JPS60136147A - Photoelectron-multiplying device - Google Patents

Photoelectron-multiplying device

Info

Publication number
JPS60136147A
JPS60136147A JP24211483A JP24211483A JPS60136147A JP S60136147 A JPS60136147 A JP S60136147A JP 24211483 A JP24211483 A JP 24211483A JP 24211483 A JP24211483 A JP 24211483A JP S60136147 A JPS60136147 A JP S60136147A
Authority
JP
Japan
Prior art keywords
temperature
photomultiplier tube
compensation
voltage
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24211483A
Other languages
Japanese (ja)
Other versions
JPH0738301B2 (en
Inventor
Kimihiko Nakamura
公彦 中村
Kiyoshi Jinguji
神宮司 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP58242114A priority Critical patent/JPH0738301B2/en
Publication of JPS60136147A publication Critical patent/JPS60136147A/en
Publication of JPH0738301B2 publication Critical patent/JPH0738301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/30Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To improve responsiveness to a temperature change while performing temperature compensation with high accuracy by sealing a temperature detector into a photomultiplier tube or a vacuum tube equivalent to it for performing temperature compensation. CONSTITUTION:A transistor 27 is an element, which performs current control for temperature compensation, whereby one end of a parallel circuit consisting of a temperature detector 15 and a potentiometer 29 for setting up a compensation amount through it, is connected to its base. Said parallel circuit is impressed by constant voltage to be set up by a Zener diode 31 serially connected to a resistance 28. Said constant voltage undergoes change-over of polarity in accordance with a temperature property of a temperature detector 15. That is to say, the voltage V is changed in accordance with temperature while selecting the polarity of a polarity change-over switch 32 and regulating a compensation amount setup position K of the potentiometer 29. Thereby, responsiveness to a temperature change is improved thus being able to perform temperature compensation with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光電子増信管の温度特性を補(1”i した光
電子JiQ倍装同装置する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a photoelectron JiQ doubling device that compensates for the temperature characteristics of a photomultiplier (1"i).

〔発明の技術的侍景〕[Technical landscape of invention]

光電子Ji/1倍管は、入射した光を電子に変え−C1
その電荷を10万倍程度に増幅するもので、放射線測定
や光分析あるいは分光計を用いた試験等に用いられる。
Photoelectron Ji/1 multiplier tube converts incident light into electrons -C1
It amplifies the electric charge by about 100,000 times, and is used for radiation measurements, optical analysis, and tests using spectrometers.

ところで光電子増倍管は、周囲の温度に応じてその出力
特性が変化する。例えば放射線測定のために光電子増倍
管を直接大気に触れる状態で屋外に配置したよすると、
−年を通してその出力が数十パーセントもの範囲で変動
することになり、測定が不可能となる。そこで従来では
光電子増倍管の周囲を厚い断熱材で被覆し、更に断熱材
内部に温度調節用のヒータを取りイ4けて、温度の影響
を除去する工夫が行われていた。また光電子増倍管の外
壁近くに温度検出器を設けておき、温度の変動に応して
プリアンプ等の後段の回路部分で出力の補償を行う場合
もあった。
By the way, the output characteristics of a photomultiplier tube change depending on the surrounding temperature. For example, suppose a photomultiplier tube is placed outdoors in direct contact with the atmosphere to measure radiation.
-The output will fluctuate by several tens of percent throughout the year, making measurement impossible. Conventionally, the photomultiplier tube was surrounded by a thick heat insulating material, and a heater for controlling the temperature was placed inside the heat insulating material to eliminate the effects of temperature. In some cases, a temperature detector is provided near the outer wall of the photomultiplier tube, and output compensation is performed in a downstream circuit such as a preamplifier in response to temperature fluctuations.

