JPS60143739A - Automatic hardness measuring apparatus - Google Patents

Automatic hardness measuring apparatus

Info

Publication number
JPS60143739A
JPS60143739A JP25030583A JP25030583A JPS60143739A JP S60143739 A JPS60143739 A JP S60143739A JP 25030583 A JP25030583 A JP 25030583A JP 25030583 A JP25030583 A JP 25030583A JP S60143739 A JPS60143739 A JP S60143739A
Authority
JP
Japan
Prior art keywords
indentation
hardness
image
sample
automatically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25030583A
Other languages
Japanese (ja)
Other versions
JPH0154653B2 (en
Inventor
Makoto Imanaka
誠 今中
Osamu Furukimi
修 古君
Osamu Usui
臼井 修
Katsuyasu Aikawa
相川 勝保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIREKO KK
JFE Steel Corp
Original Assignee
NIREKO KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIREKO KK, Kawasaki Steel Corp filed Critical NIREKO KK
Priority to JP25030583A priority Critical patent/JPS60143739A/en
Publication of JPS60143739A publication Critical patent/JPS60143739A/en
Publication of JPH0154653B2 publication Critical patent/JPH0154653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to perform measurement at a high speed, by automatically compressing an indenter to an automatically determined marking point at a specified load after processing a sample image, automatically measuring the size of the indentation from the image of the formed indentation, and operating the hardness based on the size and the load. CONSTITUTION:The digital image signals of a sample 1 in 256 stages, which are obtained by an image sensor device 5 and an analog to digital converter part 11, are stored in a gray memory 12. The signals are appropriately read by a feature-quantity computing part 13 and the feature quantity of a specified texture is obtained. The similar feature quantity of a reference metal texture is read out of a text file part 14. Statistical comparison is performed in a texture judging part 15. The coordinates of the marking point are obtained and stored in a coordinate memory part 16. A table 3 is moved by a table movement control part 10 so that the coordinates are obtained. A indentation is further formed by an indenter 4. Then an objective lens 5a is positioned and the image of the indentation is picked up. The area of the indentation is measured by an indentation area measuring part 19. Hardness is computed by an operating part 20 based on the area and the compressing load.

Description

【発明の詳細な説明】 本発明は試料のかたさ測定装置、特に金属試料の所定の
部位へ自動的に打刻し、試料表面に形成される圧痕の寸
法を自動的に計測してかたさをめる自動かたさ測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample hardness measuring device, in particular, to automatically inscribe a predetermined part of a metal sample and automatically measure the dimensions of the indentation formed on the sample surface to measure the hardness. This invention relates to an automatic hardness measuring device.

従来より金属試料のかたさを測定するに当たりビッカー
スかたさやプリネルかたさが広く採用されている。例え
ばビッカースかたさを測定する場合には、対角面186
°のダイヤモンド製の四角錐より成る圧子を金属試料の
表面に押付けて圧痕を形成し、押付は荷重をP1圧痕の
面積を8とするとき、ビッカースかたさHvは、Hv 
−’/Bでめられる。したがってビッカースかたさを測
定するためには、 (1)金属試料の所望の表面に圧子を所定の荷重で押付
けて圧痕を形成する作業、 (2) 圧痕の面積を測定する作業、 (8) 測定した面積と荷重からかたさを計算する作業
1 が必要であるが、従来はこれらの作業はいずれも人手で
行なっていた。
Conventionally, Vickers hardness and Prinell hardness have been widely used to measure the hardness of metal samples. For example, when measuring Vickers hardness, the diagonal surface 186
When an indenter made of a square pyramid made of diamond is pressed against the surface of a metal sample to form an indentation, and the pressing load is P1 and the area of the indentation is 8, the Vickers hardness Hv is Hv
-'/B. Therefore, in order to measure Vickers hardness, the following steps are required: (1) pressing an indenter against the desired surface of a metal sample with a predetermined load to form an indentation; (2) measuring the area of the indentation; (8) measuring Work 1 is required to calculate the hardness from the area and load, but in the past, all of this work was done manually.

