JPS6014222A - Optical wavelength converting element - Google Patents

Optical wavelength converting element

Info

Publication number
JPS6014222A
JPS6014222A JP58122824A JP12282483A JPS6014222A JP S6014222 A JPS6014222 A JP S6014222A JP 58122824 A JP58122824 A JP 58122824A JP 12282483 A JP12282483 A JP 12282483A JP S6014222 A JPS6014222 A JP S6014222A
Authority
JP
Japan
Prior art keywords
optical
substrate
waveguide
refractive index
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58122824A
Other languages
Japanese (ja)
Inventor
Tetsuo Taniuchi
哲夫 谷内
Kazuhisa Yamamoto
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58122824A priority Critical patent/JPS6014222A/en
Publication of JPS6014222A publication Critical patent/JPS6014222A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

PURPOSE:To obtain an optical wavelength converting device having a good temperature stability and high efficiency by forming an optical waveguide which has increased its refractive index partially, on the surface of a non-linear single crystal substrate, and providing a thin film having an intermediate refractive index of the substrate and the waveguide, on this waveguide. CONSTITUTION:For instance, an optical waveguide 6 which has increased a refractive index partially is formed on the surface of a non-linear single crystal substrate 5 of LiNbO3, etc., and a thin film 7 whose refractive index has an intermediate value of the substrate 5 and the waveguide 6 is provided on this waveguide 6. It is not always necessary that such a thin film 7 is made of a material having a non-linear optical effect, and an amorphous film of TiO2, etc. is also available. In this way, by providing the thin film 7 having an intemediate refractive index of the substrate 5 and the optical waveguide 6, the conversion efficiency can be raised more than 30 times as high as that of a conventional one. Also, by providing electrodes 8, 8', connecting the Z surface of the substrate 5, and short-circuiting it electrically, the influence of a pyroelectric effect of the substrate 5 can be reduced. In this way, this element is combined with an infrared semiconductor laser, etc. and used as a small-sized visible laser light source for various optical displays, optical information apparatuses, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光を使用する情報処理分野、あるいは
光応用計測制御分野に利用する光変調変換素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical modulation conversion element used in the field of information processing using laser light or the field of optical measurement and control.

従来例の構成とその問題点 従来、非線形光学効果を応用してレーザ光の波長変換を
行なうものとして、第1図に示す構成が提案されている
。LiNbO3単結晶1の表面にTi2・・ミ゛ を熱拡散して形成した光導波路2(断面の大きさは2〜
8μm程度)の中に、光を閉じ込めて非線形光学効果を
有効に発揮させレーザ入力基本波3を波長変換してレー
ザ出力変換波4を得ようとするものである。しかしなが
ら、この構造では次のよう力問題点があるために、実用
デバイス化が進んでいない。
Conventional configuration and its problems Conventionally, a configuration shown in FIG. 1 has been proposed for converting the wavelength of laser light by applying a nonlinear optical effect. Optical waveguide 2 formed by thermally diffusing Ti2...mi on the surface of LiNbO3 single crystal 1 (cross-sectional size is 2~
The purpose is to confine light within a wavelength of approximately 8 μm) to effectively exert the nonlinear optical effect, convert the wavelength of the laser input fundamental wave 3, and obtain the laser output converted wave 4. However, this structure has not been developed into a practical device because of the following power problems.

中 非線形光学効果に不可欠な位相整合(基本波と変換
波の屈折率を一致させること)に、屈折率の温度変化を
用いているために、周囲温度に脱感であり±0.01 
’C程度の温度安定度が必要である。
Medium: Temperature changes in the refractive index are used for phase matching (matching the refractive index of the fundamental wave and the converted wave), which is essential for nonlinear optical effects, so it is insensitive to the ambient temperature and is ±0.01
Temperature stability on the order of 'C is required.

山)非線形光学係数にd13=5.3 X 10−23
m、IVを用いる構造であるために変換効率が小さい。
Mountain) Nonlinear optical coefficient d13 = 5.3 x 10-23
Since the structure uses m and IV, the conversion efficiency is low.

100mWの光入力で変換効率ηが1%程度である。At a light input of 100 mW, the conversion efficiency η is about 1%.

