JPS6014214A - Zoom lens including wide view angle - Google Patents

Zoom lens including wide view angle

Info

Publication number
JPS6014214A
JPS6014214A JP58122857A JP12285783A JPS6014214A JP S6014214 A JPS6014214 A JP S6014214A JP 58122857 A JP58122857 A JP 58122857A JP 12285783 A JP12285783 A JP 12285783A JP S6014214 A JPS6014214 A JP S6014214A
Authority
JP
Japan
Prior art keywords
lens group
lens
focusing
zoom
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58122857A
Other languages
Japanese (ja)
Other versions
JPH0430564B2 (en
Inventor
Tomotou Takahashi
友刀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP58122857A priority Critical patent/JPS6014214A/en
Priority to US06/626,989 priority patent/US4632519A/en
Publication of JPS6014214A publication Critical patent/JPS6014214A/en
Publication of JPH0430564B2 publication Critical patent/JPH0430564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To correct satisfactorily an aberration variation of a small-sized zoom lens having a wide variable power area including a wide view angle by moving the first lens group to an object side, and also moving as one body the second and the third lens groups to an image side so as to be focused on a short distance object. CONSTITUTION:A titled zoom lens is constituted of four groups consisting of the first lens group G1 of a positive refractive power, the second lens group G2 of a negative refractive power, the third lens group G3 of a positive refractive power, and the fourth lens group G4 of a positive refractive power, in order from an object side, and an almost afocal system is formed by the first, the second and the third lens groups. In this state, when focusing this lens to an object of a short distance, it is constituted so that the first lens group G1 is moved to the object side along the optical axis against an image surface I , and also the second lens group G2 and the third lens group G3 are moved as one body to the image side along the optical axis. In this way, a short distance variation of a curvature of image is reduced remarkably, and also a structure of a lens barrel is simplified.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はズームレンズ、特に最大画角が60゜全越える
広画角金倉み、いわゆる広角から準望遠までの比較的広
い変倍領域を有するズームレンズの合焦方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a zoom lens, particularly a wide-angle zoom lens with a maximum angle of view exceeding 60 degrees, a zoom lens having a relatively wide range of magnification from so-called wide-angle to semi-telephoto. Regarding the focusing method of the lens.

(発明の背景) 近年、この種のズームレンズで35111111判スチ
ルカメラ用のものが種々提案されており、例えば、特開
昭57−16180合4、特開昭57−161824等
がある。
(Background of the Invention) In recent years, various zoom lenses of this type for use with 35111111-format still cameras have been proposed, such as Japanese Patent Application Laid-Open No. 57-16180-4 and Japanese Patent Application Laid-open No. 57-161824.

これらはいずれもコンパクトで高ズーム比を目ざしたも
のであるが、そのため、繭玉フォー力ッシング群に正の
パワーのレンズ群を用いてズーム比の高倍化をねらって
いる。しかし、正のフォーカノシング群の欠点として、
至近距離をあまり短かくできない事と、収差の近距離変
動が大きい事の2点が挙げられる。至近距離の短縮化に
は前玉径を大きくするか、前玉の焦点距離を短かくすれ
ば(2) ある程度可能となるが、レンズの小型化と収差変動の減
少と全犠牲にせざるを得なくなる。そのため通常はマク
ロ機構を付加して、近距離撮影領域を拡大することが多
い。また収差の近距離変動に関しては、レンズ系の小型
化と相反する性質があり、なかなか補正困難なので、無
限遠撮影状態と至近距離撮影状態とで残存収差をふり分
けて解決する事が一般的である。従って35薗スチルカ
メラ用のズームレンズで、f=35mmよりも広角から
始まる3倍以上のものは近距離での収差変動が太きいに
もかかわらずレンズの小型化の要請が強く、ある程度の
収差変動はやむを得ないものとなっている。
All of these lenses are designed to be compact and have a high zoom ratio, and for this reason, a positive power lens group is used in the Cocoon ball lens group to increase the zoom ratio. However, the drawback of positive focusing groups is that
There are two problems: the close distance cannot be made very short, and the aberrations vary greatly over the close distance. Shortening the close-up distance can be done to some extent by increasing the diameter of the front lens or shortening the focal length of the front lens (2), but this would have to be at the expense of making the lens more compact and reducing aberration fluctuations. It disappears. Therefore, a macro mechanism is usually added to expand the close-range shooting area. In addition, short-distance fluctuations in aberrations are difficult to correct because they conflict with the miniaturization of lens systems, so it is common to solve the problem by distributing residual aberrations between infinity shooting conditions and close-up shooting conditions. be. Therefore, for zoom lenses for 35mm still cameras, there is a strong demand for smaller lenses, even though the aberration fluctuations at short distances are large, for zoom lenses of 3x or more that start from a wide angle than f = 35mm, and there is a certain amount of aberration. Change has become unavoidable.

