JPS6014185A - Range finder - Google Patents

Range finder

Info

Publication number
JPS6014185A
JPS6014185A JP12210383A JP12210383A JPS6014185A JP S6014185 A JPS6014185 A JP S6014185A JP 12210383 A JP12210383 A JP 12210383A JP 12210383 A JP12210383 A JP 12210383A JP S6014185 A JPS6014185 A JP S6014185A
Authority
JP
Japan
Prior art keywords
antenna
monopulse
distance
difference
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12210383A
Other languages
Japanese (ja)
Inventor
Nobuo Kumagai
熊谷 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12210383A priority Critical patent/JPS6014185A/en
Publication of JPS6014185A publication Critical patent/JPS6014185A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To make measurement of a short range possible by utilizing the secondary phase error which is generated on the aperture face of an antenna when a reflected signal from a target is received at a short range. CONSTITUTION:A range finder is constituted of a transmitter 1, transmitting antenna 14, monopulse antenna 5, phase detector 15, and an indicator 13, etc. A contitnuous or pulsed transmission radio wave 2 which is oscillated by the transmitter 1 and is radiated from the transmitting antenna 14 strikes a target object 3 and is reflected, and the secondary phase error corresponding to the distance from the target object 3 is generated on the aperture face of the monopulse antenna 5 by a reflected radio wave 4. This secondary phase error is detected as a phase difference between a monopulse summed up signal 6 and a difference signal 7 by the phase detector 15, and this detected phase difference is converted to information of range and is displayed on the indicator 13.

Description

【発明の詳細な説明】 この発明は、マイクロ波、ミリ波帯などの電波を用いて
、目標までの距離を測定する測距装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distance measuring device that measures the distance to a target using radio waves such as microwaves and millimeter wave bands.

従来電波を用いた測距装置には、電波をパルス状に目標
に向けて発射し、その反射信号を受信し、パルスの時間
遅れを測定することにより、距離をめるものが一般的で
あった。
Conventional ranging devices that use radio waves generally measure the distance by emitting pulsed radio waves toward a target, receiving the reflected signal, and measuring the time delay of the pulses. Ta.

まず従来の測距装置の構成例を第1図に示す。第1図に
おいて、(1)は送信機、(2)は送信電波2(3)は
目標物、(4)は目標からの反射電波、(5)はモノパ
ルスアンテナ、(6)は和信号、(7)は差信号、(8
)は送受切換器、(9)は和信号受信機、01は差信号
受信機、(lυは距離検知器、 a’aは誤差角検知器
、0:lは指示器である。
First, an example of the configuration of a conventional distance measuring device is shown in FIG. In Figure 1, (1) is the transmitter, (2) is the transmitted radio wave, (3) is the target, (4) is the reflected radio wave from the target, (5) is the monopulse antenna, (6) is the sum signal, (7) is the difference signal, (8
) is a transmission/reception switch, (9) is a sum signal receiver, 01 is a difference signal receiver, (lυ is a distance detector, a'a is an error angle detector, and 0:l is an indicator.

さて上記従来の動作を説明すると、モノパルスアンテナ
(5)から送信されたパルス状の送信電波(2)は目標
物(3)に当って反射され、その反射電波(4)はモノ
パルスアンテナ(5)へ入射する。ここで出力された和
信号(6)と差信号(力はそれぞれ受信機+9)、 0
1を経て、距離検知器aυ、誤差角検知器02に入シ、
そこで距離情報、角度情報に変換され指示器(13に出
力される。
Now, to explain the above-mentioned conventional operation, the pulse-shaped transmission radio wave (2) transmitted from the monopulse antenna (5) hits the target object (3) and is reflected, and the reflected radio wave (4) is transmitted to the monopulse antenna (5). incident on the The sum signal (6) and difference signal (the power is each receiver +9) output here, 0
1, enters the distance detector aυ and error angle detector 02,
There, it is converted into distance information and angle information and output to the indicator (13).

しかし上置従来の測距装置では数mのいわゆる短い距v
jaの測定を行う場合、パルスの時間遅れの量は、数1
1廐となってしまい、またパルス幅も同じく故旧■以下
にしなければならない。
However, with conventional distance measuring devices mounted on top, the so-called short distance v of several meters
When measuring ja, the amount of pulse time delay is given by the equation 1
The pulse width must also be less than the previous value.

このメζめ装置の実現が困難で7 また精度良く測定で
きなかった。
It was difficult to realize this measuring device, and accurate measurements were not possible.

この発明は、このような欠点を除去するために目標から
の反射信号を近距離で受信した場合に、アンテナ開口面
上に生じる二次位相誤差を利用しで距離を測定するもの
である。
In order to eliminate such drawbacks, the present invention measures distance by utilizing the secondary phase error that occurs on the antenna aperture when a reflected signal from a target is received at a short distance.