(1)の圧痕形成作業について考えると、例えば試料の
特定の部位、すなわち溶接部分の溶接金属部と母材の熱
影響部、あるいはフェライト−ベイナイト鋼のフェライ
ト部とベイナイト部とをそれぞれ区別してかたさを測定
したい場合がある。この・ような場合には、金属組織を
現出させた後、目的の部位を顕微鏡下で観察し、ビッカ
ースかたさ針の圧子が所望の部位に押圧されるように手
動的に調整している。しかし、この作業は非常に面倒で
熟練を要すると共に多くの部位での測定を行なう場合に
は多大の時間を要する欠点があった。
Considering the indentation forming process in (1), for example, it is necessary to distinguish between specific parts of the sample, such as the weld metal part of a welded part and the heat-affected zone of the base metal, or the ferrite part and bainite part of ferrite-bainite steel. You may want to measure. In such cases, after the metal structure is revealed, the target area is observed under a microscope, and the indenter of the Vickers hardness needle is manually adjusted so that it is pressed against the desired area. However, this work is very troublesome and requires skill, and it also has the disadvantage that it takes a lot of time when measurements are to be made at many locations.

また、(旬の作業について考察すると、この場合にも圧
痕を100〜400倍の顕微鏡で観察し、視野に入った
ほぼ正方形の圧痕の対角線上にある頂点にカーソルを合
わせてその間隔を測定するとい5手作業で行なっていた
。このため、測定者によってカーソルの合わせ方に個人
差があるとともに長さの読取りにも個人差があり、再現
性の高い測定を行なうことはできなかりた。また、測定
者は顕微鏡を使用するため、疲労が激しく、誤りの確率
も高くなる欠点があった。また、1個所の圧痕を測定す
るのに数分もかかり、多数の部位におけるかたさを測定
するにはきわめて長い時間がかかり、測定者の疲労はき
わめて大きく、測定誤差が益々大きくなるという欠点が
あった。
In addition, (considering current work, in this case too, the indentation is observed under a microscope with a magnification of 100 to 400 times, and the cursor is placed on the diagonal vertices of the approximately square indentation in the field of view to measure the distance between them. This was done manually.As a result, there were individual differences in how the cursor was aligned by the measurer, as well as individual differences in how the length was read, making it impossible to perform measurements with high reproducibility. In addition, because the measurer uses a microscope, there is severe fatigue and a high probability of error.Also, it takes several minutes to measure a single indentation, making it difficult to measure hardness in multiple areas. The drawbacks are that it takes an extremely long time, the operator is extremely fatigued, and the measurement error increases.

(8)の計算作業については、計算そのものは計算1機
あるいは変換表によって行なえばよいが、置数したり転
記したりする際に人的誤りが入る恐れがあった。
Regarding the calculation work in (8), the calculation itself can be performed using a single calculator or a conversion table, but there is a risk of human error occurring when entering or transcribing numbers.

さらに、従来の手作業によるかたさ測定において試料の
多数の点のかたさを測定する場合には、各点の圧痕と、
その面積測定値とを関連付ける作業が非常に面倒となり
、これを間違えると測定の信頼性はなくなり、測定者は
この点においても細心の注意を払う必要かあった。
Furthermore, when measuring the hardness of a large number of points on a sample in conventional manual hardness measurement, it is necessary to
The task of correlating this with the area measurement value is extremely troublesome, and if a mistake is made, the measurement becomes unreliable, so the measurer had to be extremely careful in this respect as well.

本発明の目的は、従来の棟々の欠点を除去し、上記の圧
痕形成作業、圧痕面積計測作業およびかたさ計算作業を
すべて自動的に行なうことによって試料の所望の部位の
かたさを高速かつ高精度で再現性高(測定することがで
き、しかも測定者の15負担を大幅に削減することがで
きる自動かたさ測定装置を提供しようとするものである
The purpose of the present invention is to eliminate the drawbacks of conventional ridges and automatically perform all of the above-mentioned indentation formation work, indentation area measurement work, and hardness calculation work to quickly and accurately measure the hardness of a desired part of a sample. The present invention aims to provide an automatic hardness measuring device that can perform hardness measurement with high reproducibility and that can significantly reduce the burden on the measurer.