さらにこの様な高倍率ズームレンズになると、像面の至
近変動が太キくするだけではなく、変倍による像面変動
も無視できないものとなってくる。
Furthermore, with such a high-magnification zoom lens, not only the close-up variation of the image plane increases, but also the variation of the image plane due to zooming cannot be ignored.

そのため実際には近距離変動と変倍変動が両者型なって
、益々像面変動が太きいものとなり、像性能にもズーム
変倍範囲内でムラがでてくる事になる。変倍による像面
変動全補正するには、限られ(3) た変倍群の構成では、ズームレンズ系自体を大きくする
か、高屈折率ガラスを大幅に採用して各レンズ面の曲率
半径を犬きくする以外に解決で@ないが、この変倍によ
る像面変動を良好な値におさえる事が出きた場合でも、
近距離合焦時で補正する事は非常に困難で、両者全同時
に補正する事は不可能に近い。
Therefore, in reality, there are both short-distance fluctuations and magnification fluctuations, resulting in increasingly large image plane fluctuations and uneven image performance within the zoom magnification range. In order to fully compensate for image plane fluctuations due to zooming, the configuration of the zoom lens group is limited to (3), and the radius of curvature of each lens surface must be increased by increasing the size of the zoom lens system itself or using a large amount of high refractive index glass. There is no solution other than to listen carefully, but even if it is possible to suppress the image plane fluctuation due to magnification change to a good value,
It is very difficult to correct when focusing at close range, and it is almost impossible to correct both at the same time.

この像面の近距離変動は高倍率ズームレンズになって望
遠端が長焦点レンズになればなる程、大きな値となり、
その主な発生原因となるフォー力ッシングレンズ群(通
常第ルンズ群)の改良のみでは補正しきれないのである
This short-distance fluctuation of the image plane becomes larger as the zoom lens becomes a higher magnification lens and the telephoto end becomes a longer focal length lens.
This cannot be corrected solely by improving the force lens group (usually the lens group), which is the main cause of this phenomenon.

フォーカッシング群を2つのレンズ群に分けておのおの
の群間隔を若干変化させて補正するいわゆるフォー力ッ
シング群のフローティング方式全採用すれば、大幅に改
良されるが、その場合、はレンズ枚数が増える事となり
、また大@なものにrx Dかねない。レンズ枚数全限
定すると間隔変化にともなう球面収差、コマ収差の増加
による像性能劣化をもたらすこととなる。
If the focusing group is divided into two lens groups and corrected by slightly changing the distance between each group, a major improvement would be achieved if the floating system of the focusing group was fully adopted, but in that case, the number of lenses would increase. If this happens, it could become a big thing again, like rx D. If the total number of lenses is limited, image performance will deteriorate due to an increase in spherical aberration and comatic aberration as the distance changes.

(4) さらにこの場合、可動群が増えるため、鏡筒の加工精度
が影響する事となり、偏心、4到れ等を発生して、像性
能の劣化をもたらす原因にもなりやすい0 (発明の目的) 本発明の目的は、広画角を含み比較的広い変倍領域を有
しつつ小型な形状であり、(がら、変倍による収差変動
と合焦による収差変動、特に像面彎曲収差の合焦による
変動を良好に補正し得るズームレンズを提供することに
ある。
(4) Furthermore, in this case, since the number of movable groups increases, the processing accuracy of the lens barrel will be affected, causing eccentricity, distortion, etc., which is likely to cause deterioration of image performance. Purpose) The object of the present invention is to provide a compact shape having a relatively wide magnification range including a wide angle of view, and to reduce aberration fluctuations due to magnification changes and aberration fluctuations due to focusing, especially curvature of field. It is an object of the present invention to provide a zoom lens capable of satisfactorily correcting fluctuations due to focusing.

(発明の概要) 本発明は、第1図に示すごとく、物体側より順に、正屈
折力の第ルンズ群(Gl)、負屈折力の第2レンズ群(
う)、正屈折力の第3レンズ群(G3)。
(Summary of the invention) As shown in FIG.
C), third lens group (G3) with positive refractive power.

正屈折力の第4レンズ群CG<)’fr:有し、該第1
.第2、第3レンズ群でほぼアフォーカル系を形成する
ズームレンズにおいて、第2図に示すごとく近距離物体
に合焦する際に、像面(I)に対して前記第ルンズ群(
G、)を光軸にそって物体側へ移動させると共に、前記
第2レンズ群(G1)と前記第3レン(5) ズ群(G、)とを一体的に光軸にそって像側へ移動させ
るものである。第1図には、本発明のズームレンズの無
限連合焦時における軸上無限遠物点及び軸外無限遠物点
からの周縁光線を示した。また、第2図には、無限連合
焦時の斜光束の主光線を点線で、また近距離合焦時の斜
光束の主光線全実線で示し、合焦に際して移動する第1
.第2.第3レンズ群(G1 + ”z + Gs )
の無限連合焦時の配置を点線で示した。
Fourth lens group CG<)'fr: having a positive refractive power, and the first lens group has a positive refractive power.
.. In a zoom lens in which the second and third lens groups form an almost afocal system, as shown in FIG. 2, when focusing on a short-distance object, the lens group (
G,) along the optical axis toward the object side, and move the second lens group (G1) and the third lens group (G,) together along the optical axis toward the image side. This is to move it to. FIG. 1 shows marginal rays from an on-axis infinite object point and an off-axis infinite object point when the zoom lens of the present invention is at infinite joint focus. In addition, in Fig. 2, the principal ray of the oblique light beam during infinite combined focusing is shown by a dotted line, and the principal ray of the oblique light beam during close-range focusing is shown by a full solid line.
.. Second. 3rd lens group (G1 + "z + Gs)
The dotted line shows the arrangement of the infinite association focal time of .