しかしながらt)77者の光電子増倍装置では、断熱材
を含めた装置全体がかなりの大きさとなり、消費電力も
多くなるという欠点があった。また後者の光電子増倍装
置aでは、気温の突動に対ずろ光電子増倍管の温度変化
と温度検出器の応答がかなり異なり、正確な温度補償が
困ガ[であった。ずなわら光電子」1Q倍管の内部は真
空に保たれているので、熱の伝導が少なく、温度変化が
極めて緩やかであり、温度検出器を用いてこの内部温度
を常に正確に推定し補償することは現実的に不可能であ
った。
However, the photoelectron multiplier of t)77 had the disadvantage that the entire device including the heat insulating material was quite large and consumed a lot of power. In addition, in the latter photomultiplier device a, the temperature change of the photomultiplier tube and the response of the temperature detector differ considerably in response to a sudden change in temperature, making accurate temperature compensation difficult. Since the inside of the Zunawara Photoelectron 1Q multiplier is kept in a vacuum, there is little heat conduction and temperature changes are extremely gradual, and a temperature detector is used to constantly accurately estimate and compensate for this internal temperature. That was realistically impossible.

し発明の目的〕 本発明はこのような事情に鑑み、特別な断熱構造を必要
とせず高精度に光電子増倍管の管内の温度を検出し補償
を行うことのできる光電子増倍装置を提供することをそ
の目的とする。
[Object of the Invention] In view of the above circumstances, the present invention provides a photomultiplier device that can detect and compensate the temperature inside a photomultiplier tube with high precision without requiring a special heat insulation structure. Its purpose is to

〔発明の構成〕[Structure of the invention]

本発明では、光電子増倍管内あるいはこれとほぼ同等の
温度特性を示す真空の管内に温度検出器を配置し、この
温度検出器の検出温度に応じて光電」′−増倍管の出力
特性を補償する。このための温度補f1°i回路の電源
は、光電子増倍管と共通化するこ吉ができる。
In the present invention, a temperature detector is placed inside a photomultiplier tube or a vacuum tube that exhibits almost the same temperature characteristics, and the output characteristics of the photomultiplier tube are adjusted according to the temperature detected by the temperature detector. Compensate. The power supply for the temperature compensation f1°i circuit for this purpose can be shared with the photomultiplier tube.

し実施例〕 以下実施例につき本発明の詳細な説明する。Example] The present invention will be described in detail with reference to Examples below.

第1図は光電子増倍管の内部に温度検出器を取り付けた
状態を表わしたものである。光電子増倍管は電極構造に
よって幾つかの種類に分類することができる。図では静
電界形の光電子増倍管を示している。光電子増倍管11
の内部には、光の入射によって電子を発生ずるフォトカ
ソード12が配置されている。発生した電子は破線で示
したよう第1ダイノード13−1に入射し、ここで2次
電子の増倍を行う。続いて第2タイノード13−2、第
3ダイノード13−3と順次増倍が繰り返され、最終段
のアノード14から増倍後の信号が取り出される。サー
ミスタあるいはポジスタ等の温度検出器15は、電子あ
るいは光の進路をなるべく阻害しない場所に配置される
。管内は真空のため熱の移動はほとんどない。また管内
に特別な熱発生源は存在しないので、温度検出器15の
配置ずべき筒所に」ニ記した以外の特別の制限は存在し
ない。しかしながら温度検出器15を管壁や電極ピンと
直接接触させることは、外部の温度の影響を受けること
となり好ましくない。本実施例では、光を電子に変換す
るフォトカソード12の温度変化を重視し、温度検出器
15をこのフォトカッ−1・12の近傍に配置している
FIG. 1 shows a temperature detector installed inside a photomultiplier tube. Photomultiplier tubes can be classified into several types depending on their electrode structure. The figure shows an electrostatic field type photomultiplier tube. Photomultiplier tube 11
A photocathode 12 that generates electrons upon incidence of light is disposed inside the photocathode 12 . The generated electrons enter the first dynode 13-1 as shown by the broken line, where the secondary electrons are multiplied. Subsequently, multiplication is repeated sequentially through the second tie node 13-2 and the third dynode 13-3, and the multiplied signal is taken out from the final stage anode 14. The temperature detector 15, such as a thermistor or a positor, is arranged at a location where it does not obstruct the path of electrons or light as much as possible. Because there is a vacuum inside the tube, there is almost no heat transfer. Furthermore, since there is no special heat generation source within the tube, there are no special restrictions other than those mentioned above regarding the tube location where the temperature detector 15 should be placed. However, it is not preferable to bring the temperature sensor 15 into direct contact with the tube wall or the electrode pin because it will be affected by the external temperature. In this embodiment, emphasis is placed on the temperature change of the photocathode 12 that converts light into electrons, and the temperature detector 15 is placed near the photocathode 1/12.

