JPS60139316A - Preparation of gas separating laminated composite membrane - Google Patents

Preparation of gas separating laminated composite membrane

Info

Publication number
JPS60139316A
JPS60139316A JP58245470A JP24547083A JPS60139316A JP S60139316 A JPS60139316 A JP S60139316A JP 58245470 A JP58245470 A JP 58245470A JP 24547083 A JP24547083 A JP 24547083A JP S60139316 A JPS60139316 A JP S60139316A
Authority
JP
Japan
Prior art keywords
composite membrane
gas
membrane
plasma treatment
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58245470A
Other languages
Japanese (ja)
Other versions
JPH0453575B2 (en
Inventor
Kuniyasu Jiyou
邦恭 城
Isamu Sakuma
勇 佐久間
Tokuo Tazaki
田崎 徳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58245470A priority Critical patent/JPS60139316A/en
Publication of JPS60139316A publication Critical patent/JPS60139316A/en
Publication of JPH0453575B2 publication Critical patent/JPH0453575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Abstract

PURPOSE:To obtain a composite membrane excellent in gas permeability and showing no change with the elapse of time in high selectivity of gas, by applying low temp. plasma treatment due to non-polymerizable gas to the surface of a gas separating composite membrane before forming a silicon-containing polymer membrane layer. CONSTITUTION:A gas separating composite membrane is one prepared by forming a membrane layer with a thickness of 0.01-0.5mum comprising a high-molecular substance to a porous support. The high-molecular substance is not especially limited if one having capacity showing membrane forming property upon the reception of plasma action is used. Low temp. plasma treatment is applied to said composite membrane by using non-polymerizable gas such as hydrogen, helium or nitrogen and a silicon-containing polymer layer is formed to the surface thereof. This membrane layer may be formed of a copolymer is polydimethylsiloxane by a known method. The membrane thickness is pref. about 0.01-0.3mum.

Description

【発明の詳細な説明】 〔発明の技術分野) 本発明は、気体分離用積層複合膜の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a laminated composite membrane for gas separation.

〔従来技術〕[Prior art]

従来、気体透過性に優れ、かつ気体の高選択性を備えた
気体分離用複合膜を得る方法として、気体分離用複合膜
の表面に非重合性ガスで低温プラズマ処理を施す方法が
知られていた。
Conventionally, a method for obtaining a gas separation composite membrane with excellent gas permeability and high gas selectivity has been known, in which the surface of the gas separation composite membrane is subjected to low-temperature plasma treatment with a non-polymerizable gas. Ta.

しかしながら、かかる方法によって得られた気体分離用
複合膜は、気体の選択性が経時的に著しく低下していく
という欠点があった。
However, the composite membrane for gas separation obtained by such a method has the drawback that the gas selectivity decreases significantly over time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点のないもの、すなわち、気体
透過性に優れ、気体の高選択性を備え、かつ選択性の経
時変化を抑えた気体分離用積層複合膜の製造方法を提供
せんとするものである。
An object of the present invention is to provide a method for producing a laminated composite membrane for gas separation that does not have the above drawbacks, that is, has excellent gas permeability, high gas selectivity, and suppresses changes in selectivity over time. It is something to do.

〔発明の構成〕[Structure of the invention]

本発明は、気体分離用複合膜の表面に非重合性ガスで低
温プラズマ処理を施し、次いで該面上に含ケイ素重合体
の薄膜層を形成する気体分離用積層複合膜の製造方法で
ある。
The present invention is a method for producing a laminated composite membrane for gas separation, in which the surface of the composite membrane for gas separation is subjected to low-temperature plasma treatment with a non-polymerizable gas, and then a thin film layer of a silicon-containing polymer is formed on the surface.

