JPS6014096B2 - High tensile strength steel with excellent delayed fracture resistance - Google Patents

High tensile strength steel with excellent delayed fracture resistance

Info

Publication number
JPS6014096B2
JPS6014096B2 JP6409881A JP6409881A JPS6014096B2 JP S6014096 B2 JPS6014096 B2 JP S6014096B2 JP 6409881 A JP6409881 A JP 6409881A JP 6409881 A JP6409881 A JP 6409881A JP S6014096 B2 JPS6014096 B2 JP S6014096B2
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
strength
tensile strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6409881A
Other languages
Japanese (ja)
Other versions
JPS57181366A (en
Inventor
福和 中里
政司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6409881A priority Critical patent/JPS6014096B2/en
Publication of JPS57181366A publication Critical patent/JPS57181366A/en
Publication of JPS6014096B2 publication Critical patent/JPS6014096B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度と、すぐれた耐遅れ破壊性を有し、
例えば高力ボルト用として最適な高張力鋼に関するもの
である。 近年、構造物の大型化にともない高張力鋼板の強度に対
する要求が高まつてきているが、それにともなって、そ
の締結臭としての例えば高張ボルトにも益々高強度化の
きざしが見受けられ、さらに、自動車や建設機械等にお
ける軽量化傾向も、より強力なボルト類の必要性に一層
拍車をかける要素となってきている。 従来、このような要求にこたえるための高力ボルト用鋼
としては、例えば、JIS・G4105(1979)の
SCM435たる0.35%C−1.0%Cて一0.2
%Mo鋼や、同じくJIS・G4103(1979)の
SNCM431たる0.31%C−1.8%Ni−0.
8%Cr−0.2%Mo鋼、あるいは0.2%C−0.
8%Cr−0.002%B鋼(JIS規格なし)のよう
なボロン鋼等の、嫌入焼戻された低合金鋼が使用されて
いた。 しかし、これらの低合金鋼を高力ボルトとして用いた場
合、特に引張強さが125kgf/側2 を越えるもの
は、使用中に遅れ破壊を生じるという問題点があった。 このような問題のために、JIS・BI186(197
9)の「摩擦接合用高力六角ボルト、六角ナット、平座
金のセット」においては、高力ボルト用の区分として、
F8T(引張強さ:80〜100k9f/側2 )、F
IOT(引張強さ:100〜120kgf/柳2)、お
よびFlIT(引張強さ:110〜130k9f/側2
)の3種類が規定されているものの、FlITは括弧付
で“なるべく使用しないこと”とされている。一方、1
8%Niマルェーンジング鋼(18%Ni−7.5%C
o−5%Mo−0.5%Ti−0.1%Aそ鋼)は、通
常の低合金鋼よりも耐遅れ破壊性がすぐれており、引張
強さ150
This invention has high strength and excellent delayed fracture resistance,
For example, it relates to high-strength steel that is optimal for high-strength bolts. In recent years, with the increase in the size of structures, the demand for the strength of high-tensile steel plates has increased, and along with this, there are signs that the strength of high-tensile bolts, such as high-strength bolts, is becoming increasingly stronger. The trend toward weight reduction in automobiles, construction machinery, etc. is also a factor that is further accelerating the need for stronger bolts. Conventionally, the steel for high-strength bolts that meets these demands has been, for example, JIS G4105 (1979) SCM435, 0.35%C-1.0%C-0.2.
%Mo steel and 0.31%C-1.8%Ni-0.SNCM431 of JIS G4103 (1979).
8%Cr-0.2%Mo steel or 0.2%C-0.
A low-alloy steel that has been tempered in a negative manner has been used, such as boron steel such as 8% Cr-0.002% B steel (no JIS standard). However, when these low-alloy steels are used as high-strength bolts, especially those with a tensile strength exceeding 125 kgf/side 2, there is a problem that delayed fracture occurs during use. For such problems, JIS/BI186 (197
In 9) "Set of high-strength hexagonal bolts, hexagonal nuts, and flat washers for friction bonding", the classification for high-strength bolts is as follows:
F8T (Tensile strength: 80-100k9f/side 2), F
IOT (tensile strength: 100-120kgf/willow 2), and FlIT (tensile strength: 110-130k9f/side 2)
) are stipulated, but FlIT is stated in parentheses that it should not be used as much as possible. On the other hand, 1
8%Ni maraging steel (18%Ni-7.5%C
o-5%Mo-0.5%Ti-0.1%A steel) has superior delayed fracture resistance than ordinary low alloy steel, and has a tensile strength of 150