発明の目的 本発明は、新しい光導波路構造を採用することにより、
温度安定性が良く、かつ高効率な光波長変換デバイスを
提供することを目的としている。
Purpose of the Invention The present invention achieves the following by adopting a new optical waveguide structure.
The purpose is to provide an optical wavelength conversion device with good temperature stability and high efficiency.

発明の構成 本発明は、LiNbO3あるいばLiTaO3等の単結
晶基板表面に部分的に屈折率を増大させた光導波路を形
成し、この導波路上に、屈折率が基板と光導波路の中間
の値を有する薄膜を設置したものである。
Structure of the Invention The present invention forms an optical waveguide with a partially increased refractive index on the surface of a single crystal substrate such as LiNbO3 or LiTaO3, and on this waveguide, a layer with a refractive index between the substrate and the optical waveguide is formed. A thin film with a value is installed.

実施例の説明 第2図は本発明の一実施例の構成図であり、LiNbO
3単結晶Y板単結晶給板5軸に垂直に切断したもの)に
、τiの熱拡散あるいはにイオン交換等により光導波路
6を形成し、さらにこの光導波路上に、光導波路6より
屈折率が小さく基板5より屈折率が大きい上部層7を設
置する構造である。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a block diagram of an embodiment of the present invention, in which LiNbO
An optical waveguide 6 is formed on the single-crystal Y plate (cut perpendicular to the 5-axis of the single-crystal feed plate) by thermal diffusion of τi or ion exchange. This is a structure in which an upper layer 7 having a smaller refractive index and a higher refractive index than the substrate 5 is provided.

」二部層7は必らずしも非線形光学効果を有する材料で
ある必要はなく、TiO2,ZnSのアモルファス膜で
あってもよい。基板5.光導波路6.上部層7の屈折率
を各々n2.n、、n3 とすると、本発明においては
n(:) n3 ”) n2なる条件を必要とする。
The two-part layer 7 does not necessarily have to be a material having a nonlinear optical effect, and may be an amorphous film of TiO2 or ZnS. Substrate 5. Optical waveguide6. The refractive index of the upper layer 7 is set to n2. n, , n3, the present invention requires the condition n(:) n3 '') n2.

本発明の動作を以下説明する。The operation of the present invention will be explained below.

光波長変換デバイスの一例として波長を捧にする第2次
高調波発生(以下SHGと略す)をとり上げると、基本
波および高調波の界分布を各々fω。
Taking second harmonic generation (hereinafter abbreviated as SHG), which uses wavelength as an example of an optical wavelength conversion device, the field distributions of the fundamental wave and harmonics are respectively fω.

f 2 (1)とすると、変換効率ηは次の関係で表わ
される。
When f 2 (1), the conversion efficiency η is expressed by the following relationship.

ηoCd2・工2 ここでdは非線形光学係数 ■=f8fム・f2odS (Sは横断面を示す) 本発明は上部層7を装荷することにより、積分値工の増
大を図ることにより変換効率の向上を図ったものであり
、光導波路6の大きさを4μm×4μm 、 jl、=
=2.35 、 n2=2.24 、 n3=2.30
(ZnS)上部層7の膜厚を5μmとすると、上部層了
が無い時に対し、はぼ6倍の工の値が得られ、変換効率
ηはほぼ4o倍の向上となった。この理由は、上部層7
の有無による光波界分布の相違によるもので、第3図に
上部層7がある時の厚み方向の界分布を示し、基本波f
。Jは光導波路6の中にほぼ閉じ込められるが、高調波
f2.は光導波路6と上部層7とにまたがって伝搬する
ために、界5″ジ の打消しが小さく(積分値工が増大)変換効率が向上す
る。
ηoCd2・Ec2 Here, d is the nonlinear optical coefficient ■=f8fm・f2odS (S indicates the cross section) The present invention improves the conversion efficiency by increasing the integral value by loading the upper layer 7. The size of the optical waveguide 6 is 4μm×4μm, jl,=
=2.35, n2=2.24, n3=2.30
When the film thickness of the (ZnS) upper layer 7 was set to 5 μm, a value of about 6 times higher than that without the upper layer was obtained, and the conversion efficiency η was improved by about 40 times. The reason for this is that the upper layer 7
This is due to the difference in the optical wave field distribution depending on the presence or absence of the fundamental wave f.
. J is almost confined within the optical waveguide 6, but harmonics f2. Since it propagates across the optical waveguide 6 and the upper layer 7, the cancellation of the field 5'' is small (the integral value increases), and the conversion efficiency is improved.

