JPS60140110A - Method and apparatus for measuring normal line direction of surface of object - Google Patents

Method and apparatus for measuring normal line direction of surface of object

Info

Publication number
JPS60140110A
JPS60140110A JP24513783A JP24513783A JPS60140110A JP S60140110 A JPS60140110 A JP S60140110A JP 24513783 A JP24513783 A JP 24513783A JP 24513783 A JP24513783 A JP 24513783A JP S60140110 A JPS60140110 A JP S60140110A
Authority
JP
Japan
Prior art keywords
force detection
component force
measured
glove
detection probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24513783A
Other languages
Japanese (ja)
Other versions
JPH0352809B2 (en
Inventor
Yoshihide Nishida
好秀 西田
Yoji Hirata
平田 洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24513783A priority Critical patent/JPS60140110A/en
Publication of JPS60140110A publication Critical patent/JPS60140110A/en
Publication of JPH0352809B2 publication Critical patent/JPH0352809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure a normal line at the contact point of a three-component force detection probe and an object to be measured, by calculating the repulsive force direction generated when the three-component force detection probe is pressed to the object to be measured. CONSTITUTION:A three-component force detection probe 1 capable of detecting forces in directions (x), (y), (z) is pressed to an object 2 to be measured. A positional determination apparatus 3 changes the positions of the three-component force detection probe 1 in directions (x), (y), (z) and the posture thereof around a y-axis. The three-component force detection probe 1 consists of a base 4, a leaf spring 5, an elastomer 6 and a probe needle 7 and two strain gauges 8 are adhered to the leaf spring 5 so as to make the centers thereof symmetric. Further, two strain gauges 9 are adhered to the elastomer 6 at a part becoming thin in an x-direction while two strain gauges 10 are adhered at a part becoming thin in a y-direction. By connecting strain gauges 8-10 to a bridge circuit, components in directions (z), (x), (y) acting on the probe needle 7 can be indenpendently detected by the strain gauges 8-10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、被測定物表面の法線方向の渾1定方法及び装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method and apparatus for determining the edge of a surface of an object to be measured in a normal direction.

〔従来技術〕[Prior art]

従来は、たとえば被醇1定物との当接を検出するタッチ
プローブと、このタッチプローブを移動する位置決め装
置とから成る6次元測定装着があった。この6次元間1
定装置は、位置決め装置によりタッチグローブを被邸1
定物に接触させ、接触時のイXT if?決め装Jfj
の移動距離から予め決められた座棒糸における接触点の
座標を検出するものである。
Conventionally, there has been a six-dimensional measuring device consisting of, for example, a touch probe that detects contact with a fixed object and a positioning device that moves the touch probe. Between these six dimensions 1
The positioning device uses the positioning device to position the touch glove at the position 1.
If it is in contact with a fixed object, the temperature at the time of contact is XT. Decisive Jfj
The coordinates of a contact point on a predetermined seat rod thread are detected from the moving distance.

したかつて、被測定物の任意の測定点における法線方向
を測定するには、測定点近傍の少なくとも6点の座標を
6111定して計算を行なう必要があシ、座標測定時の
誤差と計算時の誤差が累積され、高精度の測定ができな
いという欠点があった。
In the past, in order to measure the normal direction at any measurement point of the object to be measured, it was necessary to determine and calculate the coordinates of at least six points near the measurement point, which caused errors during coordinate measurement and calculation. This method has the disadvantage that time errors accumulate and highly accurate measurements cannot be made.

〔発明の概要〕[Summary of the invention]

本発明は、上記のような欠点を解決するためになされた
もので、6分力検出グローブを被測定物に押し付けたと
きに生ずる反力方向から、6分力検出グローブと被測定
物との接触点における法線を高精度に測定することので
きる物体表面の法線方向の測定方法及びその装置を提供
するものである。
The present invention was made in order to solve the above-mentioned drawbacks, and it is possible to detect the relationship between the six-component force detecting glove and the measured object from the direction of the reaction force generated when the six-component force detecting glove is pressed against the measured object. The present invention provides a method and apparatus for measuring the normal direction of an object surface, which can measure the normal line at a contact point with high precision.

第1図は6分力検出プローブ(1)が被測定物(2)に
接触したときに生ずる力の状態を6分力検出グローブ(
11を基準とした直交座標系X+y+・2上で示した説
明図である。6分力検出グローブ(1)に作用する力を
検出しながら、6分力検出グローブ(1)を2軸方向へ
移動させて被測定物(2)に接触させ、6分力検出グロ
ーブf11に作用するXe )’+ Z軸方向の力xl
 l 3’I r zl のいずれかが所定の値以上に
達したところで、2軸方向への移動を停止する。接触点
での面の法線方向が2軸方向tzければ、6分力検出プ
ローブ(1)には法線方向抗力N と摩擦力Faとの合
力FMが作用する。3分力検出プローブi11に作用1
する力FstJ:、接触点での面の法線方向ベクトルと
X、y平面とのなす角θ2が90・−〇。
Figure 1 shows the state of the force generated when the 6-component force detection probe (1) contacts the object to be measured (2).
11 is an explanatory diagram shown on an orthogonal coordinate system X+y+·2 with reference to FIG. While detecting the force acting on the 6-component force detection glove (1), move the 6-component force detection glove (1) in two axial directions and bring it into contact with the object to be measured (2). Acting Xe)'+ Force xl in Z-axis direction
When either of l 3'I r zl reaches a predetermined value or more, movement in the two axis directions is stopped. If the normal direction of the surface at the contact point is the biaxial direction tz, then the resultant force FM of the normal direction resistance N and the frictional force Fa acts on the six-component force detection probe (1). 3-component force detection probe i11 acts 1
Force FstJ: The angle θ2 between the normal direction vector of the surface at the point of contact and the X, y plane is 90·-〇.