本発明における気体分離用複合膜は、多孔質支持体上に
、高分子物質よりなる厚さ0.01μ以上0.5μ以下
の薄膜層が形成されている構成である。・多孔質支持体
は、シート状、管状、繊維状など形状、組成とも特に限
定されない。また高分子物質は、プラズマ作用を受け薄
膜形成性を有するものであれば特に限定されないが、特
に好ましい高分子物質としては、■ポリエチレン、ポリ
プロピレン、ポリブチレンなどのポリオレフィン類、■
ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル
、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、
ポリビニルイソブチルエーテル、ポリアクリル酸メチル
、ポリメタクリル酸ブチル、ポリメタクリル酸ブチル、
ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルピ
リジンなどビニル系重合体類、■ポリブタジェン、ポリ
イソプレン、ポリクロロプレンなどの共役ジエン重合体
類、■ポリオキシメチレン、ポリオキシエチレン、ポリ
プロピレンオキサイドなどのポリエーテル類、■ポリフ
ェニレンオキサイド、ポリカーボネート、ポリエステル
、ポリアミド、ポリペプチド、ポリイミド、ポリスルホ
ン、ポリウレタン、ポリジメチルシロキサン、ポリシル
フェニレンなど重縮合系高分子類などがある。上記のほ
か、これら重合体を構成する単m体の各種共重合体や共
重縮合体も含まれる。
The composite membrane for gas separation in the present invention has a structure in which a thin film layer made of a polymeric substance and having a thickness of 0.01 μm or more and 0.5 μm or less is formed on a porous support. - The porous support is not particularly limited in shape or composition, such as sheet, tubular, or fibrous. The polymeric substance is not particularly limited as long as it has the ability to form a thin film under plasma action, but particularly preferred polymeric substances include: (1) polyolefins such as polyethylene, polypropylene, and polybutylene;
Polystyrene, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene,
Polyvinyl isobutyl ether, polymethyl acrylate, polybutyl methacrylate, polybutyl methacrylate,
Vinyl polymers such as polyvinyl acetate, polyvinyl alcohol, and polyvinylpyridine, ■ Conjugated diene polymers such as polybutadiene, polyisoprene, and polychloroprene, ■ Polyethers such as polyoxymethylene, polyoxyethylene, and polypropylene oxide, ■ Examples include polycondensation polymers such as polyphenylene oxide, polycarbonate, polyester, polyamide, polypeptide, polyimide, polysulfone, polyurethane, polydimethylsiloxane, and polysilphenylene. In addition to the above, various copolymers and copolycondensates of monomers constituting these polymers are also included.

低温プラズマとは、グロー放電、コロナ放電によって生
成されるプラズマをさす。
Low-temperature plasma refers to plasma generated by glow discharge or corona discharge.

低温プラズマで使用する非重合性ガスとは、プラズマ状
態としたときにそれ自身でいわゆるプラズマ重合が起こ
らず、固体が析出沈積しないガスである。例えば、水素
、ヘリウム、アルゴン、窒素、酸素、空気、−酸化炭素
、二酸化炭素、アンモニア等である。なお、重合性ガス
を用いると固体が多量に析出して不均一な膜面の閉塞が
起こり一定した性能が得難く望ましくない。
The non-polymerizable gas used in low-temperature plasma is a gas that does not cause so-called plasma polymerization by itself when brought into a plasma state, and does not cause precipitation of solids. For example, hydrogen, helium, argon, nitrogen, oxygen, air, carbon oxide, carbon dioxide, ammonia, etc. It should be noted that if a polymerizable gas is used, a large amount of solids will precipitate, resulting in non-uniform clogging of the membrane surface, making it difficult to obtain consistent performance, which is not desirable.

非重合性ガスの圧力は、0.01〜5Torrに設定す
るのが好ましく、40〜100Wの中の特定の高周波出
力で放電を行なう。
The pressure of the non-polymerizable gas is preferably set to 0.01 to 5 Torr, and discharge is performed at a specific high frequency output of 40 to 100W.

