if there are many irregularities on the aspherical surface A of the lens 1 corresponding to the annular beam C as shown in FIG.
The position will be different from E, and y; of Δd will occur. In terms of optical design, the peripheral performance is almost the best at the position of the central best image plane E, so if the image is photographed at the split position best image plane, the image will be out of focus by Δd. Therefore, in the past, the part of the aspherical surface A corresponding to the annular beam C required extremely high precision, and the accuracy of the surface accuracy of the aspherical surface A could only be determined after the aspherical m-lens was incorporated into the lens system. The drawback was that it was not possible.

本発明の目的は、従来のピント面がアウトフォーカスに
なり易いという前述の欠点を除去すると同時に、非球面
本来の性質である開放フレアの除去、歪曲除去の効果を
伺ら妨げることなく実現できる非球面光学系を提供する
ことにある。
The purpose of the present invention is to eliminate the above-mentioned disadvantage that the conventional focusing surface tends to be out of focus, and at the same time, it is an object of the present invention to achieve a method that can be realized without hindering the effects of eliminating open flare and distortion, which are the inherent properties of an aspheric surface. The object of the present invention is to provide a spherical optical system.

そしてこの目的を達成するための本発明の実施例1は、
1枚又は複数枚のレンズから成る光学系において、少な
くとも1つの面R3は、光軸からの高さHまでは球面で
あり、Hから周辺部にかけては非球面を形成し、光ll
1h中心からレンズ外径までを連続的な形状とし、前記
非球面を含むレンズの外径をφとしたとき、 φ/30<H<φ/4 ・・・(1) なる条件を満足するようにしている。
Embodiment 1 of the present invention for achieving this purpose is as follows:
In an optical system consisting of one or more lenses, at least one surface R3 is a spherical surface up to a height H from the optical axis, and forms an aspheric surface from H to the periphery.
When the shape is continuous from the center of 1h to the outer diameter of the lens, and the outer diameter of the lens including the aspherical surface is φ, the following condition is satisfied: φ/30<H<φ/4 (1) I have to.

また、前記球面の曲率半径をr、総合焦点距離をf (
mm)としたとき、 l r l<30f −(2) を満足するようにすることが好ましい。
Also, the radius of curvature of the spherical surface is r, and the total focal length is f (
mm), it is preferable to satisfy lrl<30f-(2).

このような構成とすれば、第3図に示すように非球面A
上の光軸中心からスプリッI・イメージ輪りi)光束付
近までは球面であるため、例えは従来の球面研摩技術の
応用が可能となり、少なくともこの球面部分には微視的
に見ても凹凸の形状は存在しなくなる。従って、従来の
欠点であるスプリントイメージ最良像面のアウトフォー
カス現象は殆ど存在しなくなる。また、非球面Aの中心
伺近が球面のため非球面レンズ単体の検査時に、例えば
球1r11原器を用いて中心伺近の球面の精度を測定す
れば、適状の〕j(面レンズと同様に(1/2)入のニ
ュートンオータで精度管理をすることが可能となる。
With such a configuration, the aspherical surface A as shown in FIG.
Since the area from the center of the optical axis above to the vicinity of the split I/image ring i) light beam is a spherical surface, it is possible to apply conventional spherical surface polishing technology, and at least this spherical surface has no unevenness even when viewed microscopically. The shape no longer exists. Therefore, the out-of-focus phenomenon of the best image plane of the sprint image, which is a conventional drawback, almost no longer exists. In addition, since the aspherical surface A has a spherical surface near its center, when inspecting a single aspherical lens, if the accuracy of the spherical surface near its center is measured using, for example, a sphere 1r11 prototype, it will be possible to determine the appropriate Similarly, accuracy control can be performed using a (1/2) input Newtonian.

また、実施例2は1枚又は複数枚のレン不から成る光学
系において、少なくとも1つの面R3は、光N:I+か
らの高さHまでは球面であり、Hから周辺部にかけては
非球面を形成し、光軸中心からレンズ外径までを連続的
な形状とし、口径比1:4の軸上光線が前記非球面に入
射するときの光軸からの高さをhとしたとき h/3≦H≦h ・・・(3) なる条件を21!Ji足している。
Further, in the second embodiment, in an optical system consisting of one or more lenses, at least one surface R3 is a spherical surface up to a height H from the light N:I+, and an aspheric surface from H to the peripheral part. The shape is continuous from the center of the optical axis to the outer diameter of the lens, and when h is the height from the optical axis when an axial ray with an aperture ratio of 1:4 is incident on the aspherical surface, h/ 3≦H≦h...(3) 21 conditions! I'm adding Ji.