本発明の自動かたさ測定装置は、かたさを測定すべき試
料を撮像して得られる画像を画像処理して圧子を押圧す
べき打刻点を自動的に決定する打、1゜刻点決定手段と
、この決定された打刻点の位置で゛試料に圧子な所定の
荷重で自動的に押付けて圧痕を形成する打刻手段と、と
の圧痕の像を撮像して得られる画像を画像処理して圧痕
の寸法を自動的に計測する圧痕寸法計測手段と、この計
測された5圧痕寸法と前記荷重とから試料の打刻点にお
けるかたさを演算するかたさ演算手段とを具えることを
特徴とするものである。
The automatic hardness measuring device of the present invention includes a 1° indentation point determining means for automatically determining an indentation point at which an indenter should be pressed by processing an image obtained by imaging a sample whose hardness is to be measured. , an indentation means that automatically presses the sample with a predetermined load to form an indentation at the position of the determined indentation point; The present invention is characterized by comprising: an indentation dimension measuring means for automatically measuring the dimension of an indentation using the 5 indentation dimensions, and a hardness calculation means for computing the hardness at the stamping point of the sample from the measured five indentation dimensions and the load. It is something.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の自動かたさ測定装置の一実施例1・・
の構成を示すittであり、かたさ、を測定すべき試料
lはX軸およびY軸方向に移動自在に配置され、所定の
位置に割出すことができるテーブル2の上に載置する。
Fig. 1 shows an embodiment 1 of the automatic hardness measuring device of the present invention.
A sample 1 whose hardness is to be measured is placed on a table 2 that is movable in the X-axis and Y-axis directions and can be indexed to a predetermined position.

テーブル2はビッカースかたさ針本体8に支持されてお
り、このかたさ針本体には試1′料lに圧痕を形成する
ための圧子4と試料の像を撮像するための撮像装置すを
テーブル2の上方忙取付ける。圧子4と撮像装置すの対
物レンズ5&とは、例えばX軸方向に整列して配置され
ている。
The table 2 is supported by a Vickers hard needle main body 8, and the hard needle main body is equipped with an indenter 4 for forming an indentation on the sample 1' and an imaging device for taking an image of the sample. Install the upper part. The indenter 4 and the objective lens 5& of the imaging device are arranged, for example, in alignment in the X-axis direction.

テーブル2はX軸およびY軸方向駆動装置6およ2.。The table 2 has X-axis and Y-axis drive devices 6 and 2. .

び7によってそれぞれ駆動できるように構成するととも
にテーブル2のX軸およびY軸方向の位置を位置検出器
8および9で検出できるように構成する。これらの駆動
装置6,7および位置検出器8.9はテーブル移動制御
部10に接続し、テーブル2を所望の如く移動させる。
and 7, respectively, and the position of the table 2 in the X-axis and Y-axis directions can be detected by position detectors 8 and 9. These drives 6, 7 and position detectors 8.9 are connected to a table movement control 10 to move the table 2 as desired.

撮像装置6から出力されるアナログ画像信号をアナログ
−ディジタル変換部11に供給して856段階のディジ
タル画像信号に変換し、これをグレイメモIJ 121
 K記憶する。本例では1画面を縦×横が512X51
!画素に分割するのでグレイメモIJ1’aも512X
 51B画素の訳詞レベルのディジタル画像信号−を記
憶できるように構成する。次にグレイメモリ12に記憶
したディジタル画像信号を適宜特徴量算出部18に読み
出して予じめ定められたテクスチャ特微量を演算により
める。このテクスチャ特微量は、成る画素から一定変位
I(”+’)だけ離れた画素の濃度レベルがそれぞれ1
からJとなる度数を表わする行列Pij 、すなわち濃
度レベルが1である画素から一定変位一・(r、θ)だ
け離れた画素の濃度レベルがjであする確率をすべての
濃度レベルの組合わせについてめた行列Pij (co
−ocurrence matrix )を基にして演
算する。この行列P1jを使用してテクスチャに対応し
た種々の特微量、すなわちテクスチャ“・の特徴を示す
データを定義して算出する。この特微量を定義する演算
式の例を以下の表に示す。
The analog image signal output from the imaging device 6 is supplied to the analog-digital converter 11 and converted into a digital image signal of 856 steps, which is converted into a gray memo IJ 121.
K remember. In this example, one screen is 512 x 51 in length x width.
! Because it is divided into pixels, Gray Memo IJ1'a is also 512X
It is configured to be able to store a digital image signal of translation level of 51B pixels. Next, the digital image signal stored in the gray memory 12 is appropriately read out to the feature amount calculating section 18, and a predetermined texture feature amount is calculated. This texture feature amount has a density level of 1 for each pixel that is a certain displacement I ("+') away from the pixel.
The matrix Pij that represents the frequency of J from , that is, the probability that the density level of a pixel that is a fixed displacement 1·(r, θ) away from a pixel whose density level is 1 is j, is the combination of all density levels. The matrix Pij (co
-occurrence matrix). This matrix P1j is used to define and calculate various feature quantities corresponding to the texture, that is, data indicating the characteristics of the texture ".". Examples of calculation formulas for defining the feature quantities are shown in the table below.