含ケイ素重合体とは、主鎖がケイ素原子のみからなるポ
リシラン、主鎖がケイ素と炭素だけから構成される重合
体たとえばポリシルメチレン、ポリシルフェニレン、主
鎖がケイ素とへテロ原子からなる重合体、たとえば、ポ
リシロキサン、ポリシラザン、ポリシルチアン、ポリシ
ルフェニレンシロキサン、ポリフェニレンオキシシロキ
サン、側鎖にケイ素を含む原子団を持つ炭素骨格重合体
たとえば、ポリトリメチルシラン、ポリP−トリメチル
シリルスチレンや、これらの各種共重合体である。これ
らの含ケイ素重合体は、低温プラズマ処理を施した気体
分離用複合膜の表面に薄膜を形成させても、気体透過性
をあまり低下させずに、選択性の経時変化を抑えるので
好ましい。
Silicon-containing polymers include polysilane whose main chain consists only of silicon atoms, polymers whose main chain consists only of silicon and carbon such as polysylmethylene, polysilphenylene, and polymers whose main chain consists of silicon and heteroatoms. Coalescing, for example, polysiloxane, polysilazane, polysilthian, polysilphenylene siloxane, polyphenyleneoxysiloxane, carbon skeleton polymers with silicon-containing atomic groups in side chains, such as polytrimethylsilane, polyP-trimethylsilylstyrene, and various types thereof. It is a copolymer. These silicon-containing polymers are preferable because even when a thin film is formed on the surface of a composite membrane for gas separation subjected to low-temperature plasma treatment, they do not significantly reduce gas permeability and suppress changes in selectivity over time.

その中でも、特に好ましいのは、ポリシルフェニレンシ
ロキサン/ジメチルシロキサン共重合体、ポリカーボネ
ート/ジメチルシロキサン共重合体などのポリジメチル
シロキサンの共重合体で、気体透過性が高く、かつ薄膜
形成性も優れているため、低温プラズマ処理を施しtc
気体分離用複合膜の気体透過性をはと/vど低下させず
に、選択性の経時変化を抑えられるので好ましい。
Among these, particularly preferred are polydimethylsiloxane copolymers such as polysilphenylenesiloxane/dimethylsiloxane copolymer and polycarbonate/dimethylsiloxane copolymer, which have high gas permeability and excellent thin film forming properties. Therefore, low-temperature plasma treatment is applied to
This is preferable because changes in selectivity over time can be suppressed without significantly reducing the gas permeability of the composite membrane for gas separation.

含ケイ素重合体薄膜層の膜厚は、0.01μ以上0.3
μ以下が好ましく、0.01μより薄いとwJ膜層のピ
ンホールが多くなるため、得られた気体分離用積層複合
膜の選択性の軽+1i変化が大きくなる傾向にあり、0
.3μを越える場合、薄膜層の気体の透過抵抗が大きく
なって気体透過性の大きな気体分離用積層複合膜が得ら
れない傾向がある。
The thickness of the silicon-containing polymer thin film layer is 0.01μ or more and 0.3μ
μ or less is preferable, and if it is thinner than 0.01 μ, there will be many pinholes in the wJ membrane layer, so the change in selectivity of the obtained laminated composite membrane for gas separation will tend to increase.
.. When it exceeds 3μ, the gas permeation resistance of the thin film layer increases, and there is a tendency that a laminated composite membrane for gas separation with high gas permeability cannot be obtained.

簿膜層を形成する方法には、含ケイ素重合体を溶媒に溶
解し、得られた溶液を、低温プラズマ処理を施した気体
分離用複合膜に塗布する方法や、含ケイ素重合体の溶液
を水面上に展開し、水面に形成された薄膜を、あらかじ
め低温プラズマ処理を施した気体分離用複合膜に担持す
る方法があるが、選択性の経時変化を抑えるという点で
は、塗布により薄膜層を形成する方法が好ましい。
Methods for forming the membrane layer include dissolving a silicon-containing polymer in a solvent and applying the resulting solution to a composite membrane for gas separation that has been subjected to low-temperature plasma treatment; There is a method in which the thin film formed on the water surface is supported on a composite membrane for gas separation that has been previously subjected to low-temperature plasma treatment. A method of forming is preferred.