【91/肋2程度まで使用できるが、これは
極めて高価な鋼であり、一般の±木津築用高力ボルトや
機械構造用高力ボルト(自動車や建設機械等)として使
用することのできないものであった。 本発明者等は、上述のような観点から、125k9f/
協以上の引張強さを有しているとともに、耐遅れ破壊性
が従釆の低合金鋼よりもすぐれており、かつ、安価で実
用的な高張力材料を得るべく研究を行なった結果、以下
aおよびbに示すような知見を得たのである。 a 遅れ破壊は、静荷重下におけれた鋼がある時間経過
後、突然脆性的に彼断する現象であり、外部環境から鋼
中に侵入した水素による一種の水素脆性とされているも
のであるが、鋼中に逆変態オーステナィトが存在すると
、外部環境から鋼中に侵入する水素がオーステナィト相
にトラップされて、このために遅れ破壊が生じにくくな
ること。 b 特に、特定成分の、0.2%C−9%Ni−2%M
o系鋼を油焼入れ等によって急冷した後、特定の温度範
囲で暁戻すと、鋼は、Mo等による析出強化がなされる
とともに、熱的に安定な逆変態オーステナィトを10〜
2咳容量%の割合で生じ、引張強さが125k9f/肋
2以上で、かつ耐遅れ破壊性のすぐれた高張力鋼材とな
ること。 したがって、この発明は上記知見にもとづいてなされた
もので、高張力鋼を、重量%で、C:0.15〜0.2
5%、 Si:0.5%以下、 Mn:0.5〜0.9%、 Ni:8.0〜10.0%、 Mo:1.0〜2.5%、 Feおよび不可避不純物:残り、 の成分組成で構成するか、あるいはさらに、V:0.1
0〜0.25%、を含有せしめて構成するとともに、そ
の組織を焼民マルテンサィトと逆変態オーステナィトの
2相組織として、125k9f/側2以上の引張強ごと
、すぐれた耐遅れ破壊性を付与せしめたことに特徴を有
するものである。 ついで、この発明の耐遅れ破壊性のすぐれた高張力鋼に
おいて、C,Si,Mn,Ni,MoおよびV成分の成
分組成範囲、ならぴに熱処理条件を上述のように限定し
た理由を説明する。{a】C C成分には、鋼に必要な強度を付与する作用があるが、
その含有量が0.15重量%禾満では前記作用に所望の
効果が得られず、一方0.25重量%を越えて含有させ
ると、他の合金元素との関連で耐遅れ破壊性を損ない、
かつ轍性をも劣化するようになることから、その含有量
を0.15〜0.25重量%と限定した。 ‘b’Si Si成分は、鋼の脱酸のために必要な元素であるが、0
.5重量%を越えて含有させると腕化が著しくなるので
、その含有量を0.5重量%以下と限定した。 ‘c’ Mn Mn成分は、鋼の脱酸および脱硫に必要な元素であり、
その含有物が0.5重量%未満では脱酸・脱硫作用に所
望の効果が得られず、一方、0.9重量%を越えて含有
させると鋼の加工性を劣化させるようになることから、
その含有量を0.5〜0.9重量%と限定した。 風 Ni Ni成分は、鋼のオーステナィト安定化に有効な元素で
あり、A,点やA3点はいずれもNiの増量とともに低
下する。 そして、本発明高張力鋼の構成成分であるMoやVの析
出強化が利用できる暁戻温度範囲で、熱的に安定なオー
ステナィトを生成せしめるためには8.の雲量%以上の
Ni成分が必要であるが、10.の重量%を越えて含有
させると鋼の強度の低下が著しくなることから、その含
有量を8.0〜10.の重量%と限定した。‘e} M
o Mo成分は、析出硬化により鋼の強度を上昇させる作用
を有しているが、その含有量が1.の重量%未満では前
記作用に所望の効果が得られず、一方2.5重量%を越
えて含有せしめても含有量の増加による強度上昇が少な
く、経済性を損なうようになることから、その含有量を
1.0〜2.5重量%と限定した。 ‘O V V成分には、Mo成分と同様に析出強化のために有効な
作用があるので、より高強度が要求される場合に必要に
応じて含有されるが、その含有量が0.1重量%未満で
は前記作用に所望の効果が発揮されず、一方0.25重
量%を越えて含有させると鋼の轍性が劣化するようにな
ることから、その含有量を0.1〜0.25重量%と限
定した。 なお、この発明に係る2相組織高張力鋼を製造するには
、前記成分組成に調整した鋼を急冷しマルテンサィト組
織にした後、570〜62500の比較的狭い温度範囲
内で暁戻すことは重要なことである。つまり、570〜
62yoの間で焼戻すことにより、MoやVによる析出
強化を利用し、かつ熱的に安定な逆変態オーステナィト
を10〜2庇容量%の.割合で生ぜしめることが可能と
なるのである。570oo未満の暁房温度では充分な析
出強化が得られず、また逆変態オーステナィト量も少な
く、強度、耐遅れ破壊性のいずれも良好でない。 一方、焼房温度が62500を越えると、焼戻し中に生
じる逆変態オーステナィトが熱的に不安定となり、焼戻
し後の冷却で再びマルテンサィト化するため、鞠性およ
び耐遅れ破壊性が劣化する。つぎに、この発明を実施例
により比較例と対比しながら説明する。 実施例 まず、第1表に示す成分組成をもった本発明鋼A〜G、
比較鋼H〜L{構成成分のうち、いずれかの成分含有量
(第1表には※印で表示)がこの発明の範囲から外れた
もの}、および従来鋼M〜○をそれぞれ溶製し、ついで
熱間鍛造により直径が22肋の榛鋼にした。 その後、袷間鍛造および冷間転造によってM22ボルト
に成形した後、本発明鋼A〜Gおよび比較鋼H〜Lにつ
いては、温度:950ooに30分保持後油焼入れの焼
入れ処理と、550℃、575q0、600q0、62
5o0、および65000のそれぞれの温度に1時間保
持後油冷の焼戻し処理からなる熱処理を施し、また従来
鋼MおよびN‘こついては、温度:850q0に30分
保持後油焼入れの焼入れ処理と、425℃および500
ooの温度にそれぞれ1時間保持後油冷の焼戻し処理か
らなる熱処理を、さらに従来鋼0については、温度:9
0000に30分保持後水焼入れの焼入れ処理と、32
500および3760の温度のそれぞれ1時間保持後油
冷の焼戻し処理からなる熱処理をそれぞれ施し、これら
のボルト船船から、平行部8.5肌ぐの引張試験片を切
出し、常温で引張式験を行なった。 また、各鋼種、各熱処理条件について、20本ずつのボ
ルトを50肌厚の欧鋼板に導入軸力30トン(続付引張
応力100k9f/柵2)で締付けた。 そしてこの綿付体を工業地帯自然大気中に曝露し、8年
間観測を続けて遅れ破壊による破断の有無を調べた。こ
のようにして調べた引張強さと破断本数もまとめて第1
表に示した。第1表からは、本発明で規定した成分組成
通りの鋼A〜Gのすべてのものにおいて引張強ごが12
5k9f/側2以上となっており、しかも570〜62
5o0で競戻したもの(焼房マルテンサィトと逆変態オ
ーステナイトの2相組織鋼となっていることが確認され
た)は遅れ破壊による被断本数が0であることが明白で
あり、特に、引張強さが150kgf/側2 レベルの
ものでも遅れ破壊を生じておらず、強度および耐遅れ破
壊性のバランスが極めて良好な高力ボルト用に最適の高
張力鋼が得られることがわかる。
[91/ Up to about 2 ribs can be used, but this is extremely expensive steel and cannot be used as general high-strength bolts for Kizu construction or high-strength bolts for machine structures (automobiles, construction machinery, etc.) Met. From the above-mentioned viewpoint, the present inventors have developed the 125k9f/125k9f/
As a result of our research to obtain a low-cost, practical high-tensile strength material that has a tensile strength higher than that of 100%, has superior delayed fracture resistance than conventional low-alloy steels, and has developed the following materials: The findings shown in a and b were obtained. a Delayed fracture is a phenomenon in which steel suddenly breaks brittlely after a certain period of time under static load, and is considered to be a type of hydrogen embrittlement caused by hydrogen penetrating into the steel from the external environment. However, when reverse-transformed austenite exists in steel, hydrogen that enters the steel from the external environment is trapped in the austenite phase, making delayed fracture less likely to occur. b In particular, specific components: 0.2%C-9%Ni-2%M