さらに詳述するならば、遅配1’l[jでの受信アンテ
ナの開口面一ヒの一次位相誤差は、距離が短かくなるに
つれて大きくなる・一方受信アンテナをモノパルスアン
テナとした場合には、モノパルスの和信号と差44号の
間の位相差は、アンテナ開口面上の二次位相誤差と比例
関係+cあり。
To be more specific, the first-order phase error of the aperture of the receiving antenna at delay 1'l[j increases as the distance becomes shorter.On the other hand, when the receiving antenna is a monopulse antenna, the monopulse The phase difference between the sum signal and the difference No. 44 has a proportional relationship +c with the secondary phase error on the antenna aperture surface.

二次位相誤差が大きくなるにつりして、和信号と差1ぽ
号の間の位相差も大きくなる。したがって、この第11
 (ft号と差信号の間の位相差を検出することにより
、近距離の受信アンテナから目標までの距離を測定する
ことができる。
As the secondary phase error increases, the phase difference between the sum signal and the difference 1po signal also increases. Therefore, this eleventh
(By detecting the phase difference between the ft signal and the difference signal, the distance from the nearby receiving antenna to the target can be measured.

第2図、第3図はモノパルスアンテナの放射パターンの
計算例であり、 (a)、 (b)はそれぞれ据幅1位
相パターンをあられす。なおこのときのアンテナ直径は
400層1周波数は10 GH7である。図中θはアン
テナボアサイトからパターンの観測方向までの角度2人
は振幅比、ψは位相をあられす。また図中の実線は和信
号、破線は差信号にそれぞれ対応する放射パターンをあ
らゎす。さらに第2図は観測距離は無限遠、第3図は同
じく観測距離を2mとした場合に対応するθが正となる
差パターンのピーク方向を00とすると00方向の和信
号と差信号の位相差は第2図、第3図から分かる通り、
観測距離を無限遠、2mとしたとき、それぞれ90’、
75°となる。
Figures 2 and 3 are examples of calculating the radiation pattern of a monopulse antenna, and (a) and (b) each show a phase pattern with a fixed width of 1. Note that the antenna diameter at this time is 400 layers and one frequency is 10 GH7. In the figure, θ is the angle from the antenna boresight to the observation direction of the pattern. 2 is the amplitude ratio, and ψ is the phase. Further, the solid lines in the figure represent the radiation patterns corresponding to the sum signal, and the broken lines represent the radiation patterns corresponding to the difference signal. Further, in Figure 2, the observation distance is infinite, and in Figure 3, the observation distance is 2 m.If the peak direction of the difference pattern where θ is positive is 00, then the positions of the sum signal and difference signal in the 00 direction. As can be seen from Figures 2 and 3, the phase difference is
When the observation distance is set to infinity and 2m, respectively, 90',
It becomes 75°.

つぎに観測距離を4m以内のいわゆる近距離で変化させ
た場合のモノパルスアンテナ開口面上の二次位相誤差及
びモノパルス和、差信号間の位相差の変化延ついて説明
する。
Next, a description will be given of changes in the second-order phase error on the monopulse antenna aperture plane, the monopulse sum, and the phase difference between the difference signals when the observation distance is changed at a so-called short distance of 4 m or less.

第4図は、距離をパラメータにした場合のアンテナ開口
面上の二次位相誤差を示す。図中。
FIG. 4 shows the quadratic phase error on the antenna aperture plane when distance is used as a parameter. In the figure.

几は観測距離、rはアンテナ開口上の位置をあられし、
アンテナ開口中心を0としている。またφSはアンテナ
開口面上の位相誤差をあらゎす第5図はアンテナ開口面
上の二次位相誤差の最大値とモノパルス和、差信号間の
位相差を示す。図中φ8MAXはアンテナ開口面上の二
次位相誤差の最大値、Φは和、差信号間の位相差の90
’からのずれ量をあられす。これよりψSとのが比例関
係にあることが分かる。
几 is the observation distance, r is the position above the antenna aperture,
The center of the antenna aperture is set to 0. Further, φS represents the phase error on the antenna aperture plane. FIG. 5 shows the maximum value of the secondary phase error on the antenna aperture plane, the monopulse sum, and the phase difference between the difference signals. In the figure, φ8MAX is the maximum value of the secondary phase error on the antenna aperture plane, Φ is the sum, and 90° is the phase difference between the difference signals.
'Raise the amount of deviation from '. From this, it can be seen that there is a proportional relationship with ψS.

第6図に第4図、第5図の結果を整理して。Figure 6 summarizes the results of Figures 4 and 5.