このような本発明の基本的構成によれば、像面彎曲の近
距離変動が大幅に減少するのみならず、第ルンズ群に近
い第2レンズ群と第3レンズ群とが変倍のだめの構成を
保った′1.ま移動するので、鏡筒の構造が簡単となる
。また、第2レンズ群と第3レンズ群は共に変倍のため
の移動群であるため、合焦のための移動において偏心や
倒れ等の機械的誤差を増大させる恐れも少ない。
According to the basic configuration of the present invention, not only short-distance fluctuations in field curvature are significantly reduced, but also the second lens group and the third lens group, which are close to the lens group, are configured as lenses for zooming. '1. Since the lens is moved, the structure of the lens barrel is simplified. Further, since both the second lens group and the third lens group are movable groups for changing the magnification, there is little risk of increasing mechanical errors such as decentering or tilting during movement for focusing.

この様に本発明は近距離物体に合焦する際に前玉繰出し
のために発生する像面彎曲の変化を補正するものであり
、これにより像面全体にわたって(6) 良好な像性能全保持するものであるが、間隔変化により
球面収差やコマ収差等の像面彎曲以外の収差が変動した
のでは、せっかくの補正が意味全すさすくする。そのた
め間隔変化により球面収差、コマ収差に大幅な変動のな
い事が重要となる。また間隔変化により焦点距離に変化
があっても都合が悪いので、焦点距離変動のない事も重
要である。
In this way, the present invention corrects the change in field curvature that occurs due to the advance of the front lens when focusing on a short-distance object, thereby maintaining (6) good image performance throughout the entire image plane. However, if aberrations other than curvature of field, such as spherical aberration or coma aberration, fluctuate due to a change in the distance, the correction becomes meaningless. Therefore, it is important that spherical aberration and comatic aberration do not change significantly due to changes in spacing. It is also important that the focal length does not fluctuate, since it is inconvenient if the focal length changes due to a change in the distance.

これらの要求全同時に満足させるには第3レンズ群と第
4レンズ群との間隔全平行光束系にすればよい。すなわ
ち、このために第ルンズ群から第3レンズ群まで全無限
連合焦時にアフォーカル系となるように構成することが
必要である。そうすれば、第ルンズ群と第2レンズ群と
を一体的に移動することによって、第3.第4レンズ群
の間隔が変化しても焦点距離は変化せず、また収差的に
は数面収差も変化がなく、コマ収差に関しては若干の変
化を与えるものの、それは像面彎曲の変化にのっとった
変化となるので、初期の目的は充分に達成することがで
きる。
In order to satisfy all of these requirements at the same time, it is sufficient to make the distance between the third lens group and the fourth lens group a completely parallel beam system. That is, for this purpose, it is necessary to configure the lens group from the first lens group to the third lens group so as to form an afocal system when all the lenses are in infinite combined focus. Then, by integrally moving the 3rd lens group and the 2nd lens group, the 3rd. Even if the distance between the fourth lens group changes, the focal length does not change, and in terms of aberrations, there is no change in several plane aberrations, and although there is a slight change in coma aberration, it follows the change in field curvature. The initial objective can be fully achieved because of the change.

上記の様に第3レンズ群と第4レンズ群との間(7) 全平行光束系とし、いわばアフォーカル結合するために
は、第ルンズ群の焦点距離’ef、、第2レンズ群の焦
点距離’eft、第3レンズ群の焦点距離kfs+おの
おのの群の主点間隔全それぞれDIID2とすると、 の関係を保つパワー配置によりズーム変倍系を構成しな
ければならない。この関係式は正確に保つことが質重し
いが、若干式からはずれていても、はぼアフォーカル結
合されている群の間隔変化による諸収差の変化数はごく
わずかなものであるの璋 で、数面収差や焦点距離に太@な変化は発生せず、実用
的には充分満足できるものである。
As mentioned above, between the third lens group and the fourth lens group (7), in order to create a fully parallel beam system and achieve a so-called afocal coupling, the focal length of the third lens group 'ef, the focal point of the second lens group Assuming that the distance 'eft, the focal length of the third lens group kfs+the total distance between the principal points of each group is DIID2, the zoom magnification system must be configured with a power arrangement that maintains the following relationship. It is difficult to maintain this relational expression accurately, but even if it deviates slightly from the equation, the number of changes in various aberrations due to changes in the spacing of the afocal coupled groups is extremely small. , no major changes in number plane aberration or focal length occur, and are sufficiently satisfactory for practical use.