When o-series steel is rapidly cooled by oil quenching or the like and then brought back to temperature within a specific temperature range, the steel is precipitation-strengthened by Mo, etc. and has thermally stable reverse-transformed austenite.
2% by volume, has a tensile strength of 125k9f/2 or more, and is a high-tensile steel material with excellent delayed fracture resistance. Therefore, this invention was made based on the above knowledge, and the present invention was made based on the above-mentioned knowledge.
5%, Si: 0.5% or less, Mn: 0.5 to 0.9%, Ni: 8.0 to 10.0%, Mo: 1.0 to 2.5%, Fe and inevitable impurities: remainder , or further, V: 0.1
0 to 0.25%, and its structure is a two-phase structure of fired martensite and reverse transformed austenite, providing excellent delayed fracture resistance with a tensile strength of 125k9f/side 2 or more. It has certain characteristics. Next, the reason why the heat treatment conditions are limited to the composition ranges of the C, Si, Mn, Ni, Mo, and V components and the heat treatment conditions as described above in the high-strength steel with excellent delayed fracture resistance of the present invention will be explained. . {a]CC The C component has the effect of imparting the necessary strength to steel,
If the content is less than 0.15% by weight, the desired effect cannot be obtained, while if the content exceeds 0.25% by weight, the delayed fracture resistance will be impaired in relation to other alloying elements. ,
Moreover, since it also deteriorates the rutting property, its content was limited to 0.15 to 0.25% by weight. 'b'Si Si component is an element necessary for deoxidizing steel, but 0
.. If the content exceeds 5% by weight, arm formation becomes significant, so the content was limited to 0.5% by weight or less. 'c' Mn Mn component is an element necessary for deoxidizing and desulfurizing steel,
If the content is less than 0.5% by weight, the desired deoxidizing and desulfurizing effects cannot be obtained, while if the content exceeds 0.9% by weight, the workability of the steel will deteriorate. ,
Its content was limited to 0.5 to 0.9% by weight. Wind Ni The Ni component is an effective element for stabilizing austenite in steel, and both the A and A3 points decrease as the amount of Ni increases. 8. In order to generate thermally stable austenite in the dawn return temperature range where the precipitation strengthening of Mo and V, which are the constituent components of the high-strength steel of the present invention, can be utilized. It is necessary to have a Ni component of cloud amount % or more, but 10. If the content exceeds 8.0 to 10% by weight, the strength of the steel will decrease significantly. % by weight. 'e} M
o The Mo component has the effect of increasing the strength of steel through precipitation hardening, but if its content is 1. If the content is less than 2.5% by weight, the desired effect cannot be obtained, and on the other hand, even if the content exceeds 2.5% by weight, the increase in strength due to the increase in content is small, which impairs economic efficiency. The content was limited to 1.0 to 2.5% by weight. 'O V V component, like the Mo component, has an effective effect on precipitation strengthening, so it is included as necessary when higher strength is required, but if the content is 0.1 If the content is less than 0.25% by weight, the desired effect will not be exhibited, while if the content exceeds 0.25% by weight, the rutting properties of the steel will deteriorate. It was limited to 25% by weight. In addition, in order to produce the dual-phase structure high-strength steel according to the present invention, the steel adjusted to the above-mentioned composition must be rapidly cooled to form a martensitic structure, and then returned to temperature within a relatively narrow temperature range of 570 to 62,500°C. It's important. In other words, 570~