次に、一般に非球面の大きな特長は、大口径レンズの開
放でのフレアの除去、或いは大画角レンズの樽型歪曲の
除去であると云え、これらは共にレンズの周辺ilイ1
(分において球面からの逸脱量を大きくすることにより
効果が現われるようになっている。
Next, in general, the major feature of an aspherical surface is the elimination of flare when wide aperture lenses are opened, or the barrel distortion of large angle of view lenses, both of which are effective at reducing the peripheral illumination of the lens.
(The effect appears by increasing the amount of deviation from the spherical surface in minutes.

このために条件式(1)或いは(3)が必要であり、主
に大画角レンズで開口絞りよりも物体側に非球面を用い
る場合に条件式(1)を適用し、主に大口径レンズに非
球面を用いる場合に条件式(2)を更に適用すればよい
For this reason, conditional expression (1) or (3) is necessary, and conditional expression (1) is mainly applied when an aspherical surface is used on the object side of the aperture stop with a large angle of view lens. Conditional expression (2) may be further applied when an aspherical surface is used for the lens.

大口径レンズでは、性能を良好に保つために各面の屈折
力をできるだけ均等に振り分ける必要かある。従って、
非球面の屈折力も成る程度必要である。また、0.4f
<l r l<1Ofであれば、更に性能が良好と保持
できる。
In large-diameter lenses, it is necessary to distribute the refractive power of each surface as evenly as possible in order to maintain good performance. Therefore,
It is also necessary that the refractive power of the aspherical surface is sufficient. Also, 0.4f
If <l r l <1Of, the performance can be maintained as even better.

条件式(1) 、 (3)の上限値を超えると、周辺部
の非球面効果が弱くなり、下限値を超えると中心付近の
球面部分が小さくなり過ぎ、或いは球面部がスプリット
イメージ輪帯光束以下となるためにアウトフォーカスの
現象が生じ易くなる。
If the upper limit of conditional expressions (1) and (3) is exceeded, the aspherical effect in the peripheral area becomes weak, and if the lower limit is exceeded, the spherical part near the center becomes too small, or the spherical part becomes a split image annular beam. The out-of-focus phenomenon tends to occur because of the following.

本発明を撮影光学系レンズに応用した実施例1、実施例
2の構成を第4図及び第5図に示す。実施例1は逆望遠
広角レンズタイプであり、焦点層j7.II’、’14
 、29 mm、FNo、L : 28、画角113.
4°、実施例2は変形ガウスタイプであって、焦点層M
51 、6 mm、 FNo、11.2、画角27.7
°の仕様であり、それぞれ第3面R3か非球面となって
いる。
The configurations of Embodiments 1 and 2 in which the present invention is applied to a photographic optical system lens are shown in FIGS. 4 and 5. Example 1 is a reverse telephoto wide-angle lens type, and the focal layer j7. II', '14
, 29 mm, FNo., L: 28, angle of view 113.
4°, Example 2 is a modified Gaussian type, and the focal layer M
51, 6 mm, FNo. 11.2, angle of view 27.7
The third surface R3 is an aspherical surface.

また、実施例1、実施例2のレンズ構成間の数値例をそ
れぞれ第1表、第2表に、非球面の数値例を第3表、第
4表に記載する。これらの数値例中、Riは物体側から
数えた第1番目のレンズ而の曲率半径、Dlは第1番目
のレンズの軸」二厚又は空気間隔、旧とνlはそれぞれ
第1番目のレンズのd線に対する屈折率とアツベ数、Y
は光軸からの高さ、Xは面頂態位ガからの変位量(光軸
方向)、ΔXは近軸曲率半径からの逸脱量(光軸方向)
である。
Numerical examples for the lens configurations of Example 1 and Example 2 are listed in Tables 1 and 2, respectively, and numerical examples for the aspherical surface are listed in Tables 3 and 4, respectively. In these numerical examples, Ri is the radius of curvature of the first lens counted from the object side, Dl is the axis of the first lens, thickness or air distance, and νl are the radius of curvature of the first lens, respectively. Refractive index and Atsube number for d-line, Y
is the height from the optical axis, X is the displacement from the surface apex position (in the optical axis direction), and ΔX is the deviation from the paraxial radius of curvature (in the optical axis direction)
It is.