ここで像面彎曲の変倍に伴う変動に対して若干の収差論
からの検討を加える。三次の球面収差を■、コマ収差を
■、非点収差を■とし、構成される光学系の絞りの位置
から対象となる光学部分群までの距離をlとすると、 今、絞りがこの光学部分群からΔtだけ動いたと(8) するとそのために発生する収差変動は ΔI = o (1) △■=−α△t I (2) △I[=−2α△71[+(α△l)! (3)と与え
られる。ここにαはほぼ一定の比例定数である。
Here, we will add some consideration from aberration theory to the variation of field curvature due to zooming. Assuming that the third-order spherical aberration is ■, the coma aberration is ■, and the astigmatism is ■, and the distance from the aperture position of the optical system to the target optical subgroup is l, then the aperture is now located at this optical part. If the group moves by Δt (8), then the resulting aberration variation is ΔI = o (1) △■=-α△t I (2) △I[=-2α△71[+(α△l)! (3) is given. Here α is an almost constant proportionality constant.

本発明では絞りを第3レンズ群と一体に設け、特に第2
レンズ群と第3レンズ群との間に設けることが望ましい
が、この場合第ルンズ群のフォーカシングによる移動に
よって、第ルンズ群の絞りからの距離が変化するので同
様の収差変動が発生する。そして、実際にはこの他に第
ルンズ群と絞りとの間に介在するレンズ群の影響と物体
距離の変化による影響が加わり、複雑な収差変動になる
が、像面変動を生ずるほとんどの収差は(3)式による
ものとみることができる。本発明は、このようなフォー
カシングによる収差変動全第2レンズ群と第3レンズ群
とを一体的に移動することによって補正し得ること金兄
い出したものである。
In the present invention, the aperture is provided integrally with the third lens group.
It is desirable to provide the lens group between the lens group and the third lens group, but in this case, the movement of the lens group due to focusing changes the distance of the lens group from the aperture, and similar aberration fluctuations occur. In reality, in addition to this, the influence of the lens group interposed between the lens group and the aperture diaphragm and the influence of changes in object distance result in complex aberration fluctuations, but most of the aberrations that cause image plane fluctuations are This can be seen as being based on equation (3). The present invention has discovered that such aberration fluctuations due to focusing can be corrected by integrally moving the second and third lens groups.

第ルンズ群の移動による合焦時の収差変動は、(9) 絞りより後方に位置する第4レンズ群全第ルンズ群と同
時に同一方向へ移動することによって補正できるのでは
あるが、第4レンズ群を移動する場合にはバンクフォー
カスも変化するため、実用的ではない。そこで本発明で
は第4レンズ群による収差補正とほぼ同等の機能が第2
レンズ群と第3レンズ群との一体的移動によって達成さ
れることを見い出し、像面彎曲以外の収差の変動を悪化
させないように、第3レンズ群と第4レンズ群とをアフ
ォーカル結合としたものである。
Aberration fluctuations during focusing due to movement of the fourth lens group can be corrected by (9) moving all of the fourth lens groups located behind the aperture in the same direction at the same time; When moving the group, the bank focus also changes, which is not practical. Therefore, in the present invention, the second lens group has almost the same function as the aberration correction by the fourth lens group.
They discovered that this could be achieved by integral movement of the lens group and the third lens group, and the third and fourth lens groups were afocal coupled to prevent aggravation of fluctuations in aberrations other than field curvature. It is something.

そして、このような本発明による合焦時の収差変動の補
正においては、第ルンズ群の物体側への移動量ks+第
2レンズ群と第3レンズ群との像側への一体的移動t’
t△Tとするとき、0、 I S≦△T≦0.35 S
 (4)とすることが望ましい。この(4)式の条件の
下限を外れる場合には合焦時の収差補正の効果が乏しく
なり、また上限奮起えると広角端で補正過剰となるため
結像性能が悪化する。
In the correction of aberration fluctuations during focusing according to the present invention, the movement amount ks of the first lens group toward the object side + the integral movement t' of the second lens group and the third lens group toward the image side
When t△T, 0, I S≦△T≦0.35 S
(4) is desirable. If the lower limit of the condition of equation (4) is exceeded, the effect of aberration correction during focusing becomes poor, and if the upper limit is exceeded, the imaging performance deteriorates due to excessive correction at the wide-angle end.

(実施例) (10) 次に、本発明による実施例について説明する。(Example) (10) Next, examples according to the present invention will be described.