By tempering between 62yo and 62yo, precipitation strengthening by Mo and V is utilized, and thermally stable reverse-transformed austenite is produced with a volume of 10 to 2% by volume. It becomes possible to produce it in proportion. At a morning temperature of less than 570 oo, sufficient precipitation strengthening cannot be obtained, the amount of reversely transformed austenite is small, and both strength and delayed fracture resistance are poor. On the other hand, if the oven temperature exceeds 62,500, the reversely transformed austenite produced during tempering becomes thermally unstable and becomes martensitic again upon cooling after tempering, resulting in poor ballability and delayed fracture resistance. Next, the present invention will be explained using examples and comparing with comparative examples. Examples First, steels A to G of the present invention having the compositions shown in Table 1,
Comparative steels H to L {those whose component content (indicated with * in Table 1) is out of the scope of the present invention} and conventional steels M to ○ were melt-produced, respectively. Then, by hot forging, it was made into steel with a diameter of 22 ribs. Thereafter, after forming into M22 bolts by forging and cold rolling, the steels A to G of the present invention and the comparative steels H to L were held at a temperature of 950 oo for 30 minutes and then subjected to oil quenching treatment and quenching at 550°C. , 575q0, 600q0, 62
Heat treatment consisting of oil quenching and tempering after holding at temperatures of 5o0 and 65,000 for 1 hour, and conventional steels M and N', holding at a temperature of 850q0 for 30 minutes, followed by oil quenching, and 425 °C and 500
Heat treatment consisting of oil cooling tempering treatment after holding at temperature oo for 1 hour, and further for conventional steel 0, temperature: 9
After holding at 0000 for 30 minutes, water quenching treatment and 32
After being held at temperatures of 500 and 3760 degrees Celsius for 1 hour, heat treatment consisting of oil-cooling tempering treatment was performed, and tensile test specimens with a parallel section length of 8.5 mm were cut from these bolt vessels and subjected to a tensile test at room temperature. I did it. Furthermore, for each steel type and each heat treatment condition, 20 bolts were tightened to a European steel plate with a skin thickness of 50 tons with an introduced axial force of 30 tons (continuing tensile stress of 100 k9f/fence 2). The cotton-covered body was then exposed to the natural atmosphere in an industrial area, and observations were continued for 8 years to determine whether or not there was rupture due to delayed fracture. The tensile strength and number of fractures investigated in this way are also summarized in
Shown in the table. From Table 1, the tensile strength of all steels A to G having the composition specified in the present invention is 12.
5k9f/side 2 or more, and 570-62
It is clear that the number of broken pieces due to delayed fracture is 0 for the steel that was returned at 5o0 (it was confirmed that the steel had a two-phase structure of fired martensite and reversely transformed austenite). Even when the strength is at the 150 kgf/side 2 level, no delayed fracture occurs, indicating that a high tensile strength steel optimal for high strength bolts with an extremely good balance between strength and delayed fracture resistance can be obtained.

