JPS60145960A - Anticorrosive ceramic sintered body - Google Patents

Anticorrosive ceramic sintered body

Info

Publication number
JPS60145960A
JPS60145960A JP59003246A JP324684A JPS60145960A JP S60145960 A JPS60145960 A JP S60145960A JP 59003246 A JP59003246 A JP 59003246A JP 324684 A JP324684 A JP 324684A JP S60145960 A JPS60145960 A JP S60145960A
Authority
JP
Japan
Prior art keywords
sintered body
chromium
ceramic sintered
sintering
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59003246A
Other languages
Japanese (ja)
Other versions
JPH0545548B2 (en
Inventor
八田 篤明
祐 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP59003246A priority Critical patent/JPS60145960A/en
Publication of JPS60145960A publication Critical patent/JPS60145960A/en
Publication of JPH0545548B2 publication Critical patent/JPH0545548B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、とくにFeO雰囲気中での使用に適した耐食
性エンジニアリングセラミックスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to corrosion-resistant engineering ceramics particularly suitable for use in FeO atmospheres.

〔従来技術とその問題点〕[Prior art and its problems]

従来から、炭化珪素は窒化珪素と並び化学的に安定で耐
摩耗性、耐熱衝撃性に優れ、且つ高温での機械的特性が
良い等の点からエンジニアリングセラミックスとしての
研究開発が行われている。
Silicon carbide has been researched and developed as an engineering ceramic since, like silicon nitride, it is chemically stable, has excellent wear resistance and thermal shock resistance, and has good mechanical properties at high temperatures.

炭化珪素については、共有結合性が強く難焼結性の物質
であることから、緻密な焼結体を得るためにはB、C,
84C,AI、^1N等の焼結助剤を用いるか、或いは
A1203 、 ZrO2等の酸化物を介して焼結する
方法が提案されている。
Silicon carbide has strong covalent bonds and is difficult to sinter, so in order to obtain a dense sintered body, B, C,
Proposed methods include using sintering aids such as 84C, AI, and ^1N, or sintering via oxides such as A1203 and ZrO2.

その中でも特にZrO2のような高温で安定な酸化物と
SjCから成る焼結体は、靭性において優れていること
が最近明らかとなった。
Among these, it has recently been revealed that a sintered body made of SjC and an oxide that is stable at high temperatures, such as ZrO2, has excellent toughness.

しかしながら、エンジニアリングセラミックスと呼ばれ
るものも、非酸化物セラミックスと溶融金属とくに酸化
鉄との反応が激しく、かかるエンジニアリングセラミッ
クスを金属工業、とくに製鉄業での例えばビームボタン
、ロール等に使用した場合には、侵食あるいは溶損をう
け損耗し易いという問題がある。ここに、従来の水冷部
分への金属に代わる省エネ部材としての利用が早くから
考えられていたにも拘わらず進展しなかった理由がある
However, even in what are called engineering ceramics, the reaction between non-oxide ceramics and molten metal, especially iron oxide, is severe, and when such engineering ceramics are used in the metal industry, especially in the steel industry, for example, for beam buttons, rolls, etc. There is a problem that it is easily damaged by erosion or melting damage. Herein lies the reason why no progress has been made in spite of the idea of using it as an energy-saving member to replace metal in conventional water-cooled parts.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、製鉄、製鋼プロセスにおいて溶融鉄、
酸化鉄に直接ないし間接的に接触する中で長期間使用で
きる材料としての高靭性焼結体を実現することにある。
The purpose of the present invention is to produce molten iron in iron manufacturing and steel manufacturing processes.
The object of the present invention is to realize a high-toughness sintered body as a material that can be used for a long period of time in direct or indirect contact with iron oxide.