〉θf190u−θ2≦θfの場合によって異なる。〉θf190u−θ2≦θf.

ここでθfは摩擦角であシ、6分力検出プローブ(1)
と被測定物(2)との間の摩擦係数がμであれば、−〇
Here, θf is the friction angle, 6 component force detection probe (1)
If the coefficient of friction between and the object to be measured (2) is μ, -〇.

=μであるo9U−−θ2〉θfの場合6分力検出グロ
ーブ(11に作用する力F+の各方向の成分!++y1
+Zlは次式で与えられる。
=μ o9U−−θ2>If θf, the 6-component force detection glove (components in each direction of the force F+ acting on 11!++y1
+Zl is given by the following formula.

一方、900−θ、≦θfの場合、6分力検出10−ブ
r11に作用する力Fl の各方向の成分xt l y
+ FZlは、次式で与えられる。
On the other hand, in the case of 900-θ, ≦θf, the components in each direction of the force Fl acting on the 6-component force detection 10-bra r11
+FZl is given by the following formula.

各方向の成分xi l )’I * ZIは、次式で与
えられる。
The component xi l )'I*ZI in each direction is given by the following equation.

しlこがって、6分力検出グローブfi+に作用する力
F1 (D X * ’i方向成分より、90°−02
〉θf190°−θ2≦θfの状態が明確に判別できる
The force F1 acting on the 6-component force detection glove fi+ (D
The state of 〉θf190°−θ2≦θf can be clearly determined.

9o・−〇、〉θfの場合には、前記の2軸方向からの
接触動作に次いで、−θt=”/xlで与えられるθ1
の方向へ6分力検出グローブ(1)を移動し、6分力検
出グローブ(1)に力が作用しないところで停止した後
、θ1の逆方向へ移動し、6分力検出プローブfllに
作用する法線方向の力Nと摩擦力2、のいずれかが所定
の値以上に達したところで移動を停止する。この時点で
、6分力検出グローブ(1)に作用する力F2の各方向
の成分X2+y1+Z2は次式で与えられる。
In the case of 9o.
Move the 6-component force detection glove (1) in the direction of , stop where no force acts on the 6-component force detection glove (1), then move in the opposite direction of θ1 and act on the 6-component force detection probe fll. The movement is stopped when either the force N in the normal direction or the friction force 2 reaches a predetermined value or more. At this point, the component X2+y1+Z2 in each direction of the force F2 acting on the six-component force detection glove (1) is given by the following equation.

前記2回の接触動作によシ得られた力X1+)’ItZ
1+ Xzt Vmr ZI から、接触点での面の法
線ペクトルt=邸θ!・邸θ11十邸θ3拳幽θ1ノ十
内θ!にのXt y。
The force obtained by the above two contact operations X1+)'ItZ
From 1+ - Residence θ11 ten residence θ3 fist Yu θ1 no juuchai θ! Xt y.

2方向の成分は、次式で与えられる。ここでiTL k
はそれぞれX、y、z方向の単位ベクトルを示している
The components in two directions are given by the following equation. iTL k here
represent unit vectors in the X, y, and z directions, respectively.

一方、90°−θ2≦θfの場合は、3分力検出グロー
ブ(1)を接触点のまわりに、2軸に対して摩擦角θf
の2倍より大きい角度θ0傾ける。6分力検出グローブ
(11を傾けたときの、6分力検出プローブ(11を基
準にとった直交座標系を)C’ Hy’ + Z’とす
れば z/軸方向に6分力検出グローブ(1)を後退さ
せた彼、X’、 7’、 Z’ 座標系において90°
−θ2〉θf の場合と同様に2回の接触動作を行なう
ことにより、X’r V’r Z’座標系での法線ベク
トルが得られ、この法線ベクトルをX+ ylz、Pl
;を壁糸に変換すれは、x、y、z座標系での法線ベク
トルが祷られる。たとえば、第2図に示すようにy軸方
向の1わりに、6分力検出グローブ(1)を角度00回
転したときの、6分力検出グローブ(1)を基準とした
座標系x′、y′、z′において得られた法線方向ベク
トルの成分がtx’ + ty’ + tz’であれば
、x、y、z座標系での法線ベクトルは次式で変換され
る。
On the other hand, in the case of 90°-θ2≦θf, the 3-component force detection glove (1) is placed around the contact point at a friction angle θf with respect to the two axes.
Tilt at an angle θ0 that is greater than twice the angle. 6-component force detection probe (when 11 is tilted, the 6-component force detection probe (orthogonal coordinate system based on 11) is C'Hy' + Z', 6-component force detection glove in the z/axis direction He who retreated (1), 90° in the X', 7', Z' coordinate system
By performing two contact operations in the same way as in the case of −θ2>θf, the normal vector in the X'r V'r Z' coordinate system is obtained, and this normal vector is expressed as X+ ylz, Pl
To convert ; into a wall thread, the normal vector in the x, y, z coordinate system is determined. For example, as shown in Figure 2, when the 6-component force-detecting glove (1) is rotated by 00 degrees in the y-axis direction, the coordinate system x', y is based on the 6-component force-detecting glove (1). If the component of the normal direction vector obtained at ', z' is tx' + ty' + tz', the normal vector in the x, y, z coordinate system is transformed by the following equation.