Claims (1)

【特許請求の範囲】 1 C:0.15%〜0.25%、 Si:0.5%以下、 Mn:0.5〜0.9%、 Ni:8.0〜10.0%、 Mo:1.0〜2.5%、 Feおよび不可避不純物:残り、 (以上重量%)からなる組成を有するとともに、焼戻マ
ルテンサイトと逆変態オーステナイトの2相組織を有し
ていることを特徴とする耐遅れ破壊性のすぐれた高張力
鋼。 2 C:0.15%〜0.25%、 Si:0.5%以下、 Mn:0.5〜0.9%、 Ni:8.0〜10.0%、 Mo:1.0〜2.5%、 V:0.10〜0.25%、 Feおよび不可避不純物:残り、 (以上重量%)からなる組成を有するとともに、焼戻マ
ルテンサイトと逆変態オーステナイトの2相組織を有し
ていることを特徴とする耐遅れ破壊性のすぐれた高張力
鋼。
[Claims] 1 C: 0.15% to 0.25%, Si: 0.5% or less, Mn: 0.5 to 0.9%, Ni: 8.0 to 10.0%, Mo : 1.0 to 2.5%, Fe and unavoidable impurities: (more than % by weight), and has a two-phase structure of tempered martensite and reverse transformed austenite. High tensile strength steel with excellent delayed fracture resistance. 2C: 0.15% to 0.25%, Si: 0.5% or less, Mn: 0.5 to 0.9%, Ni: 8.0 to 10.0%, Mo: 1.0 to 2 .5%, V: 0.10 to 0.25%, Fe and unavoidable impurities: the remainder (more than % by weight), and has a two-phase structure of tempered martensite and reverse transformed austenite. High tensile strength steel with excellent delayed fracture resistance.
JP6409881A 1981-04-30 1981-04-30 High tensile strength steel with excellent delayed fracture resistance Expired JPS6014096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6409881A JPS6014096B2 (en) 1981-04-30 1981-04-30 High tensile strength steel with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6409881A JPS6014096B2 (en) 1981-04-30 1981-04-30 High tensile strength steel with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JPS57181366A JPS57181366A (en) 1982-11-08
JPS6014096B2 true JPS6014096B2 (en) 1985-04-11