本発明による第1.第2の実施例はいずれも広角端Cf
W)から望遠端げT)への変倍に際して、第3図に示す
ごとく、第ルンズ群(Gl)、第4レンズ群(G4)は
像面(I)に対して物体側へ単調にほぼ同量移動し、同
時に第3レンズ群(偽)は第1.第4Vンズ群(G、*
 G4)の移動量に対して0.4〜0.8倍の移動量で
物体側へ単調に移動するとともに、第2レンズ群(G2
)は少なくとも広角端近傍においては物体側へ移動する
構成である。尚、この様な変倍方式によって前玉径が小
さくできレンズ系の小型化に有利であることについては
、本願と同一の出願人による別途出願(特開昭58−7
8114号公報)に詳述した。
1. According to the present invention. In both embodiments, the wide-angle end Cf
When changing the magnification from W) to telephoto end T), the lens group (Gl) and the fourth lens group (G4) almost monotonically move toward the object side with respect to the image plane (I), as shown in Figure 3. At the same time, the third lens group (false) moves the same amount as the first lens group. 4th Vns group (G, *
The second lens group (G2
) is configured to move toward the object at least near the wide-angle end. It should be noted that the fact that such a magnification variable system allows the diameter of the front lens to be reduced and is advantageous in downsizing the lens system is disclosed in a separate application filed by the same applicant as the present application (Japanese Unexamined Patent Publication No. 58-7-7).
8114).

第1実施例は35ミリ判スチルカメラ用として焦点距離
f=35.からf=105mm’Eでの標準金倉む3倍
ズームレンズであり、第2実施例は同じく35ミリ判ス
チルカメラ用として焦点距離f=35−からf=200
叫までの5.7倍のズームレンズである。
The first embodiment is for a 35 mm still camera with a focal length f=35. This is a standard Kanakura 3x zoom lens with f=105mm'E, and the second embodiment is also for a 35mm still camera with a focal length of f=35- to f=200.
It is a 5.7x zoom lens.

(11) 98− 例のレンズ構成図を示し、以下の表1及び表2に第1及
び第2実施例の諸元を示す。6表において、物体側から
順次の各値全示し、添数字は物体側からの順序を表わす
(11) A lens configuration diagram of Example 98- is shown, and Tables 1 and 2 below show specifications of the first and second examples. In Table 6, all values are shown sequentially from the object side, and the subscript number represents the order from the object side.

第6図は、第1実施例、広角端(fw)、中間CfM)
望遠端Cfr)の各焦点距離での7割画角の所のメ面 リディオナル像嚇の変動を表わした図である。
Figure 6 shows the first embodiment, wide-angle end (fw), intermediate CfM)
FIG. 4 is a diagram showing fluctuations in the me-plane horizontal image threat at the 70% angle of view at each focal length at the telephoto end (Cfr).

図中の曲線aは物体が無限遠の場合の変倍による面 変動を表わし、広角端では像譬はアンダーに、中間の所
ではオーバーに、望遠端ではまたアンダーに変化する逆
くの字の変動を生じ、この変動差はこの場合、0.3程
度存在し、なかなか減少させる事は困難である。一般に
レンズ系の小型化を目させば、このような変動成分は増
加する。
Curve a in the figure represents the surface variation due to magnification when the object is at infinity, and shows an inverted dogleg shape in which the image becomes under-image at the wide-angle end, over-image at the middle, and again under-image at the telephoto end. In this case, the variation difference is about 0.3, and it is difficult to reduce it. Generally, as lens systems become smaller, such fluctuation components increase.

曲線すは第ルンズ群のみ全物体側へS = 3.5閣だ
け移動することによって物体距離1.4−rrLに合焦
した場合の変倍変動であり、曲線aとbとの差つまり近
距離変動は0.4〜0.5程度存在する。
The curve S is the magnification change when focusing on an object distance of 1.4-rrL by moving only the lens group S = 3.5 degrees to the whole object side, and the difference between curves a and b, that is, the near distance. There is a distance variation of about 0.4 to 0.5.

これに対して、同一の近距離物体への合焦に際して第2
レンズ群と第3レンズ群と全同時に像側へ移動する本発
明を実施した場合の変倍変動が曲線C及びdである。曲
線Cは第2.第3レンズ群を△T =0.5 mmだけ
像側へ移動させた場合であり、曲線aに近くなり、近距
離変動がかなり補正されている事が明らかである。曲線
dは第2.第3レンズ群を△T ”” 0.7 mmだ
け像側へ移動した場合であり、さらに良好に補正されて
いる事が分る。但し、これ以上補正すると広角端で補正
過剰となりかえって像性能が劣化するため前記(4)式
の条件の範囲内で適切な値を選ぶ必要がある。
On the other hand, when focusing on the same short-distance object, the second
Curves C and d represent magnification fluctuations when the present invention is implemented in which the lens group and the third lens group all move toward the image side at the same time. Curve C is the second. This is the case when the third lens group is moved by ΔT = 0.5 mm toward the image side, and it becomes close to curve a, and it is clear that short-distance fluctuations are considerably corrected. Curve d is the second. This is the case where the third lens group is moved by ΔT ``'' 0.7 mm toward the image side, and it can be seen that the correction is even better. However, if more correction is made, the correction will be excessive at the wide-angle end and the image performance will deteriorate, so it is necessary to select an appropriate value within the range of the condition of equation (4).