また、LiNbO3結晶の結晶方向の偏波をもつ基本波
と高調波の波長変換が可能であるために、非線形光学係
数ds3(ds3z 7d+s )を利用でき、更に変
換効率の向上が図られる点が特徴である。
In addition, since it is possible to convert the wavelength of the fundamental wave and harmonics that have polarization in the crystal direction of the LiNbO3 crystal, it is possible to use the nonlinear optical coefficient ds3 (ds3z 7d+s), which further improves the conversion efficiency. It is.

本発明にかかる基本的な実施例は第2図の構成であるが
、より実用性の向上を図った具体的実施例を以下に示す
The basic embodiment according to the present invention has the configuration shown in FIG. 2, but a specific embodiment with improved practicality will be shown below.

第4図は第2の実施例であり非線形光学物質であるLi
NbO3基板6の焦電効果(温度変化により電荷が発生
する現象)の影響を低減させるために、LiNbO3結
晶5の2面(結晶Z軸に垂直に切断した面)を電極8.
8′を持続して相互に電気的に短絡した構成である。
Figure 4 shows the second embodiment of Li, which is a nonlinear optical material.
In order to reduce the influence of the pyroelectric effect (a phenomenon in which electric charges are generated due to temperature changes) of the NbO3 substrate 6, two surfaces of the LiNbO3 crystal 5 (the surfaces cut perpendicular to the crystal Z axis) are connected to electrodes 8.
8' and are electrically shorted to each other.

第6図は第3実施例であり、LiNbO3の電気光学効
果を応用して光波長変換を電圧制御するもので、光導波
路6の両側に電圧印加用電極9,9′を装着したもので
ある。ここで10は電極引き出し線である。本実施例の
利点は、常に最大変換率が6S・ 得られるように印加電圧により微調整できる点にある。
FIG. 6 shows a third embodiment, in which the electro-optic effect of LiNbO3 is applied to voltage-control optical wavelength conversion, and voltage-applying electrodes 9 and 9' are attached to both sides of the optical waveguide 6. . Here, 10 is an electrode lead line. The advantage of this embodiment is that it can be finely adjusted by adjusting the applied voltage so that the maximum conversion rate is always 6S.

なお、以上の説明はLiNbO3単結晶の基板に光導波
路を形成したものを取り上げてきたが、LiNbO3以
外にもLiTaO3結晶基板に対するCu(銅)拡散、
あるいはK(カリウム) 、 Ag<銀)等のイオン交
換による光導波路を形成したものに対しても、上部層の
形成による光波長変換効率の向上は可能である。
The above explanation has focused on the case where an optical waveguide is formed on a LiNbO3 single crystal substrate, but in addition to LiNbO3, Cu (copper) diffusion on a LiTaO3 crystal substrate,
Alternatively, it is possible to improve the optical wavelength conversion efficiency by forming an upper layer even in the case where an optical waveguide is formed by ion exchange of K (potassium), Ag<silver, or the like.

発明の効果 本発明は光導波路の上に上部層を形成することを特徴と
する光波長変換素子であり、光波長変換効率の向上(従
来に比べ30倍以上)が最大の効果である。従って、本
発明は赤外半導体レーザと組み合わせて小型可視レーザ
光源として種々の光ディスプレイ、光情報機器に応用展
開が考えられる。
Effects of the Invention The present invention is an optical wavelength conversion element characterized by forming an upper layer on an optical waveguide, and its greatest effect is an improvement in optical wavelength conversion efficiency (30 times or more compared to the conventional one). Therefore, the present invention can be applied to various optical displays and optical information devices as a compact visible laser light source in combination with an infrared semiconductor laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザー光の波長変換素子の概略図、第
2図は本発明の一実施例にがかるレーザ光の波長変換素
子の概略図、第3図は本発明の素子における光波界分布
を示す図、第4図、第6図は本発明の他の実施例にかか
る波長変換素子の概略図である。 5・・、・・LiNbO3単結晶基板、 6・・・・・
・光導波路、7・・・・・上部層、8,8′・・・・・
・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 据 −1:
Fig. 1 is a schematic diagram of a conventional laser beam wavelength conversion element, Fig. 2 is a schematic diagram of a laser beam wavelength conversion element according to an embodiment of the present invention, and Fig. 3 is a light wave field distribution in the element of the present invention. , FIG. 4, and FIG. 6 are schematic diagrams of wavelength conversion elements according to other embodiments of the present invention. 5...,...LiNbO3 single crystal substrate, 6...
・Optical waveguide, 7... Upper layer, 8, 8'...
·electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Zuzue-1:

Claims (2)

【特許請求の範囲】[Claims] (1)非線形物質単結晶基板の表面に形成した部分的に
屈折率を増大させた光導波路の上に、屈折率が前記基板
と光導波路の中間の値を有する薄膜を設置したことを特
徴とする光波長変換素子。
(1) A thin film having a refractive index intermediate between that of the substrate and the optical waveguide is disposed on an optical waveguide formed on the surface of a nonlinear material single crystal substrate and having a partially increased refractive index. Optical wavelength conversion element.
(2)単結晶基板の2面を電気的に短絡することを特徴
とする特許請求の範囲第1項に記載の光波長変換素子。
(2) The optical wavelength conversion element according to claim 1, wherein two surfaces of a single crystal substrate are electrically short-circuited.
JP58122824A 1983-07-06 1983-07-06 Optical wavelength converting element Pending JPS6014222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122824A JPS6014222A (en) 1983-07-06 1983-07-06 Optical wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122824A JPS6014222A (en) 1983-07-06 1983-07-06 Optical wavelength converting element

Publications (1)

Publication Number Publication Date
JPS6014222A true JPS6014222A (en) 1985-01-24

Family

ID=14845538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122824A Pending JPS6014222A (en) 1983-07-06 1983-07-06 Optical wavelength converting element

Country Status (1)