具体的には、特開昭57−42577号公報に記載の、
また、本発明者により提案された先の出願に記載のSi
CA1203系および5iC−Zr02系セラミツクス
構造材におけるFe−0系の下での高温侵食性を向上せ
しめたもので、5iC−酸化物スピネル系、5iC−酸
化物固溶体、5iC−酸化物及び非酸化物の不定比化合
物系にまで拡大したことが含まれるものである。
Specifically, as described in Japanese Patent Application Laid-Open No. 57-42577,
Moreover, the Si described in the earlier application proposed by the present inventor
It improves the high-temperature corrosion resistance under Fe-0 system in CA1203 series and 5iC-Zr02 series ceramic structural materials. This includes the expansion to non-stoichiometric compound systems.

〔発明の構成〕[Structure of the invention]

本発明は、基本的にばB、C,AIN、 BeO等の焼
結促進剤を微量添加した拡散焼結型のSiC焼結体では
、C]’203添加により著しくその機械的性質が損わ
れることから、本発明者等は酸化物−非酸化物系化合物
の焼結体についてCr2O3添加を試み、成功したもの
である。
The present invention basically focuses on the fact that in a diffusion sintered SiC sintered body to which a small amount of sintering accelerator such as B, C, AIN, BeO, etc. is added, the mechanical properties are significantly impaired by the addition of C]'203. Therefore, the present inventors attempted to add Cr2O3 to a sintered body of an oxide-nonoxide compound, and were successful.

すなわち、SiCとA1203 、 ZrO2等の高温
安定な金属酸化物を土量組成とする粉末配合物にクロム
またはCr2O3のようなりロムを含む化合物を加えた
成形体を雰囲気加圧焼結して得たCr化合物を合むSi
C焼結体は、FeO雰囲気中の高温下で著しい高耐火性
を有し損耗が極めて少なく、しかも構造材料としての機
能は低下することはないという知見に基づいて完成した
ものである。
That is, a compact is obtained by atmospheric pressure sintering of a powder mixture containing SiC and high-temperature stable metal oxides such as A1203 and ZrO2, to which a chromium-containing compound such as chromium or Cr2O3 is added. Si combined with Cr compound
The C sintered body was developed based on the knowledge that it has extremely high fire resistance at high temperatures in an FeO atmosphere, exhibits extremely little wear and tear, and does not deteriorate in its function as a structural material.

高温安定な酸化物とクロムまたはクロム化合物とをSi
Cに配合する場合、例えば、A1z03とCr2O3と
を配合する4合には、予めこれらを固溶体として調製し
て配合に加える事により焼結体の耐食性はさらに向上す
る。
Si
When blending with C, for example, in the case where A1z03 and Cr2O3 are blended, the corrosion resistance of the sintered body is further improved by preparing these as a solid solution in advance and adding them to the blend.

クロムまたはクロム化合物の成形配合物中の含有量は、
金属クロム換算でStCに対し0.2〜4重量%の範囲
内にあることが望ましい。
The content of chromium or chromium compounds in the molding compound is
It is desirable that the amount is in the range of 0.2 to 4% by weight based on StC in terms of metallic chromium.

以下の実験例はクロムまたはクロム化合物の含有量が及
ぼす影響を見たものである。
The following experimental examples examine the effects of the content of chromium or chromium compounds.

(実験例) SiCとして純度99%、平均粒径0.3μの市販α品
100重量部に対して、Zr02として純度99%以上
、平均粒径0.2μの市販単斜晶ZrO2を45重量部
、八IN 4.7重量部、Y2039.5重量部からな
る配合物に、クロム、クロム化合物及び含有量を種々変
えて実験した。その結果を表1,2に示す。
(Experiment example) 45 parts by weight of commercially available monoclinic ZrO2 with a purity of 99% or more and an average particle size of 0.2μ as Zr02 for 100 parts by weight of a commercially available α product with a purity of 99% and an average particle size of 0.3μ as SiC. , 4.7 parts by weight of 8IN, and 39.5 parts by weight of Y20, and various chromium, chromium compounds, and contents were used in experiments. The results are shown in Tables 1 and 2.