第7図は第2実施例の7割画角のメリディオナル像面を
第6図と同様に広角側から望遠側までの変倍変動全表示
したもので、曲線aは物体が無限遠の場合の状態で、こ
れが第ルンズ群のみ全物体側へ44闘だけ移動させて物
体距離1.69nに合焦した時には曲線すの状態に変化
する。図から分る様に広角端と望遠端での近距離変動は
一様ではなく、これは5.7倍という高変倍のために現
れた現象である。この場合、望遠端と中間とでは0.6
〜0.9程度の近距離変動があり、広角端では0.05
の変動である。この例の様に5,7倍という高ズーム比
になると、変倍による変動は複雑なものとなり、図示の
様に逆S字型の変動を示す。このため、諸収差の変倍変
動のみならず近距離変動の補正はさらに困難なものとな
る。
FIG. 7 shows the meridional image plane of the 70% angle of view of the second embodiment, showing all the magnification variations from the wide-angle side to the telephoto side, as in FIG. This state changes to a curved state when only the 1st lens group is moved toward the entire object by 44 mm and focused at an object distance of 1.69n. As can be seen from the figure, the short-range fluctuations at the wide-angle end and the telephoto end are not uniform, and this is a phenomenon that appears due to the high zoom ratio of 5.7x. In this case, 0.6 at the telephoto end and in the middle
There is a short-range variation of ~0.9, and 0.05 at the wide-angle end.
This is the fluctuation of When the zoom ratio is as high as 5 or 7 times as in this example, the variation due to zooming becomes complicated, and exhibits an inverted S-shaped variation as shown in the figure. For this reason, it becomes even more difficult to correct not only magnification fluctuations of various aberrations but also short-distance fluctuations.

曲線Cは同一物体への合焦に際して、本発明により第2
.第3レンズ群を同時に像側へ0.7111111だけ
移動した場合の状態であり、広角端であt、b補正過剰
とならない様にしつつ、望遠端での近距離変動をなるべ
く補正しようとしたものである。
Curve C shows the second curve according to the present invention when focusing on the same object.
.. This is the state when the third lens group is simultaneously moved by 0.7111111 toward the image side, and the attempt is made to correct short-distance fluctuations at the telephoto end as much as possible while avoiding excessive t and b correction at the wide-angle end. It is.

この様に本発明による補正を行う事は、実用上非常に有
効で、像面の近距離変動が大幅に改善され、全変倍域に
わたり画面全域において常に良好な像性能を得る事がで
きる。
Performing the correction according to the present invention as described above is very effective in practice, and the short-distance fluctuation of the image plane is greatly improved, and good image performance can always be obtained over the entire zoom range and the entire screen.

上記第1実施例の無限連合焦時の諸収A第8図に、近距
離合焦時(物体距離1.4 m )の諸収差図を第9図
に示し、丑だ、上記第2実施例の無限連合焦時の諸収差
図全第10図に、近距離合焦時(物体距離1.’ 6 
m )の諸収差図全第11図に示す。
Various aberrations A in the case of infinite joint focusing in the first embodiment are shown in Fig. 8, and Fig. 9 shows various aberrations in the case of short-range focusing (object distance 1.4 m). Figure 10 shows the various aberration diagrams for the example of infinite combined focusing, and the aberration diagram for close focusing (object distance 1.'6).
Fig. 11 shows all the various aberration diagrams of .m).

(16) 各収差図においては、広角端(4)、中間(B)、望遠
端(C)それぞれにおける球面収差(Sph) l非点
収差(Asす、歪曲収差(Di S) 、 =y−r収
差(Coma) f示し、球面収差図中には正弦条件違
反量を点線で併記した。
(16) In each aberration diagram, spherical aberration (Sph) l astigmatism (As), distortion aberration (Di S), =y- r aberration (Coma) f is shown, and the amount of violation of the sine condition is also shown with a dotted line in the spherical aberration diagram.

各収差図より、本発明による両実施例は共に近距離撮影
状態においても諸収差が良好に補正されており、特に中
間及び望遠端における像面彎曲と非点収差の改善が著し
く、広角端において近距離での非点収差が着干増大する
もののコマ収差の対称性に優れ実用上十分良好な性能が
維持されていることが明らかである。
From the respective aberration diagrams, it can be seen that in both examples according to the present invention, various aberrations are well corrected even in close-range shooting conditions, and in particular, the improvement of field curvature and astigmatism at the intermediate and telephoto ends is remarkable, and at the wide-angle end Although the astigmatism at short distances increases considerably, it is clear that the symmetry of the coma aberration is excellent and performance sufficiently good for practical use is maintained.