Country Link
JP (1) JPS6014222A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182027A (en) * 1985-02-08 1986-08-14 Toshiba Corp Non-linear optical waveguide element
JPS61189686A (en) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd Laser device
JPS6315234A (en) * 1986-07-07 1988-01-22 Fuji Photo Film Co Ltd Optical wavelength converting element
JPS63199328A (en) * 1987-02-16 1988-08-17 Fuji Photo Film Co Ltd Optical wavelength converting element
JPS6482022A (en) * 1987-09-25 1989-03-28 Nec Corp Waveguide type wavelength converting element
JPS6490426A (en) * 1987-09-30 1989-04-06 Fuji Photo Film Co Ltd Light wavelength converting element
JPH0198631U (en) * 1987-12-23 1989-06-30
US4896930A (en) * 1987-03-19 1990-01-30 Hitachi, Ltd. Optical functional device of an optical waveguide type
JPH02248933A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd Short-wavelength laser light source and light information processor
JPH02250043A (en) * 1987-02-13 1990-10-05 Fuji Photo Film Co Ltd Optical wavelength converting element
EP0490387A2 (en) * 1990-12-13 1992-06-17 Japan Aviation Electronics Industry, Limited Waveguide type optical device
JPH04214526A (en) * 1990-12-13 1992-08-05 Japan Aviation Electron Ind Ltd Waveguide type optical device
JPH04254834A (en) * 1991-02-07 1992-09-10 Matsushita Electric Ind Co Ltd Light wavelength conversion element and manufacture thereof
US5617499A (en) * 1995-09-08 1997-04-01 University Of New Mexico Technique for fabrication of a poled electrooptic fiber segment
US6385377B1 (en) * 1998-08-03 2002-05-07 University Of New Mexico Technique for fabrication of a poled electro-optic fiber segment
US6466722B1 (en) * 1998-03-12 2002-10-15 Toyota Jidosha Kabushiki Kaisha Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide
JP2004502066A (en) * 2000-06-30 2004-01-22 フオレシア・システム・デシヤプマン Exhaust volume and exhaust system including this exhaust volume
EP2339396A1 (en) * 2008-09-26 2011-06-29 Mitsubishi Electric Corporation Optical wavelength conversion element, wavelength conversion laser device, and image display device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182027A (en) * 1985-02-08 1986-08-14 Toshiba Corp Non-linear optical waveguide element
JPS61189686A (en) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd Laser device
JPS6315234A (en) * 1986-07-07 1988-01-22 Fuji Photo Film Co Ltd Optical wavelength converting element
JPH02250043A (en) * 1987-02-13 1990-10-05 Fuji Photo Film Co Ltd Optical wavelength converting element
JP2641053B2 (en) * 1987-02-13 1997-08-13 富士写真フイルム株式会社 Optical wavelength conversion element
JPS63199328A (en) * 1987-02-16 1988-08-17 Fuji Photo Film Co Ltd Optical wavelength converting element
US4896930A (en) * 1987-03-19 1990-01-30 Hitachi, Ltd. Optical functional device of an optical waveguide type
JPS6482022A (en) * 1987-09-25 1989-03-28 Nec Corp Waveguide type wavelength converting element
JPS6490426A (en) * 1987-09-30 1989-04-06 Fuji Photo Film Co Ltd Light wavelength converting element
JP2527338B2 (en) * 1987-09-30 1996-08-21 富士写真フイルム株式会社 Optical wavelength conversion element
JPH0198631U (en) * 1987-12-23 1989-06-30
JPH0335320Y2 (en) * 1987-12-23 1991-07-26
JPH02248933A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd Short-wavelength laser light source and light information processor
JPH07117675B2 (en) * 1989-03-22 1995-12-18 松下電器産業株式会社 Short wavelength laser light source and optical information processing device
JPH04214526A (en) * 1990-12-13 1992-08-05 Japan Aviation Electron Ind Ltd Waveguide type optical device
EP0490387A2 (en) * 1990-12-13 1992-06-17 Japan Aviation Electronics Industry, Limited Waveguide type optical device
JPH04254834A (en) * 1991-02-07 1992-09-10 Matsushita Electric Ind Co Ltd Light wavelength conversion element and manufacture thereof
US5617499A (en) * 1995-09-08 1997-04-01 University Of New Mexico Technique for fabrication of a poled electrooptic fiber segment
US6466722B1 (en) * 1998-03-12 2002-10-15 Toyota Jidosha Kabushiki Kaisha Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide
US6385377B1 (en) * 1998-08-03 2002-05-07 University Of New Mexico Technique for fabrication of a poled electro-optic fiber segment
JP2004502066A (en) * 2000-06-30 2004-01-22 フオレシア・システム・デシヤプマン Exhaust volume and exhaust system including this exhaust volume
EP2339396A1 (en) * 2008-09-26 2011-06-29 Mitsubishi Electric Corporation Optical wavelength conversion element, wavelength conversion laser device, and image display device
EP2339396A4 (en) * 2008-09-26 2012-03-07 Mitsubishi Electric Corp Optical wavelength conversion element, wavelength conversion laser device, and image display device
JP5361897B2 (en) * 2008-09-26 2013-12-04 三菱電機株式会社 Optical wavelength conversion element, wavelength conversion laser device, and image display device
US8705165B2 (en) 2008-09-26 2014-04-22 Mitsubishi Electric Corporation Optical wavelength conversion element, wavelength conversion laser device, and image display device

Similar Documents

Publication Publication Date Title
JPS6014222A (en) Optical wavelength converting element
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP2960783B2 (en) Tunable optical waveguide device
JPS61189524A (en) Optical wavelength converting element
JP2004295088A (en) Wavelength conversion element
JP4114694B2 (en) Optical wavelength conversion element and short wavelength light generator
JP3159716B2 (en) Waveguide structure
JP2963989B1 (en) Light modulator
EP0433487A1 (en) Second harmonic wave generating device
JP2005055528A (en) Method and device for oscillating blue laser beam
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
JP2676743B2 (en) Waveguide type wavelength conversion element
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JPS6118933A (en) Device for changing wavelength of light
JP2899345B2 (en) Optical device
JPS6017727A (en) Element for converting wavelength of light
JPS5943838B2 (en) blue light emitting device
JP2708653B2 (en) Second harmonic generation element
JPH0262522A (en) Waveguide type wavelength converting element
JPH03197932A (en) Light wavelength converter
JP2982366B2 (en) Waveguide type wavelength conversion element
Baues Phase modulation of light in planar electrooptical waveguides
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH04172329A (en) Wave length converting method and device for it
JPH0643513A (en) Wavelength converting element