これからクロム化合物の量が金属クロム換算で0゜2重
量%以下では効果がなく、4重量%以上では機械的強度
が劣化する事がわかる。またクロム化合物により若干の
差はあるが、耐食性の向上は全ての場合について認めら
れた。
This shows that if the amount of the chromium compound is less than 0.2% by weight in terms of metallic chromium, there is no effect, and if it is more than 4% by weight, the mechanical strength deteriorates. Although there were slight differences depending on the chromium compound, improvement in corrosion resistance was observed in all cases.

〔発明の効果〕〔Effect of the invention〕

以下、比較例とともに実施例を挙げて、これにより本発
明の効果を具体的に説明する。
EXAMPLES Hereinafter, the effects of the present invention will be specifically explained by giving examples together with comparative examples.

実施例l SiCおよびZrO2として上記実験例と同一の粉末を
用いた。SiC200g 、 ZrO290g 1八I
N 9.3g1Y20a 19gおよびCr2035.
5gを有機ハイングーとともに湿式混合、乾燥し、2 
ton / cntの圧力でラバープレスして得られた
成形体を50気圧のAr雰囲気中で1800’cで1時
間加熱し雰囲気加圧焼結を行った。その結果理論密度の
93%の焼結体が得られ、破壊靭性値は、24 kg 
f / mu%3点曲げ強度は70 kg / n 2
であった。この成形体から50、X50X1511の板
状試片を切出し中央部に10φ×5hIIIIのFe3
O4ボタンを置いて大気中1500°C12,5時間の
条件で加熱した食刻寸法を測定したところ0.7 mに
過ぎなかった。
Example 1 The same powders as in the above experimental example were used as SiC and ZrO2. SiC200g, ZrO290g 18I
N 9.3g1Y20a 19g and Cr2035.
Wet mix 5g with organic haingu, dry,
The molded body obtained by rubber pressing at a pressure of ton/cnt was heated at 1800'C for 1 hour in an Ar atmosphere of 50 atm to perform atmospheric pressure sintering. As a result, a sintered body with 93% of the theoretical density was obtained, and the fracture toughness value was 24 kg.
f/mu% 3-point bending strength is 70 kg/n2
Met. A plate-shaped specimen of 50×50×1511 was cut out from this molded body, and a 10φ×5hIII Fe3 specimen was cut out in the center.
When the etching dimension was measured by placing an O4 button and heating it in the atmosphere at 1500°C for 12.5 hours, it was only 0.7 m.

比較例1 実験例と同一の配合物に対してCr2O3を添加せず、
他は同様にして、理論密度95%の焼結体を得た。この
焼結体について、実施例1と同様の侵食テストを行った
ところ、食刻寸法は8fiであった。
Comparative Example 1 The same formulation as the experimental example without adding Cr2O3,
Otherwise, a sintered body with a theoretical density of 95% was obtained in the same manner. When this sintered body was subjected to the same erosion test as in Example 1, the etched size was 8fi.

実施例1と比較例1により、Cr2O3の添加は酸化鉄
の侵食を阻止する効果のある事がわかる。
It can be seen from Example 1 and Comparative Example 1 that the addition of Cr2O3 is effective in inhibiting corrosion of iron oxide.

実施例2 SiC200g、 Al10320g、、Y2032 
g及びCr2035gをバインダーとともに湿式混合、
乾燥し2 ton / crAの圧力でラバープレスし
て得られた成形体を50気圧のAr雰囲気中で1900
℃まで加熱し、雰囲気加圧焼結を行った。その結果理論
密度の96%の焼結体が得られ破壊靭性値は18 kg
 f / i+i%、3点曲げ強度は55 kg / 
m ”であった。
Example 2 SiC 200g, Al10320g, Y2032
Wet mixing of g and 2035g of Cr with binder,
The molded body obtained by drying and rubber pressing at a pressure of 2 ton/crA was heated at 1900 mA in an Ar atmosphere of 50 atm.
It was heated to ℃ and pressure sintered in an atmosphere. As a result, a sintered body with a theoretical density of 96% and a fracture toughness of 18 kg was obtained.
f/i+i%, 3-point bending strength is 55 kg/
m”.