第21ンIは本実施例の光電子増倍装置を表わしたしの
である。光電子増倍管のγノード14には、高電圧印加
端子21から+800〜+1300V程度の高電圧(+
VH)が印加されるようになっ−C’いる。この高電圧
は、抵抗22を直列に接続したデバイダによって順次降
下され、各ダイノード1:3−N〜13−■およびクリ
7ド23に印加される。デバイダの最終段の抵抗221
1 の他端はフォトカソード12に接続されている。ま
たアノードI/]から得られる出力は、コンデンウ25
を介し−C出力)端子24へ送られ、1ン1示しないプ
リアンプに人力されるようになっている。
The 21st line I represents the photoelectron multiplier of this embodiment. A high voltage of about +800 to +1300V (+
VH) is now applied -C'. This high voltage is sequentially lowered by a divider having resistors 22 connected in series, and is applied to each of the dynodes 1:3-N to 13-■ and the grid 23. Resistor 221 at the final stage of the divider
1 is connected to the photocathode 12 . In addition, the output obtained from the anode I/] is
The signal is sent to the -C output) terminal 24 via the -C output terminal 24, and is input to the preamplifier that does not indicate 1/1.

さ−C−、フォトカソード12はトランジスタ27c7
)’ :lレクタよ抵抗28の一端にも接続されている
Sa-C-, photocathode 12 is transistor 27c7
)' :l is also connected to one end of the resistor 28.

トランジスタ27は温度補償のための電流制御を↑1う
素J−で、そのベースに温度検出器15とこれによる袖
il二’Mを設定するためのポテンショメータン!→か
ら成る81Ij列回路の一端を接続T:ヱいる。こ0)
並列回路には、前記した抵抗28と直列に接続されたツ
ェナーダイオード31によって設定される定電圧が印加
されるようになっている。この定電圧は、温度検出器1
5の温度特性に応じて極性の切り換えが行われる。極性
切換スイッチ32はこのだめのスイッチであり、回ii
811ffl整時に図の■側あるいは○側に接点の設定
が行われる。
The transistor 27 controls the current for temperature compensation with ↑1 element J-, and has a temperature detector 15 at its base and a potentiometer for setting the sleeve il2'M! → Connect one end of the 81Ij column circuit consisting of T: ヱ. ko0)
A constant voltage set by the Zener diode 31 connected in series with the resistor 28 described above is applied to the parallel circuit. This constant voltage is applied to the temperature sensor 1
The polarity is switched according to the temperature characteristics of 5. The polarity changeover switch 32 is a second switch, and the polarity changeover switch 32
At the time of 811ffl adjustment, the contact point is set on the ■ side or the O side of the figure.

トランジスタ27のエミッタとツェナーダイオードのア
ノード側は、一端を接地されたポテンショメータ33の
他端にそれぞれ接続されている。
The emitter of the transistor 27 and the anode side of the Zener diode are each connected to the other end of a potentiometer 33 whose one end is grounded.

このポテンショメータは、光電子増倍管のゲインを言周
整するためのものである。
This potentiometer is used to adjust the gain of the photomultiplier tube.

以上のような回路で光電子増倍管のフォトカソード12
に印加される電圧を■とする。この電圧■はトランジス
タ27のコレクタ・エミッタ間を流れる電流1.および
抵抗28を流れる電流■2によって決定されることにな
る。今デバイダの各抵抗22の抵抗値の和をRとする。
With the above circuit, the photocathode 12 of the photomultiplier tube
Let the voltage applied to be ■. This voltage ■ corresponds to the current 1. flowing between the collector and emitter of the transistor 27. and the current 2 flowing through the resistor 28. Now let R be the sum of the resistance values of the respective resistors 22 of the divider.

この場合において第3図は極性切換スイッチ32が○側
に選択された状態を表わし、第4図は■側に選択された
状態を表わす。
In this case, FIG. 3 shows a state in which the polarity selector switch 32 is selected to the ◯ side, and FIG. 4 shows a state in which it is selected to the - side.