〔発明の効果〕〔Effect of the invention〕

本発明は上述したように、気体分離用複合膜の表面を非
重合ガスで低温プラズマ処理を施し、次いで該面上に含
ケイ素重合体の薄膜層を形成する気体分離用積層複合膜
の製造方法としたので、得られた複合膜は、高気体透過
性でかつ高気体選択性を備え、選択性の経時変化が少な
いという効果を奏するものである。
As described above, the present invention provides a method for producing a laminated composite membrane for gas separation, in which the surface of the composite membrane for gas separation is subjected to low-temperature plasma treatment with a non-polymerized gas, and then a thin film layer of a silicon-containing polymer is formed on the surface. Therefore, the obtained composite membrane has high gas permeability and high gas selectivity, and has the effect of having little change in selectivity over time.

〔特性の測定方法、評価基準〕[Method of measuring characteristics, evaluation criteria]

なお、本発明における特性の測定方法および評価基準は
、次の通りである。
In addition, the measuring method and evaluation criteria of the characteristics in the present invention are as follows.

(1) 気体分離用複合膜の気体透過性は、一時圧2a
tn+、二次圧1 atmの条件下で測定した酸素透過
速度を評価基準とした。
(1) The gas permeability of the composite membrane for gas separation is at a temporary pressure of 2a.
The oxygen permeation rate measured under the conditions of tn+ and secondary pressure of 1 atm was used as the evaluation standard.

(2) 気体選択性は、上記条件で測定した酸素透過速
度、窒素透過速度の比である分離係数Rを評価基準とし
た。(酸素または窒素の透過速度の単位=tn’/vn
2− +1r−atm )〔実施例〕 以下、実施例に基づいて本発明の一実/II!i態様を
説明する。
(2) Gas selectivity was evaluated using the separation coefficient R, which is the ratio of the oxygen permeation rate and nitrogen permeation rate measured under the above conditions. (Unit of oxygen or nitrogen permeation rate = tn'/vn
2-+1r-atm) [Example] Hereinafter, based on the Example, part of the present invention/II! The i aspect will be explained.

実施例1 ポリジメチルシロキサン/シルフェニレン共重合体PS
O95(チッ素株式会社製シルフェニレン/ジメチルシ
ロキ1ナンの共重合比=115、数平均分子量30万)
をシクロヘキセンに溶解し、0.1重量部に調製する。
Example 1 Polydimethylsiloxane/silphenylene copolymer PS
O95 (Copolymerization ratio of silphenylene/dimethylsiloxinane made by Chisso Co., Ltd. = 115, number average molecular weight 300,000)
was dissolved in cyclohexene to adjust to 0.1 part by weight.

この溶液を水面上に展開し、フッ素樹脂多孔膜(商品名
70口ボア、住友電工社製)に水面上の薄膜を担持し気
体分離用複合膜を得る。この複合膜を、柳本製、低温沃
化装置、型式LTA−2SNの反応容器の中央部に設置
し、Arガスを非重性ガスとして使用し、真空ポンプで
約0.5Torrに排気し出力50Wで30秒間低揚湯
ラズマ処理する。得られた複合膜の薄膜層に、ポリジメ
チルシロキサン/シルフェニレン共重合体PSO95の
0.1重量部をシクロヘキセン99.9重量部に溶かし
た溶液でコーティングし、90℃で30分乾燥して積層
複合膜を得る。lnられた積層複合膜の透過性能と経時
変化を表1に示した。
This solution is spread on the water surface, and the thin film on the water surface is supported on a fluororesin porous membrane (trade name: 70-bore, manufactured by Sumitomo Electric Industries, Ltd.) to obtain a composite membrane for gas separation. This composite membrane was installed in the center of a reaction vessel using a low-temperature iodination apparatus manufactured by Yanagimoto, model LTA-2SN, and using Ar gas as a non-heavy gas, it was evacuated to approximately 0.5 Torr with a vacuum pump and the output was 50 W. Heat the rice for 30 seconds with a low boiling water plasma treatment. The thin film layer of the resulting composite membrane was coated with a solution of 0.1 part by weight of polydimethylsiloxane/silphenylene copolymer PSO95 dissolved in 99.9 parts by weight of cyclohexene, and dried at 90°C for 30 minutes to form a laminated layer. Obtain a composite membrane. Table 1 shows the permeation performance and changes over time of the laminated composite membrane.