(発明の効果) 以上のごとく、本発明によれば、最大画角が60゜以上
という広画角を含み、Fナンバー35程度でズーム比3
倍から5.7倍という高変倍率を有しながら、全体に小
型で全変倍域にわたって優れた結像性能を有し、しかも
近距離時にも収差悪化の少ないズームレンズが達成され
る。しかも本発明による合焦方式では、変倍時に移動す
る第2.第3(17) レンズ群を一体的に移動するため収差的に安定であるの
みならず、鏡筒の構成上も有利であり、また第3レンズ
群と第4レンズ群との間が平行光束系であるため、合焦
時にバックフォーカスの変化がなく、像面彎曲収差以外
の収差への悪影響を抑制でき、極めて有用である。尚、
上記実施例ではズームレンズ全構成する4つのレンズ群
が変倍時に像面に対して全て移動するものであったが本
発明は変倍に際して第2.第3レンズ群のみが移動する
ズームレンズにも有効である。
(Effects of the Invention) As described above, according to the present invention, the maximum angle of view includes a wide angle of view of 60° or more, and the zoom ratio is 3 at an F number of about 35.
It is possible to achieve a zoom lens that has a high zoom ratio of 5.7x to 5.7x, is compact overall, has excellent imaging performance over the entire zoom range, and has less aberration deterioration even at short distances. Moreover, in the focusing method according to the present invention, the second lens that moves when changing magnification is used. Since the third (17) lens group moves integrally, it is not only stable in terms of aberrations, but also advantageous in terms of the structure of the lens barrel. Because it is a system, there is no change in back focus during focusing, and it is possible to suppress adverse effects on aberrations other than field curvature, which is extremely useful. still,
In the above embodiment, the four lens groups that make up the entire zoom lens all move with respect to the image plane during zooming, but in the present invention, the second lens group moves during zooming. This is also effective for zoom lenses in which only the third lens group moves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による基本構成図、第3図は
本発明による実施例の変倍のための各レンズ群の移動軌
跡金示す図、第4図、第5図はそれぞれ第1.第2実施
例のレンズ構成図、第6図、第7図はそれぞれ第1.第
2実施例についての、画角7割におけるメリディオナル
像面の変倍変動及び近距離変動を示す図、第8図及び第
9図は第1実施例の無限遠合焦時及び近距離合焦時の諸
収差図、第10図及び第11図は第2実施例の無限遠合
焦時及び近距離合焦時の諸収差図である。 〔主要部分の符号の説明〕 G、・・・第ルンズ群 G、・・・第2レンズ群G、・
・・第3レンズ群 G4・・・第4レンズ群出願人 日
本光学工業株式会社 代理人渡辺隆男 才1困 才Z図 才5図 才4図 G1 一一一一〜−一、 しILZL3 ひ2 G3 ひ4 −一1□
1 and 2 are basic configuration diagrams according to the present invention, FIG. 3 is a diagram showing the movement trajectory of each lens group for zooming in an embodiment according to the present invention, and FIGS. 1. The lens configuration diagram of the second embodiment, FIG. 6, and FIG. 7 are respectively shown in the first embodiment. Figures 8 and 9 show magnification fluctuations and short-distance fluctuations of the meridional image plane at a field angle of 70% for the second embodiment, and Figures 8 and 9 are for infinity focusing and short-distance focusing in the first embodiment FIGS. 10 and 11 are diagrams of various aberrations when focusing at infinity and when focusing at short distance in the second embodiment. [Explanation of symbols of main parts] G, ... 1st lens group G, ... 2nd lens group G, .
...Third lens group G4...Fourth lens group Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Takao Watanabe G3 Hi4 -11□

Claims (1)

【特許請求の範囲】 1、物体側よp +1ftに、正屈折力の第ルンズ群、
負屈折力の第2レンズ群、正屈折力の第3レンズ群、正
屈折力の第4レンズ群を有し、該第1、第2、第3レン
ズ群でほぼアフォーカル系を形成するズームレンズにお
いて、近距離物体に合焦する際に、像面に対して前記第
ルンズ群を光軸にそって物体側へ移動させると共に、前
記第2レンズ群と前記第3レンズ群と全一体的に光軸に
そって像側へ移動させることを特徴とする広画角を含む
ズームレンズ。 2、特許請求の範囲第1項記載のズームレンズにおいて
、合焦のための前記第ルンズ群の移動tks、前記第2
レンズ群と前記第3レンズ群との一体的移動量を△Tと
するとき、0、IS≦△T≦0.3 5 8 の条件を満足すること全特徴とするズームレン(1) ズ。
[Claims] 1. A lens group with positive refractive power at p+1 ft from the object side;
A zoom that has a second lens group with negative refractive power, a third lens group with positive refractive power, and a fourth lens group with positive refractive power, and in which the first, second, and third lens groups form an almost afocal system. In the lens, when focusing on a short-distance object, the lens group is moved toward the object side along the optical axis with respect to the image plane, and the lens group is completely integrated with the second lens group and the third lens group. A zoom lens with a wide angle of view that moves along the optical axis toward the image side. 2. In the zoom lens according to claim 1, the movement tks of the second lens group for focusing,
A zoom lens (1), which satisfies the following conditions: 0, IS≦△T≦0.358, where △T is the amount of integral movement between the lens group and the third lens group.
JP58122857A 1983-07-06 1983-07-06 Zoom lens including wide view angle Granted JPS6014214A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58122857A JPS6014214A (en) 1983-07-06 1983-07-06 Zoom lens including wide view angle
US06/626,989 US4632519A (en) 1983-07-06 1984-07-02 Zoom lens including a wide angle of view