1=(axfjO−Ax’ +dnθo−1Z’)i 
+ty’j + (axθot/。
1=(axfjO-Ax'+dnθo-1Z')i
+ty'j + (axθot/.

−自θ、−1÷)k ・・・■ このようにして6分力検出グローブ(1)を皺曲1定物
(2)に接触させたときのx、y、z軸方向の力・より
被rA++定物表面の法線方向が得られる。
-Auto θ, -1÷)k ...■ In this way, the force in the x, y, and z axis directions when the 6-component force detection glove (1) is brought into contact with the wrinkle 1 constant object (2) From this, the normal direction of the surface of the rA++ constant object can be obtained.

第6図は本発明に係る物体表面の法線方向の測定装置の
機構部の全体構成を示した斜視図である。
FIG. 6 is a perspective view showing the overall structure of the mechanism of the device for measuring the normal direction of the surface of an object according to the present invention.

(2)は被fAII定物、fllijx、7+ Z方向
のカを検出できる6分力検出プローブ、(3)は先端に
取付けられた3分力検出グローブ(1)のX+ 3’+
 Z方向の位置とy軸まわシの姿勢を変える4自由度の
位置決め装置である。
(2) is the fAII constant object, flijx, 7+ 6-component force detection probe that can detect the force in the Z direction, (3) is the 3-component force detection probe (1) attached to the tip of the X+ 3'+
It is a positioning device with four degrees of freedom that changes the position in the Z direction and the orientation in the Y axis.

第4図は6分力検出グローブ(1)の実施例を示す斜視
図である。(4)はベース、(5)はベース(4)に両
端が固定された板バネ、+61は板バネ(4)の中央部
に同定され、X、X方向にそれぞれ2ケlりrづつ薄肉
部を有する;It性体、(7)は先端が球状に形成され
後端が弾性体(6)に固定された触針である。+81、
(91、(In)Id歪ゲージで、板バネ(5)には歪
ゲージ(8)が中央を対称に2個貼りつけている。また
弾性体(6)にはX方向に薄くなっている部分に歪ゲー
ジ(9)が2個貼りつけられており、X方向に薄くなっ
ている部分に歪ゲージ0(2)が2個貼9つけられてい
る。板バネ(5)及び弾性体(6)に、上記のように歪
ゲージ(8)〜ααを貼りつけ、後述のように歪ゲージ
(8)〜0υをブリッジ回路に結線することKよって、
触針(7)に作用する力の2方向成分を歪ゲージ(81
、x方向成分を歪ゲージf91、X方向成分を歪ゲージ
Unによってそれぞれ独立して検出することができる。
FIG. 4 is a perspective view showing an embodiment of the six-component force detection glove (1). (4) is the base, (5) is a leaf spring with both ends fixed to the base (4), +61 is identified at the center of the leaf spring (4), and has a thinner wall of 2 kels in each of the X and X directions. (7) is a stylus having a spherical tip and a rear end fixed to the elastic body (6). +81,
(91, (In) Id strain gauge. Two strain gauges (8) are attached to the leaf spring (5) symmetrically around the center. Also, the elastic body (6) has a thinner strain gauge in the X direction. Two strain gauges (9) are attached to the part, and two strain gauges 0 (2) are attached to the thinner part in the X direction.The leaf spring (5) and the elastic body ( 6), attach the strain gauges (8) to αα as described above, and connect the strain gauges (8) to 0υ to the bridge circuit as described later.
The two-directional components of the force acting on the stylus (7) are measured using a strain gauge (81).
, the x-direction component can be detected independently by the strain gauge f91, and the X-direction component can be detected independently by the strain gauge Un.

第5図は制御装置の一例を示すブロック図で、制御装置
矯(1υは6分力検出グローブ(1)からの出力を処理
する6分力検出回路+12と、位置決め装置jB +2
1を制御する位置決め装置制御回路(131と、マイク
ロコンピュータ(14Jとからなっている。6分力検出
回路(13は歪ゲージ(8)〜(I[11ごとにそれぞ
れ歪ゲージ出力信号処理回路(19〜(]ηを備えてい
る。たとえば、処理回路(19では、2個の歪ゲージ(
8)と2個の固定抵抗(tSで構成されたブリッジ回路
がストレインアンプ111によって印加され、このブリ
ッジの出力信号はストレインアンプ(11で増幅され、
直流信号として出力される。他の歪ゲージ出力信号処理
回路(1→、(Inも同様に直流信号を出力する。ただ
し、歪ゲージ出力信号処理回路f1511cおけるブリ
ッジ回路は、歪ゲージ(8)が貼り付けである板バネ(
5)に作用する2方向の力だけを取シ出すために、2個
の歪ゲージ(8)が対向するようVcll成し、歪ゲー
ジ出力信号処理回路+161.1171におけるブリッ
ジ回路は、弾性体(6)に作用するX、X方向の力を取
り出すためにそれぞれ2個の歪ゲージf91、(IIが
隣接するように構成されている。ゲージ出力処理回路a
S+〜(171からの直流信号はサンプルホールド回路
;刻に大刀され、マルチプレクサQυを介してA/D変
換回路+2(9でデジタル信号化された後、マイクロコ
ンピュータ+141に取り込まれる。位置決め装装置制
御回路(1濁は、6分力検出グローブf’l lの位置
と姿勢を変える位置決め装置の4個のアクチェータ駆動
回路(2ト@からなり、それぞれアクチェータ(2η〜
(至)をマイクロコンピュータ(141から出力される
指令に従って駆動する。
FIG. 5 is a block diagram showing an example of a control device, where 1υ is a six-component force detection circuit +12 that processes the output from the six-component force detection glove (1), and a positioning device jB +2.
It consists of a positioning device control circuit (131) that controls the positioning device control circuit (131) and a microcomputer (14J).The six-component force detection circuit (13 is a strain gauge output signal processing circuit (13) for each strain gauge (8) to (I[11) For example, the processing circuit (19 includes two strain gauges ()).
8) and two fixed resistors (tS) is applied by a strain amplifier 111, and the output signal of this bridge is amplified by the strain amplifier (11).
Output as a DC signal. Other strain gauge output signal processing circuits (1→, (In) also output DC signals in the same way. However, the bridge circuit in the strain gauge output signal processing circuit f1511c is connected to the plate spring (
In order to extract only the forces in two directions acting on the strain gauges (8), Vcll is formed so that the two strain gauges (8) face each other, and the bridge circuit in the strain gauge output signal processing circuit +161. 6) In order to take out the forces in the X and X directions that act on the
The DC signal from S+~(171 is sampled and held by the sample hold circuit; it is converted into a digital signal by the A/D conversion circuit +2 (9) via the multiplexer Qυ, and then taken into the microcomputer +141. Positioning device control Circuit (1) consists of 4 actuator drive circuits (2 t@) of the positioning device that changes the position and attitude of the 6-component force detection glove f'l l, each of which has an actuator (2η~
(to) is driven according to instructions output from the microcomputer (141).