Family

ID=13248254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6409881A Expired JPS6014096B2 (en) 1981-04-30 1981-04-30 High tensile strength steel with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPS6014096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662954A (en) * 2020-12-18 2021-04-16 上海交通大学 Precipitation strengthening low-temperature steel and heat treatment process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925548B2 (en) * 2011-07-19 2016-05-25 濱中ナット株式会社 Method for manufacturing screw rebar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662954A (en) * 2020-12-18 2021-04-16 上海交通大学 Precipitation strengthening low-temperature steel and heat treatment process thereof

Also Published As

Publication number Publication date
JPS57181366A (en) 1982-11-08

Similar Documents

Publication Publication Date Title
US5591391A (en) High chromium ferritic heat-resistant steel
EP0691416B1 (en) Heat resisting steels
CN111945063B (en) Steel for high-strength corrosion-resistant fastener for ocean wind power and production method
JPS6036649A (en) Precipitation hardening martensitic stainless steel with superior toughness
US3726723A (en) Hot-rolled low alloy steels
JPH0545660B2 (en)
US3278298A (en) Chromium-nickel-aluminum steel and method
JP3546421B2 (en) High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel
JPS6318038A (en) Low-alloy steel excellent in creep resistance and hydrogen attack-resisting characteristic
US3132938A (en) Aged steel
US3389991A (en) Stainless steel and method
EP0998591B1 (en) Linepipe and structural steel produced by high speed continuous casting
JPS6014096B2 (en) High tensile strength steel with excellent delayed fracture resistance
US2986463A (en) High strength heat resistant alloy steel
US3373015A (en) Stainless steel and product
JP3281685B2 (en) Hot bolt material for steam turbine
JPH0468374B2 (en)
JP3397508B2 (en) Heat resistant steel
JPH04120249A (en) Martensitic stainless steel and its production
JPS596358A (en) High strength bolt
JPH1136043A (en) Steel for high temperature-high pressure vessel excellent in creep embrittlement resistance and reheat cracking resistance
JP3338241B2 (en) Cr-Mo steel with excellent hardenability
US3170824A (en) Iron alloy
JPS63206449A (en) Low-carbon steel for cold forging
JPS61223155A (en) Highly corrosion resistant ni-base alloy and its manufacture