この焼結体について実施例1と同様の侵食テストを行っ
たところ食刻寸法は1.2鶴であった。
When this sintered body was subjected to the same erosion test as in Example 1, the etching size was 1.2 mm.

比較例2 実験例と同一の配合物に対してCr2O3を添加せず他
は同様にして、理論密度の95%の焼結体を得た。侵食
テストによる食刻寸法は8.5鰭であった。
Comparative Example 2 A sintered body having a theoretical density of 95% was obtained using the same formulation as in the experimental example except that Cr2O3 was not added. The etching size according to the erosion test was 8.5 fins.

実施例3 八1203とCr2O3の重量比が4:1の固溶体をあ
らかじめ調製し、粉砕して得た粉体25gと5tC20
0g、 Y2032 gをバインダーとともに湿式混合
、乾燥して得られた配合を実施例2と同様にして成形、
焼結したところ、理論密度の96%の焼結体が得られこ
の焼結体に実施例1と同様の侵食テストを行ったところ
、食刻寸法は0.8 xmであった。
Example 3 A solid solution of 81203 and Cr2O3 with a weight ratio of 4:1 was prepared in advance and pulverized to obtain 25 g of powder and 5tC20.
0 g and Y2032 g were wet mixed with a binder and dried, and the resulting mixture was molded in the same manner as in Example 2.
Upon sintering, a sintered body having a theoretical density of 96% was obtained, and when this sintered body was subjected to the same erosion test as in Example 1, the etched size was 0.8 x m.

表1 表2Table 1 Table 2

Claims (1)

【特許請求の範囲】 1、高温安定な金属酸化物とクロムまたはクロム化合物
とを含有する炭化珪素粉未配合物の成形体を雰囲気焼結
してなることを特徴とする耐食性を有する高靭性セラミ
ック焼結体。 2、高温安定な金B酸化物とクロムまたはクロム化合物
と金属窒化物とを含有する炭化珪素粉未配合物の成形体
を雰囲気焼結してなることを特徴とする耐食性を有する
高靭性セラミック焼結体。 3、高温安定な金属酸化物がAl2O3である事を特徴
とする特許請求の範囲第1項または第2項に記載のセラ
ミック焼結体。 4、高温安定な金属酸化物がZrO2および希土類金属
の酸化物である事を特徴とする特許請求の範囲第1項ま
たは第2項に記載のセラミ7り焼結体。 5、 クロムまたはクロム化合物が金属クロム換算で配
合物中に0.2〜0.4重量%含有されていることを特
徴とする特許請求の範囲第1項または第2項に記載のセ
ラミック焼結体。 6、Al2O3とクロムまたはクロム化合物が固溶体を
形成していることを特徴とする特許請求の範囲第3項に
記載のセラミック焼結体。 7、雰囲気焼結が、非酸化性あるいは不活性な加圧雰囲
気下での焼結であることを特徴とする特許請求の範囲第
1項または第2項に記載のセラミック焼結体。 8、加圧雰囲気の圧力が2〜100気圧である事を特徴
とする特許請求の範囲第7項に記載のセラミック焼結体
。 9、焼結が、1600〜2100℃での焼結であること
を特徴とする特許請求の範囲第1項または第2項に記載
のセラミック焼結体。
[Claims] 1. A high-toughness ceramic having corrosion resistance characterized by being formed by atmospheric sintering of a molded body containing a high-temperature stable metal oxide and chromium or a chromium compound without silicon carbide powder. Sintered body. 2. High-toughness ceramic sintered material having corrosion resistance, characterized by being formed by atmospheric sintering of a molded body containing high-temperature stable gold B oxide, chromium or chromium compound, and metal nitride without blending silicon carbide powder. Concretion. 3. The ceramic sintered body according to claim 1 or 2, wherein the high temperature stable metal oxide is Al2O3. 4. The ceramic sintered body according to claim 1 or 2, wherein the high-temperature stable metal oxide is an oxide of ZrO2 and a rare earth metal. 5. Ceramic sintered according to claim 1 or 2, characterized in that chromium or a chromium compound is contained in the compound in an amount of 0.2 to 0.4% by weight in terms of metallic chromium. body. 6. The ceramic sintered body according to claim 3, wherein Al2O3 and chromium or a chromium compound form a solid solution. 7. The ceramic sintered body according to claim 1 or 2, wherein the atmosphere sintering is sintering in a non-oxidizing or inert pressurized atmosphere. 8. The ceramic sintered body according to claim 7, wherein the pressure of the pressurized atmosphere is 2 to 100 atmospheres. 9. The ceramic sintered body according to claim 1 or 2, wherein the sintering is performed at a temperature of 1600 to 2100°C.
JP59003246A 1984-01-10 1984-01-10 Anticorrosive ceramic sintered body Granted JPS60145960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003246A JPS60145960A (en) 1984-01-10 1984-01-10 Anticorrosive ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003246A JPS60145960A (en) 1984-01-10 1984-01-10 Anticorrosive ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS60145960A true JPS60145960A (en) 1985-08-01
JPH0545548B2 JPH0545548B2 (en) 1993-07-09