上記のように構成した本発明に係る物体表面の法線方向
測定装置の動作を第6図、第7図(a)〜(f)で駅、
明する。第6図は3分力検出グローブ(夏)が接触して
いる面とX−y平面のなす角度が摩擦角より大きい場合
における、6分力検出プローブ(1)の先端の動作を、
法線ベクトルを含みx−y平面に垂ICな平面上で示し
ている。第7図は3分力検出プローブ(1)が接触して
いる面とx−y平面のなす角度が摩擦角より小ざい場合
における6分力検出プローブ(1)の動作をX −Z平
面上で示している。
The operation of the device for measuring the normal direction of an object surface according to the present invention configured as described above is shown in FIGS. 6 and 7(a) to (f).
I will clarify. Figure 6 shows the movement of the tip of the 6-component force detection probe (1) when the angle between the surface in contact with the 3-component force detection glove (summer) and the X-y plane is larger than the friction angle.
It is shown on a plane that includes the normal vector and is perpendicular to the x-y plane. Figure 7 shows the operation of the 6-component force detection probe (1) on the X-Z plane when the angle between the surface in contact with the 3-component force detection probe (1) and the x-y plane is smaller than the friction angle. It is shown in

6分力検出グローブ(1)を位置決め装置(3)によシ
2軸方向に移動させるとともに、逐次6分力検出プロー
ブ(1)からの出力を制御装置θDへ取込む。6分力検
出プローブ(11が被測定物(2)に接触し、6分力検
出グローブ(1)に作用するXs)’yZ軸方向のいず
れかが01定の値以上になったところで、z軸方向への
移動を停止する。この時点での6分力検出プローブ(1
)に作用するx、y、z軸方向の力x1t yI+’ 
zl ヲマイクロコンピュータIに記憶シておく。
The six-component force detection glove (1) is moved in two axial directions by the positioning device (3), and the output from the six-component force detection probe (1) is sequentially input to the control device θD. When either of the 6-component force detection probe (11 contacts the object to be measured (2) and the 6-component force detection glove (1) in the Stop axial movement. At this point, the 6-component force detection probe (1
) in the x, y, and z axis directions x1t yI+'
zl Store it in the microcomputer I.

次にxl l ylのいずれかが零でないならば、マイ
クロコンピュータ(141によシーθ1=y/x1で与
えられるθ1を計算し、位置決め装置(3)によシロ分
力検出プローブ(1)を01の方向へ後退させ、6分力
検出グローブ(1)に作用する力が零になったところで
後退を停止した後、再び逆方向へ移動させ、6分力検出
プa−プt1+に作用するX * yt Z刺1方向の
力” l yt l zlのいずれかが所定の値以上に
なったところで、移動を停止する。”I l 7t+ 
zt l xfi7z*Zt よシマイクロコンピュー
タ(14)で法線方向を計算することに、よ勺、物体表
面の法線方向を得ることができる。
Next, if any of xl, l, yl is not zero, the microcomputer (141) calculates θ1 given by the equation θ1=y/x1, and the positioning device (3) detects the force component (1). 01 direction and stop the retreat when the force acting on the 6-component force detection glove (1) becomes zero, then move it in the opposite direction again and act on the 6-component force detection globe (a-t1+). When any of the forces in one direction of the Z sting (X * yt, Z prick, yt, l, zl) reaches a predetermined value or more, the movement is stopped."I l 7t+
zt l xfi7z*Zt By calculating the normal direction using the microcomputer (14), the normal direction of the object surface can be obtained.

一方、XI l ytがともに零であれは、位置決め装
置(3)によシロ分力検出グローブ(J)の先端の球の
中心まわりに摩擦角の2倍以上の角度回転させる。
On the other hand, if XI lyt are both zero, the positioning device (3) rotates the tip of the white component force detection glove (J) around the center of the sphere by an angle that is more than twice the friction angle.