第1表 実施例I F=14.29 FNo=1:2.8 2ω
=113.4゜R1= 42.88 111= 3.1
0 N l=1.69880 νl= 55.5R2=
 28.lf(D2=11.55R3一本58.71 
03= 5.83 、N2=1.80311 ν2= 
130.7R4= 52.25 04二〇、15 R5= 30.95 05= 1.70 N5=1.8
9880 1) 3= 55.5R6= l[i、44
 D6= 5.75R7= 32.97 07= 1.
30 N4=1.77250 ν4= 4f1.6R8
= lG、48 08= 5.95R9= 357.2
4 09= 1.50 ’ N 5=1.e9680 
ν5= 55.5R1O= 12.44 DlO=10
.40 Nfi=1.e0342 νG= 38.0R
11=−55,99011= 2.53R12= 0.
0 DI2= 1.80 N?=1.51833 シフ
=84.lR13= 0.OD13= 0.70 R14= 49.44 014= 5.8ON8=1.
51742 +) 8= 52.3R15=−12,2
2D15= 1.50 N9=1.69680 ν9=
 55.5R1B=−14,58018= 1.08R
17= −13,86017= 0.90 N10=1
.77250 rノ lo= 49.13R18=−2
5,88018= 1.70RI9=13B、40 D
]9= 9.65 N11=1.88893 ν11=
 31.lR20=−21,19020= 1.90 
N12=1.59551 ν12= 3!a、2R21
= 54.22 021= 0.89R22=−160
,01022= 0.80 N15=1,9228f(
ν13= 21.3R23= 28.58 023= 
5.53 Nl4=1.48749 シ14=70.l
R24=−17.82 024= 0.10R25=2
77.71 025= 2.1(3N15=1.804
00 ν15= 46JR2f(= −43,60 第2表 実施例2 F=51.8 FNo=l:1.2 2(、
)=27.?。
Table 1 Example I F=14.29 FNo=1:2.8 2ω
=113.4°R1= 42.88 111= 3.1
0 N l=1.69880 νl= 55.5R2=
28. lf (D2=11.55R3 one 58.71
03=5.83, N2=1.80311 ν2=
130.7R4= 52.25 0420, 15 R5= 30.95 05= 1.70 N5=1.8
9880 1) 3= 55.5R6= l[i, 44
D6=5.75R7=32.97 07=1.
30 N4=1.77250 ν4= 4f1.6R8
= lG, 48 08 = 5.95R9 = 357.2
4 09=1.50' N 5=1. e9680
ν5= 55.5R1O= 12.44 DlO=10
.. 40 Nfi=1. e0342 νG= 38.0R
11=-55,99011=2.53R12=0.
0 DI2= 1.80 N? =1.51833 Schiff=84. lR13=0. OD13=0.70 R14=49.44 014=5.8ON8=1.
51742 +) 8= 52.3R15=-12,2
2D15= 1.50 N9=1.69680 ν9=
55.5R1B=-14,58018=1.08R
17=-13,86017=0.90 N10=1
.. 77250 r no lo = 49.13R18 = -2
5,88018=1.70RI9=13B,40D
]9= 9.65 N11=1.88893 ν11=
31. lR20=-21,19020=1.90
N12=1.59551 ν12=3! a, 2R21
= 54.22 021= 0.89R22=-160
,01022=0.80 N15=1,9228f(
ν13= 21.3R23= 28.58 023=
5.53 Nl4=1.48749 C14=70. l
R24=-17.82 024=0.10R25=2
77.71 025 = 2.1 (3N15 = 1.804
00 ν15= 46JR2f(=-43,60 Table 2 Example 2 F=51.8 FNo=l:1.2 2(,
)=27. ? .