一方、基準となる金属組織について同様の特徴1量をめ
たテキストファイルをテキストファイル部14に記憶し
ておき、特徴量算出部1Bでめた試料の%微量とテキス
トファイル部14に記憶されている基準特徴量とをテク
スチャ判別部155において統計的に比較処理して、試
料の組織をテクスチャ情報によって分類する。この統計
的処理としては最尤法を用いることができる。
On the other hand, a text file containing a similar characteristic amount for the reference metallographic structure is stored in the text file section 14, and the % trace amount of the sample determined by the feature amount calculation section 1B is stored in the text file section 14. The texture discriminating unit 155 statistically compares the texture information with the reference feature amount, and classifies the tissue of the sample based on the texture information. The maximum likelihood method can be used for this statistical processing.

第2図は試料lの溶接部を撮像装置5により撮像して得
られる画像を示すものであり、A部が溶1・。
FIG. 2 shows an image obtained by imaging the welded part of sample 1 with the imaging device 5, and part A is the welded part 1.

接金属SB部が母材の熱影響部であり、A部とB部との
境界がボンド部である。このような試料の溶接部に対し
て直交する線上の数個所でかたさを測定したい場合には
、先ずボンド部を検出する必要がある。このボンド部は
2つの異なるチクステ15ヤ領域の境界として自動的に
検出することができる。すなわち、A部とB部とは組織
状態が大きく相違しており、成る画素のごく近傍の画素
との濃度レベルの差の大小を判定する上記行列Pijよ
りめた特徴量の分布にも差が生ずる。この差を統。。
The contact metal SB portion is the heat affected zone of the base material, and the boundary between the A portion and B portion is the bond portion. If it is desired to measure the hardness at several points on a line perpendicular to the welded portion of such a sample, it is first necessary to detect the bonded portion. This bond can be automatically detected as a boundary between two different pixels. In other words, the tissue state of part A and part B is greatly different, and there is also a difference in the distribution of the feature values determined from the above matrix Pij, which determines the magnitude of the difference in density level between a pixel and a nearby pixel. arise. Manage this difference. .

計学的手法である最尤法により検出することによ1すA
部とB部とを明確に区分することができる。
1A by detecting using the maximum likelihood method, which is a mathematical method.
The part and the B part can be clearly distinguished.

このようにしてめた境界を映出させた画像を第8図に示
す。第2図と第8図とを比較すると明らかなよ5に上述
した特徴量に基く判定を行なうこパとによってボンド部
を高精度に検出することができる。このようにして検出
したボンド部の座標は座標記憶部16に記憶する。
FIG. 8 shows an image showing the boundaries established in this way. Comparing FIG. 2 with FIG. 8, it is clear that the bond portion can be detected with high precision by performing the determination based on the feature amount described in 5 above. The coordinates of the bond portion detected in this way are stored in the coordinate storage section 16.

次に打刻点指示部17により、かたさを測定すべき位置
、すなわち打刻点の位置を指定する。例1・・えばボン
ド部に直交する方向に0.5mmピッチで打刻する場合
には打刻開始点、ピッチ情報を入力するだけで、打刻点
は自動的に決定され、その座標が座標記憶部16に記憶
される。上述したようKJI像装置50対物レンズ5a
と圧子4とはX軸11方向にずれているので、撮像装置
6からの画像情報に基いて検出したボンド部の座標と打
刻点の座標とはX軸方向に所定の距離だけシフトする必
要がある。
Next, the position where the hardness is to be measured, that is, the position of the stamping point, is designated by the stamping point specifying section 17. Example 1: For example, if you want to engrave at a pitch of 0.5 mm in the direction perpendicular to the bond, just input the engraving start point and pitch information, the engraving point will be automatically determined, and its coordinates will be It is stored in the storage unit 16. As described above, the KJI imager 50 objective lens 5a
Since the indenter 4 and the indenter 4 are shifted in the X-axis direction, the coordinates of the bond part and the coordinates of the stamping point detected based on the image information from the imaging device 6 need to be shifted by a predetermined distance in the X-axis direction. There is.