6分力検出プローブ(1)を回転したときの6分力検出
プローブ(1)を基準にとった座標系をX’+ y’+
 Z’とすれは、次に位置決め装置N f31により6
分力検出グローブ(1)を2′方向へ後退させ、6分力
検出グローブ(1)に力が作用しなくなるところで停止
した後 z/力方向′s、動じ6分力検出グローブに作
用する力Xs+ yi+ zlのいずれかが所定の値を
越えたところで移動を停止し、xS、y3.zlをマイ
クロコンピュータ(]4J VC96憶する。次にマイ
クロコンピュータ(141によt) tmol = y
Vz、で与えられる0重を計qし、位置決め装置(3)
により6分力検出プローブfi1を0重の方向へ後退さ
せ、6分力検出グローブ(11に作用する力が零になっ
たところで後退を停止した後再ひ逆方向へ移動させ、6
分力検出プローブ(11に作用するx、y、z軸方向の
力X4+y4+ z4のいずれかが所定の値以上になっ
たところで移動を停止する。xl 1 y8 r zs
 + X41 y4 +z4 よシマイクロコンピュー
タ1t(lでX’ Hy’ * Z’座標系での法線方
向を計算した後、5分力検出プローブ(1)を傾けた角
度の分を補正すれば物体表面の法線方向を得ることがで
きる。
The coordinate system based on the 6-component force detection probe (1) when the 6-component force detection probe (1) is rotated is X'+ y'+
Next, positioning device N f31 moves Z' and
After moving the component force detection glove (1) backward in the 2' direction and stopping when the force no longer acts on the 6 component force detection glove (1), z/force direction's, the force acting on the 6 component force detection glove moves. Movement is stopped when any of Xs+yi+zl exceeds a predetermined value, and xS, y3. Store zl in the microcomputer (]4J VC96. Next, store zl in the microcomputer (141) tmol = y
Measure the zero weight given by Vz, and use the positioning device (3)
The 6-component force detection probe fi1 is moved backward in the direction of zero force, and when the force acting on the 6-component force detection probe (11) becomes zero, the retreat is stopped and then moved in the opposite direction again.
Movement is stopped when any of the forces in the x, y, and z axis directions, X4+y4+z4, acting on component force detection probe (11) exceeds a predetermined value.xl 1 y8 r zs
+ The normal direction of the surface can be obtained.

第8図は本発明の他の実施例を示す説明図で、他の用途
への転用例を示している。この実施例では物体表面測定
装置において、5分力検出グローブfllをy軸まわす
に姿勢を変えられる。位置決め装置としているが、6分
力検出グローブ(11をX−y平面に対して傾けられる
ものであれば同様の効果が得られる。
FIG. 8 is an explanatory diagram showing another embodiment of the present invention, and shows an example of application to other uses. In this embodiment, in the object surface measuring device, the posture of the five-component force detection glove flll can be changed by rotating it on the y-axis. Although it is used as a positioning device, the same effect can be obtained as long as the six-component force detection glove (11 can be tilted with respect to the X-y plane).

以上の説明では6分力検出グローブが被測定物KW触し
たときに生じる力の方向から物体表面の法線方向を測定
する場合を示したが、本発明の物体表面の法線方向測定
装置fは高精度の3次元物体形状測定装置としても用い
ることができる。通常の3次元物体形状測定装置では、
位置決め装置の先に取付けたタッチプローブが被測定物
に接触したときのタッチプローブのx * y r z
 amをめる動作を多数点打なって被測定物の形状を測
定していたため、狽11定点間の補間の際の誤差とタッ
チプローブ先端の大きさによる実際の接触点と油1定し
た接触点との位置の誤差が避られない。しかしながら本
発明のように接触点での法線方向がわかれば、6I11
定点間を補間するときの情報量がふえ、補間の精度を上
げることができる。また、X軸と角バしθrなす斜面と
先端が半径rの球になっている6分力検出プローブとを
2次元で示した第8図のように、、法線方向より球の接
触位置がわかるため、正確に#湘1定物上の接触点の位
置を測定できる。したがって、本発明によれば、6次元
物体の形状測定を高N度に測定することが口J能である
In the above explanation, the normal direction of the object surface is measured from the direction of the force generated when the six-component force detection glove touches the object KW, but the normal direction measuring device f of the object surface of the present invention has been described. can also be used as a highly accurate three-dimensional object shape measuring device. In a normal 3D object shape measuring device,
x * y r z of the touch probe when the touch probe attached to the tip of the positioning device contacts the object to be measured
Since the shape of the object to be measured was measured by making multiple points in the am closing motion, there was a difference between the actual contact point and the oil constant contact due to errors in interpolation between fixed points and the size of the tip of the touch probe. Errors in position with respect to the points are unavoidable. However, if the normal direction at the contact point is known as in the present invention, 6I11
The amount of information when interpolating between fixed points increases, and the accuracy of interpolation can be improved. Also, as shown in Figure 8, which is a two-dimensional diagram showing the slope that forms an angle θr with the X-axis and the 6-component force detection probe whose tip is a sphere with radius r, the contact position of the sphere from the normal direction. Since this is known, the position of the contact point on the #1 fixed object can be accurately measured. Therefore, according to the present invention, it is possible to measure the shape of a six-dimensional object to a high degree of N.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば祈測定
物の表面上の測定点での法線方向が直接得られ、高精度
の測定が行なえる等の顕著な効果fあげることができる
As is clear from the above explanation, according to the present invention, the normal direction at the measurement point on the surface of the object to be measured can be directly obtained, and remarkable effects such as high precision measurement can be achieved. .