Family

ID=11552097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003246A Granted JPS60145960A (en) 1984-01-10 1984-01-10 Anticorrosive ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS60145960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178469A (en) * 1985-01-31 1986-08-11 京セラ株式会社 Manufacture of silicon carbide base sintered body
JPS61281070A (en) * 1985-05-31 1986-12-11 京セラ株式会社 Silicon carbide base sintered body
JPH01215774A (en) * 1988-02-23 1989-08-29 Toshiba Ceramics Co Ltd Silicon carbide sintered porous form and production thereof
JP2005231985A (en) * 2004-02-17 2005-09-02 Yotai Refractories Co Ltd Silicon carbide brick

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446209A (en) * 1977-09-20 1979-04-12 Harima Refractories Co Ltd Slaggresistant spout material for discharging pig iron and slag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446209A (en) * 1977-09-20 1979-04-12 Harima Refractories Co Ltd Slaggresistant spout material for discharging pig iron and slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178469A (en) * 1985-01-31 1986-08-11 京セラ株式会社 Manufacture of silicon carbide base sintered body
JPS61281070A (en) * 1985-05-31 1986-12-11 京セラ株式会社 Silicon carbide base sintered body
JPH01215774A (en) * 1988-02-23 1989-08-29 Toshiba Ceramics Co Ltd Silicon carbide sintered porous form and production thereof
JP2005231985A (en) * 2004-02-17 2005-09-02 Yotai Refractories Co Ltd Silicon carbide brick

Also Published As

Publication number Publication date
JPH0545548B2 (en) 1993-07-09

Similar Documents

Publication Publication Date Title
KR0151367B1 (en) Boron nitride containing material and method thereof
KR0127871B1 (en) Silicon nitride-based siuters
JP2577899B2 (en) Silicon nitride sintered body and method for producing the same
JPS60145960A (en) Anticorrosive ceramic sintered body
JPH0212893B2 (en)
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS59190272A (en) Manufacture of silicon nitride sintered body
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPS623072A (en) Silicon carbide base sintered body and manufacture
JP2808637B2 (en) Conductive zirconia sintered body
JPH0372031B2 (en)
JPS60137873A (en) Silicon nitride sintered body
JP2706302B2 (en) Method for producing high-density silicon nitride sintered body
JPS61266358A (en) Silicon nitride sintered body and manufacture
JPS6337075B2 (en)
JPS6125676B2 (en)
JPS6337074B2 (en)
JPH06321641A (en) Composite ceramics
JPS6096575A (en) Silicon nitride composite sintered body
JP2732078B2 (en) Silicon nitride sintered body
JPS597668B2 (en) High-strength heat-resistant metal boride/zirconium oxide composite ceramics
JPH03275565A (en) Silicon nitride-based sintered material having high toughness and strength
JPS6126566A (en) Method of sintering sic composite body
JPH04342468A (en) Refractory for continuous casting and its production
JPH01219062A (en) Production of silicon nitride sintered body