以上のよ5Kして打刻点の座標を記憶した後、−・・・
・打刻を開始するが、この場合には座標記憶部16に記
憶した打刻点の座標をテーブル移動制御部10に供給し
、X軸およびY軸駆動装置6および7を駆動してテーブ
ル2、したがって試料lの所定の位置が圧子4の真下に
来るようにする。このような位置出しを行なった後、打
刻装置18に信号を送って゛圧子4を所定の荷重で試料
10表面に押し付けて圧痕な形成する。1個所で圧痕を
形成、したら、次の打刻点が圧子4の真下に位置出しさ
れるようにテーブル8を移動させる。このようにして、
順次の打刻点において自動的に圧痕を形成することがで
きる。
After doing the above 5K and memorizing the coordinates of the stamping points, -...
- Stamping is started; in this case, the coordinates of the stamping point stored in the coordinate storage section 16 are supplied to the table movement control section 10, and the X-axis and Y-axis drive devices 6 and 7 are driven to move the table 2. Therefore, the predetermined position of the sample 1 is placed directly below the indenter 4. After performing such positioning, a signal is sent to the stamping device 18 to press the indenter 4 against the surface of the sample 10 with a predetermined load to form an impression. After forming an impression at one location, the table 8 is moved so that the next impression point is positioned directly below the indenter 4. In this way,
Indentations can be automatically formed at successive marking points.

以上のようKして、自動的に圧痕を形成した後、圧痕の
面積を測゛定するが、本発明によればとの圧痕面積計測
作業も自動的に行なう。以下、これについて説明する。
After automatically forming an indentation as described above, the area of the indentation is measured, and according to the present invention, the indentation area measurement operation is also performed automatically. This will be explained below.

先ず、テーブル2をテーブル移動制御部10によって移
動させ、第1の圧痕を撮像装置5の対物レンズ5aK対
して位置出しし、圧痕の像を撮像する。このアナログ画
像信号をアナログ−ディジタル変換部11によって26
6段階の訳詞レベルのディジタル画像信号に変換してグ
レイメモリ1BVC記憶する。このように圧痕の画像を
訳詞レベルでディジタル信号に変換すると、圧痕と、マ
トリックス組織、傷、腐食部とを明瞭に区分することが
でき、圧痕の面積を再現性よく高い精度で測定すること
ができる。このようにしてグレイメモリlzK記憶した
ディジタル画像信号を圧痕面積測定部19に供給し、こ
こで圧痕の面積を計測する。圧痕の面積を計測するには
圧痕の輪郭点を検出する必要があり、これは第4図に示
すように画像信号が急激に変化する点P□およびP、と
してめる。第4図において圧痕Aを横切る走査線Bの画
像信号Cの訳詞レベルを縦軸にとり、横軸に画素位置を
とって示す。圧痕Aの輪郭は画像信号の訳詞レベルの値
が急激に変化する点としてめるのであるカベこの検出の
精度を向上するために1画儂信号曲線の変曲点を含む部
分の曲線に接する包結線をめたり、画像信号をローパス
フィルタに通して高周波雑音成分をカットしたり、画像
信、号曲線の一定区間内の平均変化率をめて雑音酸。
First, the table 2 is moved by the table movement control unit 10, the first impression is positioned with respect to the objective lens 5aK of the imaging device 5, and an image of the impression is captured. This analog image signal is converted into 26
It is converted into a digital image signal of 6 levels of translation levels and stored in a gray memory 1BVC. By converting an image of an indentation into a digital signal at the translation level in this way, it is possible to clearly distinguish between an indentation, matrix tissue, scratches, and corroded areas, and the area of an indentation can be measured with high accuracy and reproducibility. can. The digital image signal thus stored in the gray memory lzK is supplied to the indentation area measuring section 19, where the area of the indentation is measured. In order to measure the area of the indentation, it is necessary to detect the contour points of the indentation, and these are defined as points P□ and P where the image signal changes rapidly, as shown in FIG. In FIG. 4, the translation level of the image signal C of the scanning line B crossing the indentation A is plotted on the vertical axis, and the pixel position is plotted on the horizontal axis. The contour of the impression A is defined as the point where the translation level value of the image signal changes rapidly.In order to improve the accuracy of this detection, the contour of the impression A is defined as the point where the translation level value of the image signal suddenly changes. You can reduce the noise by adjusting the wiring, passing the image signal through a low-pass filter to cut high-frequency noise components, and measuring the average rate of change within a certain section of the image signal signal curve.