実施例2 実施例1と同様に、ポリジメチルシロキサン/シルフェ
ニレン共重合体PSO95の薄膜をフッ素樹脂多孔膜に
担持して得られた複査膜に、実施例1と同じ条件で低温
プラズマ処理を施した複合膜の薄膜層に、ポリジメチル
シロキサン/カーボネート共重合体PSO99(チッ素
株式会社製、非シロキン−50〜55%)0.1重囲部
を塩化メチレン99,9重量部に溶かした溶液でコーテ
ィングし、50℃で30分乾燥して積層複合膜を得る。
Example 2 In the same manner as in Example 1, a composite film obtained by supporting a thin film of polydimethylsiloxane/silphenylene copolymer PSO95 on a porous fluororesin membrane was subjected to low-temperature plasma treatment under the same conditions as in Example 1. 0.1 parts of polydimethylsiloxane/carbonate copolymer PSO99 (manufactured by Chisso Co., Ltd., non-siloquine - 50 to 55%) was dissolved in 99.9 parts by weight of methylene chloride to the thin film layer of the composite film. The solution is coated and dried at 50° C. for 30 minutes to obtain a laminated composite membrane.

得られた積層複合膜の透過性能及び経時変化を表1に示
した。
Table 1 shows the permeation performance and changes over time of the obtained laminated composite membrane.

比較例1 実施例1〜2で得られた、ポリジメチルシロキサン/シ
ルフェニレン共重合体PSO95の複合膜を低温プラズ
マ処理したものの透過性能及び経時変化を表1に示した
Comparative Example 1 Table 1 shows the permeation performance and changes over time of the composite membranes of polydimethylsiloxane/silphenylene copolymer PSO95 obtained in Examples 1 and 2 subjected to low temperature plasma treatment.

実施例3 ポリスチレン/ブタジェンブロック共重合体く商品名タ
フブレンA1旭化成工業社製)をシクロヘキセンに溶解
し、0.1重囲部の溶液を調製する。得られた溶液を水
面上に展開し薄膜を形成さば、フッ素樹脂多孔膜に担持
して複合膜を得る。
Example 3 A polystyrene/butadiene block copolymer (trade name: Toughblen A1 manufactured by Asahi Kasei Kogyo Co., Ltd.) is dissolved in cyclohexene to prepare a 0.1 part solution. The obtained solution is spread on a water surface to form a thin film, and then supported on a fluororesin porous membrane to obtain a composite membrane.

この複合膜を実施例1と同様の条件で低温プラズマ処理
を施した後、ポリジメチルシロキサンCY54002(
トーレシリコーン社製)0.1重量部をイソペンタン9
9.9重量部に溶かした溶液をコーティングし40℃で
30分乾燥して積層複合膜を17jo透過性能及び経時
変化を表1に示した。
After subjecting this composite film to low-temperature plasma treatment under the same conditions as in Example 1, polydimethylsiloxane CY54002 (
(manufactured by Toray Silicone) 0.1 part by weight of isopentane 9
The laminated composite membrane was coated with a solution containing 9.9 parts by weight and dried at 40° C. for 30 minutes, and the 17jo permeation performance and changes over time are shown in Table 1.

比較例2 実施例3で作成した、低温プラズマ処理を施したポリス
チレン/ブタジェン共重合体の複合膜の透過性能及び経
時変化を表1に示した。
Comparative Example 2 Table 1 shows the permeation performance and changes over time of the polystyrene/butadiene copolymer composite membrane prepared in Example 3 and subjected to low-temperature plasma treatment.