観測距離とモノパルス和、差信号間の位相差の90°か
らのずれ量との関係を示す。
The relationship between observation distance, monopulse sum, and the amount of deviation from 90° of the phase difference between the difference signals is shown.

図中、Rは観測距離、Φは和と差の信号間の位相差の9
06からのずれ量をあらゎす0これから和と差の信号間
の位相差を検知することにより、距1〈IEを測定でき
ることが分かる。
In the figure, R is the observation distance, and Φ is the phase difference between the sum and difference signals.
It can be seen that the distance 1<IE can be measured by detecting the phase difference between the sum and difference signals from 0, which represents the amount of deviation from 06.

第7図にこの発明による測距装置の構成例を示す0図中
Iは送信アンテナ、α暖は位相検知器、μQはモノパル
スアンテナのボアライトである。他は第1図の番号と同
一品名をあらtフす。
FIG. 7 shows an example of the configuration of a distance measuring device according to the present invention. In the figure, I is a transmitting antenna, α is a phase detector, and μQ is a bore light of a monopulse antenna. The other product names are the same as the numbers in Figure 1.

第7図について以下にその働きを説明する。The function of FIG. 7 will be explained below.

送信器n)で発振し、送信アンテナ側から放射された連
続波あるいはパルス波の送信電波(2)は目標物(3)
に当って反射される。その目標からの反射電波(4)に
より受信アンテナであるモノパルスアンテナ(5)の開
口面上に、目標物(3)との距離に対応して二次位相誤
差が生じる。その二次位相誤差をモノパルス和信号(6
)、差信号(7)の間の位相差として位相検知器a場で
検知する。この検知された位相差を距離の情報に変換し
、指示器0に表示する。
The continuous wave or pulse wave transmitted radio waves (2) oscillated by the transmitter n) and radiated from the transmitting antenna are the target (3).
It hits and is reflected. The reflected radio waves (4) from the target cause a second-order phase error on the aperture surface of the monopulse antenna (5), which is a receiving antenna, in accordance with the distance to the target (3). The second-order phase error is converted into a monopulse sum signal (6
) and the difference signal (7) is detected by the phase detector a field. This detected phase difference is converted into distance information and displayed on indicator 0.

なお以上は送受信アンテナを共用しない場合について説
明したが、第1図と同様に送受切換器を追加することに
よりアンテナを送受で共用することもできる。
Although the case where the transmitting/receiving antenna is not shared has been described above, it is also possible to share the antenna for transmitting and receiving by adding a transmitting/receiving switch as in FIG.

以上のようにこの発明の測距装置は、アンテすの開口面
上の二次位相誤差に対応したモノパルスアンテナの和、
差信号間の位相差を検知することにより、従来電波を用
いた徂1距装置では困MCとされていた短い距離の測定
を可能にしまたものである。
As described above, the distance measuring device of the present invention has the following features:
By detecting the phase difference between the difference signals, it is possible to measure short distances, which was difficult to do with conventional single-range devices using radio waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電波を用いた測距装置の構成例を示す図
、第2図、第3図は観測距離をそれぞれ無限遠、2mと
した場合の放射パターンを示す図、第4図は観測距離と
アンテナ開口面上の二次位相誤差を示す図、第5図は二
次位相誤差の最大f11とモノパルス和、差信号間の位
相差の90°からのずれ量を示す図、第6図は第4図、
第5図を整理して観測距離とモノパルス和。 差信号間の位相差の90’からのずれ量の間係を示す図
、第7図しtこの発明による装置の構成例である。図中
(1)は送信器、(2)は送信電波、(3)は目標物、
(4)は反射電波、(5)はモノパルスアンテナ、(6
)は4]】信号、(7)は差信号、(8)は送受切換器
、(9)は和信号受信機、 Qlは差信号受信機、aυ
は距離検知器、(1のは誤差角検知器、α冴は指示器。 04は送信アンテナ、θ9は位相検知器、(IQはモノ
パルスアンテナのボアサイトである。 なお図中同一あるいは相当部分には同一符号を付して示
しである。 代理人 大 岩 増 雄 第2図(11) θO 竺 21万′(b) θ0 第 3 図(α) 第4図 第5図
Figure 1 is a diagram showing an example of the configuration of a conventional distance measuring device using radio waves, Figures 2 and 3 are diagrams showing radiation patterns when the observation distance is set to infinity and 2 m, respectively. A diagram showing the observation distance and the secondary phase error on the antenna aperture plane. Figure 5 is a diagram showing the maximum secondary phase error f11, the monopulse sum, and the amount of deviation from 90° of the phase difference between the difference signals. The figure is Figure 4,
Figure 5 is organized to show observation distance and monopulse sum. FIG. 7 is a diagram showing the relationship between the amount of deviation of the phase difference between difference signals from 90', and is an example of the configuration of an apparatus according to the present invention. In the figure, (1) is the transmitter, (2) is the transmitted radio wave, (3) is the target,
(4) is a reflected radio wave, (5) is a monopulse antenna, (6
) is the 4] signal, (7) is the difference signal, (8) is the transmitter/receiver switch, (9) is the sum signal receiver, Ql is the difference signal receiver, aυ
is the distance detector, (1 is the error angle detector, α is the indicator, 04 is the transmitting antenna, θ9 is the phase detector, (IQ is the boresight of the monopulse antenna. Note that the same or equivalent parts in the figure are indicated with the same reference numerals. Agent Masuo Oiwa Figure 2 (11) θO Figure 210,000' (b) θ0 Figure 3 (α) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 送信機と、この送信機の出力を目標方向へ送信する送信
アンテナと、目標からの反射波を受信スルモノパルスア
ンテナと、このモノパルスアンテナにより受信された目
標からの反射波を導入し、上記目標と上記モノパルスア
ンテナ間の距cart:に応じて、前記アンテナの開口
面上に生じる二次位相誤差をそれと比例関係にある上記
モノパルスアンテナに生じる和信号、差信号間の位相差
により検知する位相検知器と、上記位相検知器により検
知された位相差に応じて目標すでの距1’!ICを表示
する指示器とを具備し、上記位相検知器で検知された二
次位相誤差を用いて目標までの距n[「を測定すること
を特徴とする測距装置。
A transmitter, a transmitting antenna that transmits the output of this transmitter in the target direction, a monopulse antenna that receives reflected waves from the target, and a reflected wave from the target that is received by this monopulse antenna are introduced. A phase detector that detects a quadratic phase error occurring on the aperture surface of the antenna according to the distance cart: between the monopulse antennas using a phase difference between a sum signal and a difference signal occurring in the monopulse antenna in a proportional relationship thereto. Then, the target distance is already 1'! according to the phase difference detected by the phase detector. and an indicator that displays an IC, and measures a distance n[' to a target using the secondary phase error detected by the phase detector.
JP12210383A 1983-07-05 1983-07-05 Range finder Pending JPS6014185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12210383A JPS6014185A (en) 1983-07-05 1983-07-05 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12210383A JPS6014185A (en) 1983-07-05 1983-07-05 Range finder