第:3Iン1で温度検出器15の抵抗値をRT、抵抗2
8Q)抵抗値を尺7、ボデンノヨメータ?9の抵抗値各
1<1、トランジスタ27のベースと極性切換スイッチ
32の間に配置された固定抵抗35の1」(抗+r*l
lをIぐ、1 とする。にたツェナーダイス−1・:3
1の両1j:f:!に現われる定電圧をV7 とする。
No.3: RT the resistance value of temperature detector 15 at 3I in 1, resistor 2
8Q) Is the resistance value scale 7, Boden no Yometer? 9 resistance values each 1 < 1, the fixed resistor 35 disposed between the base of the transistor 27 and the polarity changeover switch 32 has a resistance value of 1'' (anti+r*l).
Let l be Igu, 1. Nita Zener Dice-1:3
1 both 1j:f:! Let the constant voltage appearing at V7 be V7.

この場合に以]・の式が成立する。In this case, the following equation holds true.

、二の(1)式は次のように変形する。−とができる1
゜(2) ところで[・ランシスタ27のベース電位を\)8とし
、ベース・エミッタ間の電圧を■l1mで表わすと、電
流11 は次のようになる。
, the second equation (1) is transformed as follows. -Can be done 1
(2) By the way, if the base potential of the Lancistor 27 is \)8 and the voltage between the base and emitter is expressed by l1m, the current 11 is as follows.

1<「 ■□>V、、−の場合、(3)式は次のように変ノしで
きろ。
If 1<"■□>V,,-, then equation (3) can be modified as follows.

・ (4) 、−こ−C11(抗値R1は次の&+j<定量(する。・(4) , -ko-C11 (resistance value R1 is the following &+j<quantification (do.

ただし、1マ。をOo(:にお(ノろ抵抗イ]111と
し、■−3を→ノーミスク定数、゛1゛4温度(’(:
 )−J、たに4ボーiンンヨメータ21jの補l[−
9吊設定位置(fJ≦に≦1)とずろと、 1、”、=K ・ R1 である。
However, 1 ma. Let Oo(: ni (noro resistance I) 111, ■-3 → no misk constant, ゛1゛4 temperature('(:
) - J, complement l[-
9 The hanging setting position (fJ≦≦1) and the gap are 1,”,=K·R1.

(/I)式を変形すると次のようになる。(/I) When the formula is transformed, it becomes as follows.

I?。I? .

よ−5て光電j′−増倍管のフォトカソード12に印加
される電圧Vは、極性切換スイ/チ32が○側に1没定
された場合(第:3図)には、(2)式を変形し−C次
の、上う(、ニなる。
Therefore, the voltage V applied to the photocathode 12 of the photomultiplier tube is (2) when the polarity switch 32 is set to the ○ side (Fig. 3). ) transforms the formula to become -C order, upper (, 2).

・ ・ (5) 極性L7J換スイッチ3,2が(O側に設定された第4
図の場合には、抵抗値R0とR8を入れ換えることによ
り、電圧Vをめることができる。
・ ・ (5) When the polarity L7J change switch 3, 2 is set to the (O side)
In the case shown in the figure, the voltage V can be decreased by replacing the resistance values R0 and R8.

・・・・(6) の項、および(6)式で Iぐ11マZ ’R+(Iぐ1JI−128)の項は、
光電子増倍管の内部温度によって変化する。ずなわら1
・σ;性切換スイ7チ32の極性を選択し、ポデンショ
メーク29の袖jIX計設定位置Kを調整することによ
り、電圧\Iを温度に応して変化させ、出力特性を一定
に保つことができる。
...The term (6) and the term Ig11maZ'R+(Ig1JI-128) in equation (6) are,
It changes depending on the internal temperature of the photomultiplier tube. Zunawara 1
・σ; By selecting the polarity of the gender changeover switch 7 32 and adjusting the sleeve jIX meter setting position K of the podensho make 29, the voltage \I can be changed according to the temperature and the output characteristics can be kept constant. can.

また高電圧■□を変化しても温度系数の項は変化しない
。したがって温度系数の設定が容易となる。
Furthermore, even if the high voltage ■□ is changed, the term of the temperature system does not change. Therefore, setting of temperature coefficients becomes easy.

ところで以上の説明では、(3)式で存在した電圧■l
]cの項を(4)式で削除した。電圧V BEを存置さ
せた場合には、電流−I+ は次のようになる。
By the way, in the above explanation, the voltage ■l that existed in equation (3)
] The term c was deleted in equation (4). If the voltage VBE remains, the current -I+ becomes:

従って(6)式は次のようになる。Therefore, equation (6) becomes as follows.