R1士 88.17 DI= 4.48 N 1=1.
80400 ν l= 4fi、eR2=2ft5.2
3 02= 0.15R3=*313.I34 031
1.83 N2=1.81554 ν 2= 44.4
R4= 134.85 04= 2.06 N5=1.
6383[1ν 3= 35.4R5= 21.07 
05= 8.3!3Re= o、o oe= 7.’4
0 R7=−19.10 137= 1.20 N4=1.
80518 ν 4= 25.4R8=213.21 
08= 9.18 N5=1.81800 v 5=4
8JR9=−32,3409= 0.15 R10=−17f(,94D10= 4.00 NO−
2,88300ν 8= 40.8R11=−46,0
0011= 0.10R’12=592.17 D12
= 3.35 N?=1.7?250 ν 7= 49
.1(R13=−81,29013= 0.30RI4
=503.91 014= 1.1(ONa=+、e5
+eo ν 8= 58.eR15=−503,91 jC非球面 第3表 実施例I Y X ΔX 0 0 0 0.5 0.002+3 0 1.0 0.00852 0 1.5 0.01918 0 2.0 0.03407 0 2.5 0.05325 0 3.0 0.07B70 0 3.5 0.10459 0.000184.0 0.
13718 0.000774.5 0.174713
 0.002075.0 0.21752 0.004
255.5 0.28587 0.007518.0 
0.31941 0.012057.0 0.4419
1 0.0231Ei8.0 0.58717 0.0
3’9B39.0 0.75751 0.0fi3G1
310.0 0.95512 0.09731+2.0
 1.44224 0.20294+4.0 2.0?
1[(70,378221e、o 2.87251 0
.6505118.0 3.88389 1.051(
8320,05,184681,Ei535023.0
 ’?、82714 3.13499第4表 実施例2 Y X ΔX 0 0 0 0.5 ’C1,003410 1、Q O,013650 1,50,030720 2,00,054B2 0 2.5 0.08539 0 3.0 0.12302 0 3.5 0.18755 0 4.0 0.21899 0 4.5 0.27738 0 5.0 0.34274−0.000015.5 0.
41510−0.000046.0 θ、49450 
−0.000108.5 0.58098−0.000
17?、0 0.e7459−0.00028?、5 
0.7753f(−0,000448,00,8833
f(−0,000859,01,12127−0,00
125+0.0 1.3888B−0,00215+2
.0 2.0+578−0.0049714.0 2.
77048−0.0096118.0 3.8B094
−0.017041B、0 4.89839−0.02
77320.3 5.90472 −0.03516第
6図及び第7図は実施例1における球面酸・差、非点収
差、歪曲収差及び横収差の曲線図、第8図は実施例2に
おける球面収差、非点収差、歪曲収差、倍率色収差図曲
線図であり、図面中のmはメリディオナル焦線、Sはサ
ジタル焦線を示している。
R1 88.17 DI= 4.48 N 1=1.
80400 ν l=4fi, eR2=2ft5.2
3 02= 0.15R3=*313. I34 031
1.83 N2=1.81554 ν 2= 44.4
R4=134.85 04=2.06 N5=1.
6383[1ν 3= 35.4R5= 21.07
05= 8.3!3Re= o, o oe= 7. '4
0 R7=-19.10 137=1.20 N4=1.
80518 ν 4=25.4R8=213.21
08=9.18 N5=1.81800 v 5=4
8JR9=-32,3409= 0.15 R10=-17f(,94D10= 4.00 NO-
2,88300ν 8=40.8R11=-46,0
0011= 0.10R'12=592.17 D12
= 3.35 N? =1.7?250 ν 7= 49
.. 1 (R13=-81,29013=0.30RI4
=503.91 014=1.1(ONa=+, e5
+eo ν 8= 58. eR15=-503,91 jC Aspheric Table 3 Example I Y .5 0.05325 0 3.0 0.07B70 0 3.5 0.10459 0.000184.0 0.
13718 0.000774.5 0.174713
0.002075.0 0.21752 0.004
255.5 0.28587 0.007518.0
0.31941 0.012057.0 0.4419
1 0.0231Ei8.0 0.58717 0.0
3'9B39.0 0.75751 0.0fi3G1
310.0 0.95512 0.09731+2.0
1.44224 0.20294+4.0 2.0?
1 [(70,378221e, o 2.87251 0
.. 6505118.0 3.88389 1.051(
8320,05,184681,Ei535023.0
'? , 82714 3.13499 Table 4 Example 2 Y 0 0.12302 0 3.5 0.18755 0 4.0 0.21899 0 4.5 0.27738 0 5.0 0.34274-0.000015.5 0.
41510-0.000046.0 θ, 49450
-0.000108.5 0.58098-0.000
17? , 0 0. e7459-0.00028? , 5
0.7753f(-0,000448,00,8833
f(-0,000859,01,12127-0,00
125+0.0 1.3888B-0,00215+2
.. 0 2.0+578-0.0049714.0 2.
77048-0.0096118.0 3.8B094
-0.017041B, 0 4.89839-0.02
77320.3 5.90472 -0.03516 Figures 6 and 7 are curve diagrams of spherical aberration, astigmatism, distortion, and lateral aberration in Example 1, and Figure 8 is the spherical aberration in Example 2. , astigmatism, distortion, and chromatic aberration of magnification. In the drawings, m indicates a meridional focal line, and S indicates a sagittal focal line.