【図面の簡単な説明】[Brief explanation of the drawing]

8P71図は6分力検出プローブが物体表面に接触した
ときの力の状態を示す説明図、第2図は6分力検出プロ
ーブを傾ける場合の力の状態を示す説明図、^36図は
物体表面の法線方向姐1(定装置の機構部を示す斜視図
、第4図は6分力検出プローブを示す斜視図、第5図は
制御回路構成の一例を示すブロック図、第6図、第7図
←)、(hb (Qb (d)j(Q)、 (f)は6
分力検出プローブの動作説明図、第8図は本発明の他の
実施例を示す説明図である。 (1)・・・6分力検出グローブ (2)・・・被測定
物 (3)・・・位置決め装置 (lυ・・・制御装置
。 なお各図中同一符号は同一または相当部分を示すものと
する。 代理人 弁理士 木 村 三 朗 第 5 図 第60 餡7図 (0) (d) 手続袖正書(自発) 昭和59年 6月22日 特許庁長官殿 1、事件の表示 特願昭58−245137号2、発明
の名称 物体表面の法線方向の測定方法及び装置3、油止をする
者 4、代理人 6、 補正の内容 (1)明細書の「特許請求の範囲」を別紙のとおシ補正
する。 (2)明細書第4頁第19行〜第20行の「摩擦力Fa
との合力Ft Jを「摩擦力Faとの合力F1」と補正
する。 (3)明細書第5頁第1行のrFtJを「Fl」と補正
する。 (4)明細書第6頁第8行のrNJをrNJと補正する
。 (5)明細書第10貢第19行の「/D変換回路(イ)
」を「A/D変換回路四」と補正する。 (6)明細書第11貢第2行〜第6行の「位置決め装置
」を「位置決め装置(31」と補正する。 (7)明細書第16庁第10行の「−θt−/XxJを
r tu lls = ”/ Xg J ト補正スル。 (8)図面の第7図を別紙補正図面のとおシ補正する。 以上 特許請求の範囲(補正〕 「(1)作用する力のx、y、z軸方向の力検出をでき
る3分力検出グローブを被測定物表面に押しつけて被渾
1定物表面の法線方向を測定する方法において、 (i)、6分力検出プローブに作用する刀を6111定
しながら5分力検出プローブを2軸方向に移動させ、6
分力検出グローブが被淋1定物に接触して、6分力検出
プローブに作用するx、y、z軸方向の力XI+ yt
+ zlのいずれかが所定の値になると移動を停止する
。 ■、XI・yIがともに零でない場合には、−〇簾−y
ンエ、で与えられる角度01一方向へ6分力検出グロー
ブに作用する力が零になるまで移動した後停止する。次
いで、角度61の逆方向へ移動し、6分力検出グローブ
が被測定物に接触し3分力検出プローブに作用するxl
、 yz+ Zlのいずれかが所定の値になると移動を
停止する。この動作で得られたxl + 71 t z
lとVxr Vxr zm より・被測定物表面の法線
方向は法線方向の単位ベクトル(x+ +xz)/ f
iX1+x2)”+Cyt +yx)”+(z< + 
z、−)i−。 tz=(Z++Zz)/J(穐+Xs)”+(Fs+7
i)” +(zt +zx )” rを得る。 ■、xl + 3’sがともに零の場合には、6分力検
出プローブを被測定物と3分力検出グローブの摩擦角の
2倍以上の角度傾けた後、前記■、■と同様の動作で法
線方向を得、傾けた角度の補正を行なって被測定物表面
の法線方向を得ることを特徴とする物体表面の法線方向
の測定方法。 r21作用する力のXI 7r Z軸方向の成分を、独
立に検出できるように歪ゲージを貼シ付けた6分力検出
グローブと、前記6分力検出プローブを移動させる多自
由度の位置決め装置と、前記6分力装置を制御する制御
装置とを備えたことを特徴とする物体表面の法線方向測
定装置。」 第7 (a) 1 [b) (C) (d) (e)
Figure 8P71 is an explanatory diagram showing the state of force when the 6-component force detection probe contacts the surface of an object, Figure 2 is an explanatory diagram showing the state of force when the 6-component force detection probe is tilted, and Figure 36 is an explanatory diagram showing the state of force when the 6-component force detection probe contacts the object surface. Normal direction of the surface 1 Figure 7←), (hb (Qb (d)j(Q), (f) is 6
FIG. 8, which is an explanatory diagram of the operation of the component force detection probe, is an explanatory diagram showing another embodiment of the present invention. (1)...Six-component force detection glove (2)...Object to be measured (3)...Positioning device (lυ...Control device. The same symbols in each figure indicate the same or equivalent parts. Agent: Patent Attorney Sanro Kimura 5 Figure 60 Figure 7 (0) (d) Procedural Sleeve Letter (spontaneous) June 22, 1980 To the Commissioner of the Japan Patent Office 1, Indication of the case Patent application No. 58-245137 2, Title of the invention: Method and device for measuring the normal direction of the surface of an object 3, Oil stopper 4, Agent 6, Contents of amendment (1) The “claims” of the specification have been changed. (2) “Frictional force Fa” on page 4, lines 19-20 of the specification.
The resultant force FtJ with the frictional force Fa is corrected as "the resultant force F1 with the frictional force Fa." (3) Correct rFtJ in the first line of page 5 of the specification to "Fl". (4) Correct rNJ on page 6, line 8 of the specification to rNJ. (5) "/D conversion circuit (A)" in Part 10, Line 19 of the specification
" is corrected to "A/D conversion circuit 4". (6) “Positioning device” in lines 2 to 6 of the 11th official specification is corrected to “positioning device (31”). (7) “-θt-/XxJ” in line 10 of the 16th office of the specification is corrected. r tu lls = ”/ In the method of measuring the normal direction of the surface of the object to be measured by pressing a 3-component force detection glove capable of detecting force in the z-axis direction against the surface of the object to be measured, (i), a sword acting on the 6-component force detection probe; While keeping 6111 constant, move the 5-component force detection probe in two axial directions, and
When the component force detection glove comes into contact with the fixed object, the force in the x, y, and z axis directions acting on the 6 component force detection probe is XI + yt
+zl reaches a predetermined value, the movement is stopped. ■, If both XI and yI are not zero, -〇blade-y
It moves in one direction until the force acting on the 6-component force detection glove becomes zero, and then stops. Then, moving in the opposite direction of angle 61, the 6-component force detection glove contacts the object to be measured and acts on the 3-component force detection probe xl
, yz+Zl reaches a predetermined value, the movement is stopped. xl + 71 t z obtained by this operation
From l and Vxr Vxr zm - The normal direction of the surface of the object to be measured is the unit vector in the normal direction (x+ +xz)/f
iX1+x2)"+Cyt +yx)"+(z< +
z,-)i-. tz=(Z++Zz)/J(穐+Xs)”+(Fs+7
i) Obtain "+(zt +zx)" r. If ■ and xl + 3's are both zero, tilt the 6-component force detection probe at an angle that is more than twice the friction angle between the object to be measured and the 3-component force detection glove, and then A method for measuring the normal direction of the surface of an object, characterized in that the normal direction is obtained by motion, and the normal direction of the surface of the object is obtained by correcting the tilted angle. r21 A 6-component force detection glove with a strain gauge pasted thereon so as to be able to independently detect the component of the acting force in the XI 7r Z-axis direction, and a multi-degree-of-freedom positioning device for moving the 6-component force detection probe. , and a control device for controlling the six-component force device. ” Section 7 (a) 1 [b) (C) (d) (e)