ここで電圧■、の温度係数は次式で表わされる。Here, the temperature coefficient of voltage {circle around (2)} is expressed by the following equation.

Vni=O,63X10−3T また(7)式は次のようになる。Vni=O, 63X10-3T Further, equation (7) becomes as follows.

電圧■。I、の温度変化による電圧Vの変動が問題とな
るが、この電圧変動は、温度が0℃から55℃まで変化
したときであっても0.35ボルト以下である。この実
施例の場合、Vll が100Oボルトのとき、電圧■
は133ボルトから205ボルトまで変化する。従って
電圧■I]Fの変動は実質上用(視できることになる。
Voltage ■. Fluctuations in voltage V due to temperature changes in I, pose a problem, but this voltage fluctuation is less than 0.35 volts even when the temperature changes from 0° C. to 55° C. In this example, when Vll is 100O volts, the voltage
varies from 133 volts to 205 volts. Therefore, fluctuations in the voltage (I)F can be practically seen.

このことは、補正量設定位置KをOにしたとき、すなわ
ち温度検出器15の両端を短絡し補正量を零とした状態
で、電圧■の温度係数をほぼ零にすることができること
を意味する。
This means that when the correction amount setting position K is set to O, that is, when both ends of the temperature detector 15 are shorted and the correction amount is zero, the temperature coefficient of the voltage ■ can be made almost zero. .

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、温度検出器を光電子増倍管
あるいはこれと等価な真空の管に封じ込み、温度補償を
行うこととしたので、温度変化に対する応答性が良く温
度補償を高精度に行うことができる。また管外に配置さ
れる補正回路は光電子増倍管に加える電圧電源を兼用で
きるので、安価であり、またこれにより消費電力が1・
Sに増加する、二ともない。
As described above, according to the present invention, temperature compensation is performed by sealing the temperature detector in a photomultiplier tube or an equivalent vacuum tube, so that the temperature compensation can be performed with good responsiveness to temperature changes and with high precision. can be done. In addition, the correction circuit placed outside the tube can also be used as the voltage power supply for the photomultiplier tube, making it inexpensive and reducing power consumption by 1.
Increases to S, no two.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は温度検出器を取り伺けた光電子増信管の1j;
〔理図、第2図は本発明の一実施例における光電r増倍
装置の回路図、第3図および第4図は一第2図にボした
回路における極性切換スイッチの各設定状態別の回路図
である。 11・・・・・・光電子増信管、 15・・・・・・温度検出器、 21・・・・・高電圧印加端′子、 27・・・・・・トランジスタ、 29・・・・・・ヂテンショメータ。 出 願 人 日木原子力事業株式会社 代 理 人 弁理士 山 内 梅 雄 第3図 (■偕」) 第4図 (■摺1」)
Figure 1 shows the photomultiplier tube 1j where the temperature detector was taken;
[Figure 2 is a circuit diagram of a photoelectric multiplier according to an embodiment of the present invention, and Figures 3 and 4 are diagrams showing each setting state of the polarity switch in the circuit shown in Figure 2. It is a circuit diagram. 11...Photomultiplier tube, 15...Temperature detector, 21...High voltage application terminal, 27...Transistor, 29...・Detension meter. Applicant: Hiki Nuclear Power Co., Ltd. Representative: Umeo Yamauchi, Patent Attorney Figure 3 (■Kai) Figure 4 (■Suri 1)

Claims (1)

【特許請求の範囲】 1、光電子114倍管と、この光電子増倍管内あるいは
これとほぼ同等の温度特性を示す真空の管内に配置され
た温度検出器と、この温度検出器の検出温度に応して前
記光電子増信管の出力1h性を補償する温度補償回路と
を具備することを特徴とする光電子増倍装置。 ? 温度補償回路が光電子増倍管と共通の電源に接続さ
れていることを9.′J徴とする4Jjイ「請求の範囲
第1項記載の光電子増倍装置。
[Scope of Claims] 1. A photomultiplier tube, a temperature detector disposed within the photomultiplier tube or a vacuum tube exhibiting almost the same temperature characteristics as the photomultiplier tube, and a temperature sensor that responds to the temperature detected by the temperature detector. and a temperature compensation circuit for compensating for the output 1h characteristic of the photomultiplier tube. ? 9. Make sure that the temperature compensation circuit is connected to a common power supply with the photomultiplier tube. The photoelectron multiplier according to claim 1.
JP58242114A 1983-12-23 1983-12-23 Photomultiplier Expired - Lifetime JPH0738301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242114A JPH0738301B2 (en) 1983-12-23 1983-12-23 Photomultiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242114A JPH0738301B2 (en) 1983-12-23 1983-12-23 Photomultiplier