以上説明したように本発明に係る非球面光学系は、非球
面を中心部の球面と周辺部の非球面とにより構成したの
で、製作か容易となり、しかも非球面の利点を十分に生
かすことが可能となる。
As explained above, since the aspherical optical system according to the present invention is composed of a central spherical surface and a peripheral aspherical surface, it is easy to manufacture and can take full advantage of the advantages of the aspherical surface. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)及び第3図(a) 、(b)は近
軸曲率半径と非球面との関係の説明図、第2図は中心最
良像面とスリントイメージ最良像面との関係の説明図、
第4図は実施例1のレンズ断面図、第5図は実施例2の
レンズ断面図、第6図は実施例1の球面収差、非点収差
、歪曲収差図、第7図は横収差図、第8図は実施例2の
球面収差、非点収差、歪曲収差図、倍率色収差図である
。 図面中、Sは開口絞り、R1はレンズ面、Dlは軸上厚
又は空気間隔である。 特許出願人 キャノン株式会社 第5図 第6図 3図
Figure 1 (a), (b) and Figure 3 (a), (b) are explanatory diagrams of the relationship between the paraxial radius of curvature and the aspheric surface, and Figure 2 is the central best image surface and the best slint image. An explanatory diagram of the relationship with the surface,
Figure 4 is a cross-sectional view of the lens of Example 1, Figure 5 is a cross-sectional view of the lens of Example 2, Figure 6 is a diagram of spherical aberration, astigmatism, and distortion of Example 1, and Figure 7 is a diagram of lateral aberration. , and FIG. 8 are diagrams of spherical aberration, astigmatism, distortion, and lateral chromatic aberration of Example 2. In the drawings, S is an aperture stop, R1 is a lens surface, and Dl is an axial thickness or an air gap. Patent applicant: Canon Co., Ltd. Figure 5 Figure 6 Figure 3

Claims (1)