Claims (2)

【特許請求の範囲】[Claims] (1)作用する力のX、y、Z軸方向の力検出をできる
6分力検出グローブを被測定物表面に押しつけて被測定
物表面の法線方向を測定する方法において、 ■、6分力検出グローブに作用する力を測定しながら6
分力検出グローブを2軸方向に移動させ、6分力検出プ
ローブが被測定物に接触して、6分力検出プローブに作
用するX+ y+ Z軸方向の力X□+)’I+Z1 
のいずれかが所定の値忙なると移動を停止する。 (す、Xly ylがともに零でない場合には、−θ=
”j+7x1で与えられる角度θ方向へ3分力検出グロ
ーブに作用する力が零になるまで移動した後停止する。 次いで、角度θの逆方向へ移動し、6分力検出プローブ
が被測定物に接触し3分力検出グローブに作用するX2
* ’jar zfiのいずれかが所定の値になると移
動を停止する。この動作で得られたXl1yIIz1と
X2+ X2* Z2よシ、被測定物表面の法線方向は
法線方向の単位ベクトル(XI +Na ) / !y
2)”+ (Zl 、+z2 )” 。 tr、 = (Zl +Zfi )/ (X1+X! 
) +()’t+yz)”+(zl+zJ”を得る。 ■、’Xt + 71がともに零の場合には、6分力検
出プローブを被測定物と6分力検出グローブの摩擦角の
2倍以上の角度幼けた後、前記■、■と同様の動作で法
線方向を得、傾けた角度の補正を行なって被測定物表面
の法線方向を得ることを特徴とする物体底面の法線方向
の測定方法。
(1) In the method of measuring the normal direction of the surface of the object to be measured by pressing a 6-component force detection glove capable of detecting the acting force in the X, y, and Z axis directions against the surface of the object to be measured, 6 while measuring the force acting on the force detection glove.
The component force detection globe is moved in two axes, the 6 component force detection probe comes into contact with the object to be measured, and the force acting on the 6 component force detection probe is X+ y+ Force in the Z axis direction
When one of them becomes busy by a predetermined value, it stops moving. (If both Xly and yl are not zero, -θ=
It moves in the direction of the angle θ given by j+7x1 until the force acting on the 3-component force detection glove becomes zero, and then stops.Then, it moves in the opposite direction of the angle θ, and the 6-component force detection probe touches the object to be measured. X2 that contacts and acts on the 3-component force detection glove
*When either 'jar zfi reaches a predetermined value, the movement is stopped. From Xl1yIIz1 and X2+X2*Z2 obtained by this operation, the normal direction of the surface of the object to be measured is the unit vector in the normal direction (XI + Na) /! y
2)"+(Zl,+z2)". tr, = (Zl +Zfi)/ (X1+X!
) +()'t+yz)"+(zl+zJ" is obtained. ■If both 'Xt + 71 are zero, set the 6-component force detection probe at twice the friction angle between the object to be measured and the 6-component force detection glove. After decreasing the above angle, the normal direction is obtained by the same operations as in (1) and (2) above, and the normal direction of the surface of the object to be measured is obtained by correcting the tilted angle.The normal to the bottom surface of the object. How to measure direction.
(2)作用する力のX+ 7r Z軸方向の成分を、独
立に検出できるように歪ゲージを貼p付けた6分力検出
グローブと、前記3分力検出グローブを移動させる多自
由度の位置決め装置と、前記3分力検出グローブの出力
を演算処理し、前記位置決め装置aを制御する制御装置
とを備えたことを特徴とする物体表面の法線方向測定装
置。
(2) Multi-degree-of-freedom positioning for moving the 6-component force detection glove with strain gauges attached so that the X+7r and Z-axis components of the acting force can be detected independently, and the 3-component force detection glove. 1. An apparatus for measuring the normal direction of an object surface, comprising: a control apparatus for calculating the output of the three-component force detection glove and controlling the positioning apparatus a.
JP24513783A 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object Granted JPS60140110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24513783A JPS60140110A (en) 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24513783A JPS60140110A (en) 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object