Publications (1)

Publication Number Publication Date
JPS6014185A true JPS6014185A (en) 1985-01-24

Family

ID=14827713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12210383A Pending JPS6014185A (en) 1983-07-05 1983-07-05 Range finder

Country Status (1)

Country Link
JP (1) JPS6014185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106936A (en) * 1984-10-30 1986-05-24 Honda Motor Co Ltd Method for controlling fuel supply in cranking of internal-combustion engine
JPH04132442U (en) * 1991-05-24 1992-12-08 小松ゼノア株式会社 engine starting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106936A (en) * 1984-10-30 1986-05-24 Honda Motor Co Ltd Method for controlling fuel supply in cranking of internal-combustion engine
JPH04132442U (en) * 1991-05-24 1992-12-08 小松ゼノア株式会社 engine starting device

Similar Documents

Publication Publication Date Title
CN106707291B (en) Double-frequency linear frequency modulation coherent wind lidar
JP2688289B2 (en) Radar distance measuring device
US3487462A (en) Bistatic radar configuration not requiring reference-data transmission
US5345243A (en) Continuous-wave reflection transmissometer with target discrimination using modulated targets
US3790278A (en) Peaked power coherent pulsed laser transmitter/receiver system
US4435712A (en) FM-CW Radar ranging system with signal drift compensation
US3898653A (en) Automotive radar sensor
US7961139B2 (en) Digital beam forming using frequency-modulated signals
US4567484A (en) Doppler radar measuring apparatus
US4306236A (en) Ranging radar including a modulating reflector
JPS6014185A (en) Range finder
US5812091A (en) Radio interferometric antenna for angle coding
RU54679U1 (en) RADAR STATION
Reinhardt et al. Remote measurement of particle streams with a multistatic dual frequency millimeter wave radar sensor
JP3112746B2 (en) Radio wave environment measurement device
US3024456A (en) Composite instrument
US3197775A (en) Doppler tracking system with real time presentation of missile trajectory deviation
CN113075657B (en) Method and device for testing height of scattering source
JP5781346B2 (en) Radar equipment
JPH0215038B2 (en)
US3723870A (en) Device for measurement of pulse-to-pulse carrier frequency shift
US3081455A (en) Continuous wave moving target information radar system
JP2000098025A (en) Distance calibrating method and device for ranging radar and distance calibrating antenna used for the device
CN113258998B (en) Optical link delay rapid measuring device based on optical mixing and delay quantization
RU2124221C1 (en) Radar station