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122857A JPS6014214A (en) 1983-07-06 1983-07-06 Zoom lens including wide view angle

Publications (2)

Publication Number Publication Date
JPS6014214A true JPS6014214A (en) 1985-01-24
JPH0430564B2 JPH0430564B2 (en) 1992-05-22

Family

ID=14846356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122857A Granted JPS6014214A (en) 1983-07-06 1983-07-06 Zoom lens including wide view angle

Country Status (1)

Country Link
JP (1) JPS6014214A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260210A (en) * 1985-05-15 1986-11-18 Olympus Optical Co Ltd Zoom lens
US4942197A (en) * 1987-05-28 1990-07-17 Toyo Tire & Rubber Co., Ltd. Rubber composition for tire tread
JPH04158326A (en) * 1990-10-22 1992-06-01 Canon Inc Zoom lens
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
US5859729A (en) * 1996-01-06 1999-01-12 Canon Kabushiki Kaisha Zoom lens device with four lens unit
JPWO2015040867A1 (en) * 2013-09-20 2017-03-02 パナソニックIpマネジメント株式会社 Imaging optical system
JPWO2016194111A1 (en) * 2015-06-01 2018-03-22 オリンパス株式会社 Single focus optical system and optical apparatus including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188243A (en) * 1974-12-20 1976-08-02
JPS5382434A (en) * 1976-12-28 1978-07-20 Seiko Epson Corp Surface covered plastic spectacle lens
JPS55140810A (en) * 1979-04-20 1980-11-04 Canon Inc Telephoto lens
JPS5866908A (en) * 1981-10-16 1983-04-21 Canon Inc Compact telephoto zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188243A (en) * 1974-12-20 1976-08-02
JPS5382434A (en) * 1976-12-28 1978-07-20 Seiko Epson Corp Surface covered plastic spectacle lens
JPS55140810A (en) * 1979-04-20 1980-11-04 Canon Inc Telephoto lens
JPS5866908A (en) * 1981-10-16 1983-04-21 Canon Inc Compact telephoto zoom lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260210A (en) * 1985-05-15 1986-11-18 Olympus Optical Co Ltd Zoom lens
US4942197A (en) * 1987-05-28 1990-07-17 Toyo Tire & Rubber Co., Ltd. Rubber composition for tire tread
JPH04158326A (en) * 1990-10-22 1992-06-01 Canon Inc Zoom lens
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
US5859729A (en) * 1996-01-06 1999-01-12 Canon Kabushiki Kaisha Zoom lens device with four lens unit
JPWO2015040867A1 (en) * 2013-09-20 2017-03-02 パナソニックIpマネジメント株式会社 Imaging optical system
JPWO2016194111A1 (en) * 2015-06-01 2018-03-22 オリンパス株式会社 Single focus optical system and optical apparatus including the same

Also Published As

Publication number Publication date
JPH0430564B2 (en) 1992-05-22

Similar Documents

Publication Publication Date Title
JP3601733B2 (en) High magnification zoom lens
JP2924117B2 (en) Zoom lens
JPS5832684B2 (en) Wide-angle zoom lens system with high magnification
JPH0777656A (en) Zoom lens
JPH0119126B2 (en)
US4266860A (en) Wide angle zoom lens system having shortened closeup focal length
JP3811311B2 (en) Camera with zoom lens system
JPH06235858A (en) High performance photographic lens
JP3412908B2 (en) Zoom lens
JPH07140388A (en) Zoom lens
JPH0320735B2 (en)
JPS6119967B2 (en)
JPH0123763B2 (en)
JPH05107477A (en) Telescoping zoom lens constructed with five groups of lenses
JPH0414763B2 (en)
JPS6014214A (en) Zoom lens including wide view angle
JPH08220439A (en) Zoom lens
JPS6148686B2 (en)
JPH0640170B2 (en) High-magnification wide-angle zoom lens
JPH07261084A (en) Zoom lens
JPH08110470A (en) Wide angle zoom lens
JPH05224123A (en) Telephoto zoom lens
JPH03136014A (en) Telephoto zoom lens
JPH0281015A (en) Telephoto lens capable of short-distance photographing
JPH08278446A (en) Zoom lens