Publications (2)

Publication Number Publication Date
JPS60136147A true JPS60136147A (en) 1985-07-19
JPH0738301B2 JPH0738301B2 (en) 1995-04-26

Family

ID=17084502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242114A Expired - Lifetime JPH0738301B2 (en) 1983-12-23 1983-12-23 Photomultiplier

Country Status (1)

Country Link
JP (1) JPH0738301B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042046A (en) * 1999-08-04 2001-02-16 Tsubame Kawada Measuring device using photomultiplier and after pulse reduction method
WO2005027176A1 (en) * 2003-09-10 2005-03-24 Hamamatsu Photonics K.K. Electron tube
US7486021B2 (en) 2003-09-10 2009-02-03 Hamamatsu Photonics K.K. Electron tube with electron-bombarded semiconductor device
US7491918B2 (en) 2003-09-10 2009-02-17 Hamamatsu Photonics K.K. Electron beam detection device and electron tube
US7692384B2 (en) 2003-09-10 2010-04-06 Hamamatsu Photonics K.K. Electron tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497247U (en) * 1972-05-04 1974-01-22
JPS5227774U (en) * 1975-08-16 1977-02-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497247U (en) * 1972-05-04 1974-01-22
JPS5227774U (en) * 1975-08-16 1977-02-26

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042046A (en) * 1999-08-04 2001-02-16 Tsubame Kawada Measuring device using photomultiplier and after pulse reduction method
JP4571252B2 (en) * 1999-08-04 2010-10-27 燕 河田 Measuring device using photomultiplier tube and afterpulse reduction method
WO2005027176A1 (en) * 2003-09-10 2005-03-24 Hamamatsu Photonics K.K. Electron tube
US7486021B2 (en) 2003-09-10 2009-02-03 Hamamatsu Photonics K.K. Electron tube with electron-bombarded semiconductor device
US7491918B2 (en) 2003-09-10 2009-02-17 Hamamatsu Photonics K.K. Electron beam detection device and electron tube
US7525249B2 (en) 2003-09-10 2009-04-28 Hamamatsu Photonics K.K. Electron tube with electron-bombarded semiconductor device
US7692384B2 (en) 2003-09-10 2010-04-06 Hamamatsu Photonics K.K. Electron tube

Also Published As

Publication number Publication date
JPH0738301B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US3480781A (en) Temperature compensated solar cell light sensor
US3922550A (en) Radiometric system
DuBridge The amplification of small direct currents
JPH09504373A (en) Two-terminal temperature sensitive device with a circuit that controls the total operating current so as to be linearly proportional to temperature
US2326614A (en) Amplifier
US2465938A (en) Radiation measuring device
JPS60136147A (en) Photoelectron-multiplying device
US2507590A (en) Electron beam self-balancing measuring system
US3805616A (en) Temperature measuring apparatus
US2457747A (en) Electron multiplier tube circuits
JPH0719670B2 (en) Triple-probe plasma measuring device that corrects space potential error
US3650154A (en) Thermocouple input temperature sensing circuitry
US2903524A (en) D-c amplifier
US2403521A (en) Electronic microammeter
JPH07117436B2 (en) Thermal flow sensor
US2881266A (en) High impedance input circuit amplifier
US2830252A (en) Arrangements for providing standardized voltage or current
US2806193A (en) Self-balancing potentiometer system
US2104211A (en) Balanced electron tube circuits
US2528377A (en) Constant voltage thermoelectric generating apparatus
US3683275A (en) Apparatus for measuring the value of an alternating electrical signal of any wave form
Eppeldauer et al. Photocurrent measurement of PC and PV HgCdTe detectors
US3163042A (en) Resistance thermometer system
US2949575A (en) Temperature compensated bolometer bias supply
US2959733A (en) Hall effect magnetometer