【特許請求の範囲】 1.1枚又は複数枚のレンズから成る光学系において、
少なくとも1つの面は、光軸からの高さ、Hまでは球面
であり、Hから周辺部にかけては非球面を形成し、光i
Nl+中心からレンズ外径までを連続的な形状とし、前
記非球面を含むレンズの外径をφとしたとき、 φ/30<H<φ/4 なる条件を満足することを特徴とする非球面光学系。 2、 4iij記球面の曲率半径をr、総合焦点距離を
fとしたとき、 lrl<3Of を満足する特許請求の範囲第1項に記載の非球面光学系
。 3.1枚又は複数枚のレンズから成る光学系において、
少なくとも1つの面は、光軸からの高さHまでは球面で
あり、Hから周辺部にかけては非球面を形成し、光軸中
心からレンズ外径までを連続的な形状とし、1コ径比1
:4の軸上光線がi(5記載球面に入用するときの光軸
からの高さをhとしたとき、 h/3≦H≦h なる条件を満足することを特徴とする非球面光学系。 4、 前記光学系は逆望遠型広角レンズタイプであり、
物体側から数えて第1面と開1コ絞りとの間に前記非球
面を含むレンズを(Iiiiえるようにした特許請求の
範囲第1項に記載の非球面光学系。 5、 物体側から数えて第1番目の正の屈折力のレンズ
ITの最も物体側の面に前記非工21(面を含むレンズ
を備えるようにした特許請求の範囲第4項に記載の非球
面光学系。 6、 前記光学系は変形力ウスタイプであり、物体側か
ら数えて第1面と開口絞りとの間に前記非球面を含むレ
ンズを備えるようにした特許請求の範囲第1項に記載の
非球面光学系。 7. 物体側から数えて第3面に前記非球面を含むレン
ズを備えるようにした特許請求の範囲第6項に記載の非
球面光学系。
[Claims] 1. In an optical system consisting of one or more lenses,
At least one surface is a spherical surface up to the height H from the optical axis, and forms an aspheric surface from H to the periphery, so that the light i
An aspherical surface having a continuous shape from the Nl+ center to the outer diameter of the lens, and satisfying the condition φ/30<H<φ/4, where φ is the outer diameter of the lens including the aspherical surface. Optical system. 2. The aspherical optical system according to claim 1, which satisfies lrl<3Of, where r is the radius of curvature of the spherical surface and f is the overall focal length. 3. In an optical system consisting of one or more lenses,
At least one surface is a spherical surface up to a height H from the optical axis, forms an aspheric surface from H to the peripheral part, has a continuous shape from the center of the optical axis to the outer diameter of the lens, and has a diameter ratio of 1. 1
:Aspherical optics characterized in that the axial ray of 4 satisfies the condition h/3≦H≦h, where h is the height from the optical axis when the axial ray of 4 enters the spherical surface described in 5. system. 4. The optical system is a reverse telephoto wide-angle lens type,
The aspherical optical system according to claim 1, wherein the lens including the aspherical surface is located between the first surface and the aperture diaphragm when counted from the object side. 5. From the object side 6. The aspherical optical system according to claim 4, wherein the aspherical optical system includes a lens including the aperture 21 (surface) on the surface closest to the object side of the first lens IT having a positive refractive power. , The aspherical optical system according to claim 1, wherein the optical system is a deformable force type and includes a lens including the aspherical surface between the first surface and the aperture stop when counted from the object side. System. 7. The aspherical optical system according to claim 6, further comprising a lens including the aspherical surface on a third surface counted from the object side.
JP241984A 1984-01-10 1984-01-10 Aspherical optical system Pending JPS60146213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP241984A JPS60146213A (en) 1984-01-10 1984-01-10 Aspherical optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP241984A JPS60146213A (en) 1984-01-10 1984-01-10 Aspherical optical system

Publications (1)

Publication Number Publication Date
JPS60146213A true JPS60146213A (en) 1985-08-01

Family

ID=11528726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP241984A Pending JPS60146213A (en) 1984-01-10 1984-01-10 Aspherical optical system

Country Status (1)

Country Link
JP (1) JPS60146213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605114A1 (en) * 1986-10-01 1988-04-15 Reosc STIGMATIC LENS WITH SEVERAL WAVELENGTH LENGTHS
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605114A1 (en) * 1986-10-01 1988-04-15 Reosc STIGMATIC LENS WITH SEVERAL WAVELENGTH LENGTHS
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens

Similar Documents

Publication Publication Date Title
JP3074026B2 (en) Super wide-angle zoom lens
JPS6119016B2 (en)
JPS6048013B2 (en) Finder optical system
JPH0642017B2 (en) Compact zoom lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JP3369598B2 (en) Zoom lens
JPH01214812A (en) Macro lens
JPH0414763B2 (en)
JP3085823B2 (en) Aspherical zoom lens and video camera using it
US4176915A (en) Wide angle lens
JPS6229768B2 (en)
JPH0727976A (en) Small-sized two-group zoom lens system
JP3540349B2 (en) Wide angle lens with long back focus
JP3234618B2 (en) Large aperture medium telephoto lens
JP4817551B2 (en) Zoom lens
JPH06337348A (en) Gauss type lens
JPH05333266A (en) Small-sized two-group zoom lens
JPS6142245B2 (en)
JPH07318798A (en) Photographic lens
JP2811828B2 (en) Zoom lens having simple configuration and camera having the same
JPH02248910A (en) Fish-eye lens
JPH0569209B2 (en)
JP3744042B2 (en) Zoom lens
JP2007133138A (en) Zoom lens
JPS60146213A (en) Aspherical optical system