分を平滑化するなどの手法を採用することができる。Techniques such as smoothing the components can be adopted.

このようにして圧痕の輪郭を検出した後、例えば圧痕の
対角線の長さeを測定し、これをかたさ演算部20に供
給する。このかたさ演算部では、圧子4の押圧荷重Pと
、圧痕の対角線の長さeと、圧子4の対面角θとに基い
て、次式によりビッカースかたさHvを測定する。
After detecting the contour of the indentation in this way, for example, the length e of the diagonal line of the indentation is measured and supplied to the hardness calculation unit 20. This hardness calculating section measures the Vickers hardness Hv based on the pressing load P of the indenter 4, the diagonal length e of the indentation, and the facing angle θ of the indenter 4 using the following formula.

したがって例えば対面角が186°の圧子4を抑圧荷重
10 kIf/、−で打刻したときのビッカースかたさ
Hvは、E(v= 18.54 /、gより計算するこ
とができる。このようにして順次の打刻点におけるビッ
カースかたさを次々とめ、これを出力部21において、
例えばプリントアウトすることができる。この場合、テ
ーブル2は座標記憶部16に記憶された打刻点の座標位
置に順次自動的に移動されるの、で、各打刻点における
かたさを混同することなく正確に出力することができる
Therefore, for example, when an indenter 4 with a facing angle of 186° is stamped with a suppressing load of 10 kIf/, -, the Vickers hardness Hv can be calculated from E(v=18.54/, g. In this way, The Vickers hardness at successive marking points is measured one after another, and this is output in the output section 21.
For example, you can print it out. In this case, the table 2 is automatically moved sequentially to the coordinate positions of the stamping points stored in the coordinate storage section 16, so that the hardness at each stamping point can be output accurately without confusing the hardness. .

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変更や変形が可能である。例えば上述した実施
例では試料の複数の位置に順次に打刻を行なって圧痕を
形成してから、これらの圧痕の寸法を計測するようにし
たが、成る位置において打刻して圧痕を形成した後直ち
にこの圧痕の寸法を計測し、次の打刻点へテーブルを移
動させて同様の作業を行なうようKしてもよい。また、
上述した実施例では圧痕形成作業、圧痕寸法計測作業、
かたさ演算作業を完全に自動的に行なうようにしたが、
例えば打刻点の位1λを打刻点指示部17を介して手動
的に入力するような半自動的動作をも行なうようにして
もよい。また、上述した例では圧痕の対角線の長さを計
測してかたさを計算したが、一般にビッカースかたさは
、圧痕の面積を8とするとき、Hy’−’/Bで与えら
れるので、圧痕計測部19において圧痕の面積Sをめる
ようにしてもよい。さらに、上述した例ではビッカース
かたさを測定するようにしたが、プリネルか、たさを測
定することもできる。
The present invention is not limited to the embodiments described above, and can be modified and modified in many ways. For example, in the above-mentioned embodiment, the dimensions of these indentations were measured after making indentations by making indentations at a plurality of positions on the sample in sequence. Immediately thereafter, the dimensions of this impression may be measured, the table may be moved to the next stamping point, and the same operation may be performed. Also,
In the above-mentioned embodiment, the indentation forming work, the indentation dimension measurement work,
I tried to do the hardness calculation completely automatically, but
For example, a semi-automatic operation such as manually inputting the digit 1λ of the engraving point via the engraving point instruction section 17 may also be performed. In addition, in the above example, the hardness was calculated by measuring the length of the diagonal line of the indentation, but generally the Vickers hardness is given by Hy'-'/B when the area of the indentation is 8. In step 19, the area S of the indentation may be reduced. Furthermore, although the Vickers hardness was measured in the above example, it is also possible to measure the Prinell hardness.