Publications (2)

Publication Number Publication Date
JPS60140110A true JPS60140110A (en) 1985-07-25
JPH0352809B2 JPH0352809B2 (en) 1991-08-13

Family

ID=17129177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24513783A Granted JPS60140110A (en) 1983-12-28 1983-12-28 Method and apparatus for measuring normal line direction of surface of object

Country Status (1)

Country Link
JP (1) JPS60140110A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286888A (en) * 1989-04-28 1990-11-27 Maezawa Ind Inc Automatic water supply system and device therefor
US5040306A (en) * 1988-02-18 1991-08-20 Renishaw Plc Surface-sensing device
US5152072A (en) * 1988-02-18 1992-10-06 Renishaw Plc Surface-sensing device
US5174039A (en) * 1990-08-17 1992-12-29 Kabushiki Kaisha Toshiba Displacement-measuring apparatus, and static-pressure bearing device for use in the displacement-measuring apparatus
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
US5212646A (en) * 1987-12-19 1993-05-18 Renishaw Plc Method of using a mounting for surface-sensing stylus
EP0617253A2 (en) * 1993-03-20 1994-09-28 Pietzsch Automatisierungstechnik Gmbh Measuring device for determining the cylinder form
EP0730210A1 (en) * 1995-03-03 1996-09-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
JP2008537107A (en) * 2005-03-24 2008-09-11 レニショウ パブリック リミテッド カンパニー Measuring probe
CZ302109B6 (en) * 2006-12-04 2010-10-20 CVUT v Praze - Fakulta strojní CENTRUM AUTOMOBILU A SPALOVACÍCH MOTORU JOSEFA BOŽKA II Multiaxial variable force sensor
NL1037855A (en) * 2009-05-08 2010-11-09 Sios Messtechnik Gmbh DEVICE FOR THE MEASUREMENT OF POWER COMPONENTS.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212646A (en) * 1987-12-19 1993-05-18 Renishaw Plc Method of using a mounting for surface-sensing stylus
US5040306A (en) * 1988-02-18 1991-08-20 Renishaw Plc Surface-sensing device
US5152072A (en) * 1988-02-18 1992-10-06 Renishaw Plc Surface-sensing device
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
JPH02286888A (en) * 1989-04-28 1990-11-27 Maezawa Ind Inc Automatic water supply system and device therefor
US5174039A (en) * 1990-08-17 1992-12-29 Kabushiki Kaisha Toshiba Displacement-measuring apparatus, and static-pressure bearing device for use in the displacement-measuring apparatus
US5611147A (en) * 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
EP0617253A3 (en) * 1993-03-20 1995-06-14 Pietzsch Automatisierungstech Measuring device for determining the cylinder form.
EP0617253A2 (en) * 1993-03-20 1994-09-28 Pietzsch Automatisierungstechnik Gmbh Measuring device for determining the cylinder form
EP0730210A1 (en) * 1995-03-03 1996-09-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
JP2008537107A (en) * 2005-03-24 2008-09-11 レニショウ パブリック リミテッド カンパニー Measuring probe
CZ302109B6 (en) * 2006-12-04 2010-10-20 CVUT v Praze - Fakulta strojní CENTRUM AUTOMOBILU A SPALOVACÍCH MOTORU JOSEFA BOŽKA II Multiaxial variable force sensor
NL1037855A (en) * 2009-05-08 2010-11-09 Sios Messtechnik Gmbh DEVICE FOR THE MEASUREMENT OF POWER COMPONENTS.

Also Published As

Publication number Publication date
JPH0352809B2 (en) 1991-08-13

Similar Documents

Publication Publication Date Title
US4132318A (en) Asymmetric six-degree-of-freedom force-transducer system for a computer-controlled manipulator system
Butler An investigation into theperformance of probes on coordinate measuring machines
JPS60140110A (en) Method and apparatus for measuring normal line direction of surface of object
US3869799A (en) Universal multi-coordinate sensor
Park et al. Development of a coordinate measuring machine (CMM) touch probe using a multi-axis force sensor
US7246448B2 (en) Method for calibrating a probe
EP0423307B1 (en) Position determining apparatus
JPS5973704A (en) Multi-coordinate-sensing head
Takatsuji et al. Restriction on the arrangement of laser trackers in laser trilateration
JP2008281403A (en) Shear force detector and object-holding system
CN110476039B (en) Magnetic device for detecting relative movement or relative position
US5740328A (en) Apparatus for robotic positional referencing and calibration
US9733056B2 (en) Method for compensating lobing behavior of a CMM touch probe
US7142313B2 (en) Interaxis angle correction method
EP1491287B1 (en) Self-centring sensing device
CN111707175B (en) Signal processing circuit, position detection device, and magnetic sensor system
KR850001282B1 (en) Method of making coordinate measurements with movable probe
Buetefisch et al. Novel design for an ultra high precision 3D micro probe for CMM applications
US11092422B2 (en) Measuring apparatus and measuring method
CN115674271A (en) Robot calibration method based on multi-station measurement
Dagalakis et al. Kinematic modeling and analysis of a planar micropositioner
JPS63187101A (en) Touch sensor probe
US4604903A (en) Two-axis, self-nulling skin friction balance
JPH04178509A (en) Measurement method for coordinate measuring machine
JP2579726B2 (en) Contact probe