表 1 (但し、R−酸素透過速度/窒素透過速度)上記から明
らかな様に、本発明は高気体透過性で高気体選択性を備
え、気体選択性の経時変化の少ない気体分離用積層複合
膜を提供出来るという点で優れていることがわかる。
Table 1 (However, R - Oxygen permeation rate/Nitrogen permeation rate) As is clear from the above, the present invention is a multilayer composite for gas separation that has high gas permeability and high gas selectivity, and has little change in gas selectivity over time. It can be seen that this method is excellent in that it can provide a membrane.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)気体分離用複合膜の表面に非重合性ガスで低温プ
ラズマ処理を施し、次いで該面上に含ケイ素重合体の薄
膜層を形成することを特徴とする気体分離用積層複合膜
の製造方法。
(1) Production of a laminated composite membrane for gas separation, characterized in that the surface of the composite membrane for gas separation is subjected to low-temperature plasma treatment with a non-polymerizable gas, and then a thin film layer of a silicon-containing polymer is formed on the surface. Method.
JP58245470A 1983-12-28 1983-12-28 Preparation of gas separating laminated composite membrane Granted JPS60139316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245470A JPS60139316A (en) 1983-12-28 1983-12-28 Preparation of gas separating laminated composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245470A JPS60139316A (en) 1983-12-28 1983-12-28 Preparation of gas separating laminated composite membrane

Publications (2)

Publication Number Publication Date
JPS60139316A true JPS60139316A (en) 1985-07-24
JPH0453575B2 JPH0453575B2 (en) 1992-08-27

Family

ID=17134134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245470A Granted JPS60139316A (en) 1983-12-28 1983-12-28 Preparation of gas separating laminated composite membrane

Country Status (1)

Country Link
JP (1) JPS60139316A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
WO2015046141A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module
WO2017098887A1 (en) * 2015-12-10 2017-06-15 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device
US10427111B2 (en) 2014-09-30 2019-10-01 Fujifilm Corporation Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
US10906008B2 (en) 2015-12-10 2021-02-02 Fujifilm Corporation Protective-layer-covered gas separation membrane, method for producing protective-layer-covered gas separation membrane, gas separation membrane module, and gas separation apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
WO2015046141A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module
US10427111B2 (en) 2014-09-30 2019-10-01 Fujifilm Corporation Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
US11071953B2 (en) 2014-09-30 2021-07-27 Fujifilm Corporation Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
WO2017098887A1 (en) * 2015-12-10 2017-06-15 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device
JPWO2017098887A1 (en) * 2015-12-10 2018-09-13 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module, and gas separation device
US10843137B2 (en) 2015-12-10 2020-11-24 Fujifilm Corporation Method for producing protective-layer-covered gas separation membrane, protective-layer-covered gas separation membrane, gas separation membrane module, and gas separation apparatus
US10906008B2 (en) 2015-12-10 2021-02-02 Fujifilm Corporation Protective-layer-covered gas separation membrane, method for producing protective-layer-covered gas separation membrane, gas separation membrane module, and gas separation apparatus

Also Published As

Publication number Publication date
JPH0453575B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
Kramer et al. Low temperature plasma for the preparation of separation membranes
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
JPH0323208B2 (en)
Ruaan et al. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma
JPS60139316A (en) Preparation of gas separating laminated composite membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
Terada et al. Aggregation states-oxygen permeability relationships of plasma-polymerized thin films from perfluorobenzene
Fritzsche et al. Hollow fiber membranes spun from Lewis acid: base complexes. I. Structure determination by oxygen plasma ablation
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
Lai et al. Preparation of vinylpyridine irradiation‐grafted poly (4‐methyl‐pentene‐1) membrane for oxygen enrichment
Echigo et al. A novel preparative method of microporous poly (4, 4'-oxydiphenylenepyromellitimide) membranes
JPH038808B2 (en)
Oh et al. Gas permeation through poly (dimethylsiloxane)-plasma polymer composite membranes
JPS6250174B2 (en)
JPH0387B2 (en)
Son et al. Polypyrrole composite membrane with high permeability prepared by interfacial polymerization
Zuri et al. Film formation and crack development in plasma polymerized hexamethyldisiloxane
JPS61120617A (en) Composite membrane for separating gas
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPS61107908A (en) Manufacture of composite semipermeable membrane
JPS6135823A (en) Gas permeable membrane
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
JPS6336286B2 (en)
JPH0357811B2 (en)