上述したように、本発明の自動かたさ測定装置によれば
、試料を撮像してその組織を検出して圧子な押圧すべき
打刻点の位置を自動的に決定し、これにより試料を載置
するテーブルを移動させて所望の位置に圧痕を形成し、
この圧痕の像を撮像して圧痕の寸法を自動的に計測して
かたさを自動的に測定することができるので、異種金属
の隣接部や組織の異なる金属の各部のかたさを局部的に
測定することができる。また、打刻点の決定、打刻作業
、圧痕の計測などを自動的に行なうので、かたさ測定に
要する時間は著しく短縮されるとともに測定精度も向上
し、作業者の労力は著しく軽減される効果がある。
As described above, the automatic hardness measuring device of the present invention images the sample, detects its tissue, automatically determines the position of the stamping point to be pressed with the indenter, and thereby mounts the sample. move the table to form an impression at the desired position,
It is possible to take an image of this indentation, automatically measure the dimensions of the indentation, and automatically measure the hardness, so it is possible to locally measure the hardness of adjacent parts of dissimilar metals or of metals with different structures. be able to. In addition, since the determination of the stamping point, stamping work, and measurement of indentations are performed automatically, the time required for hardness measurement is significantly shortened, and measurement accuracy is also improved, resulting in a significant reduction in worker labor. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自動かたさ測定装置の一実施例の構成
を示す線図、 第8図は溶接部のテクスチャを示す図、第8図は第2図
に示す溶接部を画像処理してポンド部を現出させた画像
を示す図、 第4図は圧痕の寸法を計測する動作を説明するまための
図である。 l・・・試料 2・・・テーブル 8・・・かたさ針本体 4・・・圧子 5・・・撮像装置 6.7・・・X軸、Y軸方向駆動装置 8.9・・・X軸、Y軸方向位置検出器lO・・・テー
ブル移動制御部 11・・・アナログ−ディジタル変換部12・・・グレ
イメモリ 18・・・特徴量算出部14・・・テキスト
ファイル部 15・・・テクスチャ判定部 16・・・座標記憶部1
7・・・打刻点指示部 18・・・打刻装置19・・・
圧痕寸法計測部 20・・・かたさ演算部21・・・出
力部。 第1図 第2図 図面の浄魯(内容に変更なし) 第4図 り 手続補正書(方式) 昭和59年4 月26日 1、事件の表示 昭和58年 特許願第2503051 、発明の名称 自動かたさ測定装置 3、補正をする者 事件との■1係 特許出願人 (’125)川崎製鉄株式会社 日本レギュレーター株式会社 i補正命令の日付 昭和59年3月27日 6、 補正o対象 明細書の「図面の簡単な説明」の欄
、「図面」7、補正の内容 (別紙の通り) 1、明細書第15頁第18行の「第2図は溶接部のチフ
ス千ヤを示す図、」を「第2図は溶接部における金属組
織のテクスチャを示す図、」に訂正する。 2、第8図を参考写真とし、訂正第8図を加入する。
Fig. 1 is a diagram showing the configuration of an embodiment of the automatic hardness measuring device of the present invention, Fig. 8 is a diagram showing the texture of a welded part, and Fig. 8 is an image processing of the welded part shown in Fig. 2. FIG. 4 is a diagram showing an image in which the pound portion is exposed. FIG. 4 is a diagram for explaining the operation of measuring the dimensions of an indentation. l...Sample 2...Table 8...Hard needle body 4...Indenter 5...Imaging device 6.7...X-axis, Y-axis direction drive device 8.9...X-axis , Y-axis direction position detector lO...Table movement control section 11...Analog-digital conversion section 12...Gray memory 18...Feature value calculation section 14...Text file section 15...Texture Judgment unit 16...coordinate storage unit 1
7... Stamping point indicating section 18... Stamping device 19...
Indentation dimension measuring section 20...Hardness calculation section 21... Output section. Figure 1 Figure 2 Purification of the drawings (no change in content) 4. Draft procedure amendment (method) April 26, 1980 1. Indication of the case 1988 Patent application No. 2503051. Automatic definition of the title of the invention Measuring device 3, Part 1 of the case of the person making the amendment Patent applicant ('125) Kawasaki Steel Corporation Japan Regulator Co., Ltd. Date of amendment order "Brief explanation of drawings" column, "Drawings" 7. Contents of amendment (as attached) 1. "Figure 2 shows typhus fever in welded parts" in page 15, line 18 of the specification. Corrected to ``Figure 2 is a diagram showing the texture of the metal structure in the weld zone.'' 2. Use Figure 8 as a reference photo and add the corrected Figure 8.

Claims (1)

【特許請求の範囲】[Claims] L かださを測定すべき試料を撮像して得られる画像な
画像処理して圧子を押圧すべき打刻点を自動的に決定す
る打刻点決定手段と、この決定された打刻点の位置で試
料に圧子を所定の荷重で自動的に押付けて圧痕を形成す
る打刻手段と、この圧痕の像を撮像して得られる画像を
画像処理して圧痕の寸法を自動的に計測する圧痕寸法計
測手段と、この計測された圧痕寸法と前記荷重とから試
料の打刻点におけるかたさを演算するかたさ演算手段と
を具えることを特徴とする自動かたさ測定装置。
L. An indentation point determining means for automatically determining an indentation point at which an indenter should be pressed by processing an image obtained by capturing an image of a sample whose height is to be measured; An indentation device that automatically presses an indenter against a sample with a predetermined load to form an indentation at a specified position, and an indentation device that automatically measures the dimensions of the indentation by imaging the image of the indentation and processing the resulting image. An automatic hardness measuring device comprising a dimension measuring means and a hardness calculating means for calculating the hardness at the stamping point of the sample from the measured indentation dimension and the load.
JP25030583A 1983-12-29 1983-12-29 Automatic hardness measuring apparatus Granted JPS60143739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25030583A JPS60143739A (en) 1983-12-29 1983-12-29 Automatic hardness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25030583A JPS60143739A (en) 1983-12-29 1983-12-29 Automatic hardness measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60143739A true JPS60143739A (en) 1985-07-30
JPH0154653B2 JPH0154653B2 (en) 1989-11-20

Family

ID=17205925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25030583A Granted JPS60143739A (en) 1983-12-29 1983-12-29 Automatic hardness measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60143739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392745A (en) * 1989-09-05 1991-04-17 Nippon Steel Corp Indentation type hardness meter
JP2011164009A (en) * 2010-02-12 2011-08-25 Mitsutoyo Corp Hardness tester and program
JP2014167470A (en) * 2013-01-29 2014-09-11 Osaka Univ Food texture evaluation system, food texture evaluation program, recording medium, and food texture evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713468U (en) * 1980-06-27 1982-01-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713468U (en) * 1980-06-27 1982-01-23

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392745A (en) * 1989-09-05 1991-04-17 Nippon Steel Corp Indentation type hardness meter
JP2011164009A (en) * 2010-02-12 2011-08-25 Mitsutoyo Corp Hardness tester and program
JP2014167470A (en) * 2013-01-29 2014-09-11 Osaka Univ Food texture evaluation system, food texture evaluation program, recording medium, and food texture evaluation method

Also Published As

Publication number Publication date
JPH0154653B2 (en) 1989-11-20

Similar Documents

Publication Publication Date Title
US4627096A (en) Procedure and apparatus for the survey of the impression made on a specimen in measuring the hardness at penetration
JP3741474B2 (en) Bending order selection method and selection apparatus for bending machine
US4853968A (en) Pattern recognition apparatus and method
US7191929B2 (en) Method of measuring thickness of bonded ball in wire bonding
JPH06147863A (en) Bending angle detector for bending machine
JP4705792B2 (en) Inter-axis angle correction method
JPS60143739A (en) Automatic hardness measuring apparatus
JP3132385B2 (en) Inspection position determination method for metal weld section
JPH0954067A (en) Flaw detecting device
JP2569543B2 (en) Hardness tester
JPH07314043A (en) Automatic correcting method for die depth amount
JPH08247719A (en) Method for detecting edge and non-contact picture measuring system using the same
JP6355980B2 (en) Strain measuring apparatus and strain measuring method
JPS6310379B2 (en)
JPH0220922B2 (en)
RU2280838C2 (en) Method of contact-free measurement of objects having defocused borders onto image
JP2928375B2 (en) Image processing device
US20240102784A1 (en) Micrometer head displacement system utilizing imaging
JPH01312441A (en) Indentation type hardness meter
JPS61229421A (en) Bending method for plate like body
JPH0649918U (en) Steel pipe weld size measuring instrument
JPH04370705A (en) Device for correcting resolution in image processing
Yagawa et al. Strain distribution around a crack tip in high temperature environment using picture processing
JP2869579B2 (en) Decarburization inspection method and decarburization inspection device
JPS5877613A (en) Method and device for measuring coordinates

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees