JPS60135625A - Cooling apparatus for internal-combustion engine with supercharger - Google Patents

Cooling apparatus for internal-combustion engine with supercharger

Info

Publication number
JPS60135625A
JPS60135625A JP58250714A JP25071483A JPS60135625A JP S60135625 A JPS60135625 A JP S60135625A JP 58250714 A JP58250714 A JP 58250714A JP 25071483 A JP25071483 A JP 25071483A JP S60135625 A JPS60135625 A JP S60135625A
Authority
JP
Japan
Prior art keywords
turbine
passage
pressure
intake
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58250714A
Other languages
Japanese (ja)
Inventor
Michiyasu Yamamoto
道泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58250714A priority Critical patent/JPS60135625A/en
Publication of JPS60135625A publication Critical patent/JPS60135625A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/08Use of engine exhaust gases for pumping cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0425Air cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To enhance the cooling effect for an engine, by supplying a greater amount of cooling air to a heat exchanger by providing a turbine turned by the pressure of exhaust gas in a by-pass passage branched from an exhaust passage, and cooling the heat exchanger by a fan interlocked to said turbine. CONSTITUTION:With increasing of exhaust energy, intake air is more supercharged by a compressor C interlocked to a first turbine T1 which is driven by the exhaust gas, and the pressure of intake air in an intake passage 1 is raised. When the pressure of intake air is raised to a preset value, it is transmitted through a pressure pipe 12 and sets an actuator 10 into operation. Through operation of the actuator 10, a waste valve 7 is opened by a link rod 11, and exhaust gas that has been passed through the turbine T1 is made to pass through a by-pass passage 8. By thus driving a second turbine wheel 13 and hence a fan 15, it is enabled to supply a greater amount of cooling air to an intercooler 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は過給器の装置された内燃機関の冷却装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling system for an internal combustion engine equipped with a supercharger.

〔従来技術〕[Prior art]

従来の過給機付内燃機関の装置を第1図の模式図に基づ
いて説明する。排気通路2のタービンT1に加わる内燃
機関Eからの排気ガス圧力により過給機Sのコンプレッ
サCは吸入通路lに空気を強制的に送入し、吸入通路1
の吸気圧力が増加する。この排気ガス圧力がさらに増加
すると過給機Sの破損するおそれがあるので、次に述べ
る構造により、タービンT+の過・度な上昇を押さえて
一定値以下にすることが開発されている。吸入通路の吸
気圧力が設定値以上となると、吸入通路1の流体圧力を
受けるアクチュエータ8が吸気圧力によって作動し、リ
ンクロッド13を介してウェイストゲートバルブ7を開
き、タービン2の上流と下流を連通ずるバイパス通路1
2を通して排気ガスを排出する構造であった。このため
吸入通路1の吸気圧力がある設定値に達すると、排気ガ
スより得られる排気エネルギーを十分利用せずに排気ガ
スを排出してしまうことになる。ま、たコンプレッサC
の作動に伴い吸入通路1内に吸入空気がインタークーラ
5により十分・冷却されないと、吸入空気密度が増加せ
ず、エンジンの充填効率を効果的に向上させる上で困難
を伴う。
A conventional supercharged internal combustion engine device will be explained based on the schematic diagram of FIG. Due to the exhaust gas pressure from the internal combustion engine E applied to the turbine T1 in the exhaust passage 2, the compressor C of the supercharger S forcibly sends air into the intake passage 1.
Inspiratory pressure increases. If this exhaust gas pressure increases further, there is a risk that the supercharger S will be damaged, so a structure described below has been developed to suppress the excessive rise in the turbine T+ and keep it below a certain value. When the intake pressure in the intake passage exceeds a set value, the actuator 8 that receives the fluid pressure in the intake passage 1 is operated by the intake pressure, opens the waste gate valve 7 via the link rod 13, and connects the upstream and downstream of the turbine 2. Bypass passage 1
The structure was such that exhaust gas was discharged through 2. Therefore, when the intake pressure in the intake passage 1 reaches a certain set value, the exhaust gas is exhausted without fully utilizing the exhaust energy obtained from the exhaust gas. Well, compressor C
If the intake air in the intake passage 1 is not sufficiently cooled by the intercooler 5 during the operation, the intake air density will not increase and it will be difficult to effectively improve the filling efficiency of the engine.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、過給機付内燃機関の排気通路
から分岐したバイパス通路中、排気圧を受けて回転する
タービンを設け、このタービンと連動するファンによっ
て熱交換器を冷却するとから、従来充分利用されていな
かった排気ガスから得られる排気エネルギーを有効に利
用して熱交換器の冷却効果を高める冷却装置を提供する
ことを目的とする。
In view of the above points, the present invention provides a turbine that rotates in response to exhaust pressure in a bypass passage branched from an exhaust passage of a supercharged internal combustion engine, and cools a heat exchanger by a fan that operates in conjunction with the turbine. It is an object of the present invention to provide a cooling device that effectively utilizes exhaust energy obtained from exhaust gas, which has not been sufficiently utilized in the past, to enhance the cooling effect of a heat exchanger.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基づいて説明する
Embodiments of the present invention will be described below based on the drawings.

第2図は本発明の第1実施例を示す装置の模式図である
。図中エンジンEは燃焼室EIに開口する吸入ポート1
a及び排気ポー1−28が形成され、これらのポートの
各外端には吸入通路1及び排気通路2がそれぞれ接続さ
れる。これら両道路1、。
FIG. 2 is a schematic diagram of an apparatus showing a first embodiment of the present invention. In the figure, engine E is the intake port 1 that opens into the combustion chamber EI.
a and an exhaust port 1-28 are formed, and an intake passage 1 and an exhaust passage 2 are respectively connected to the outer ends of these ports. Both of these roads 1.

2間に過給器Sが構成される。過給器Sは、吸入及び排
気通路1.2の各途中にそれぞれ形成したコンプレッサ
C及び第1タービンよりなっており、このコンプレッサ
CのコンプレッサCのコンプレッサ歯車3及び第1ター
ビンT1の第1タービン翼車4は過給機ハウジング内の
図示してない回転軸によって互いに直結される。また吸
入通路1には吸入空気を冷却するインタークーラー5が
配設され、コンプレッサCにより圧送された吸入空気を
冷却する。このインタークーラ5は空冷式のもので、イ
ンタークーラ5と吸入ボート1aの間の吸入通路1には
、吸入空気量を調整するスロットル6と吸入空気の脈動
する圧力を一定にするサージタンク7が配設され、吸入
空気の流量を調整する。また排気通路2には第1タービ
ンT1の上流と下流を連通ずるように排気通路2より分
岐したバイパス通路8があり、この分岐部にはバイパス
通路を開閉するウニイスゲートバルブ9が設置されてい
る。このバルブ9は、アクチェエータ1Oにより作動す
るリンクロッド11と連結され開閉する。アクチュエー
タIOは吸入通路1に開口した圧力導入管12と連結さ
れて、吸入通路1の圧力を受けて作動する。またバイパ
ス通路2の途中にハウジング8aが形成されており、こ
のハウジング8a内には第2タービン翼車13がシャフ
ト14によって支持される。シャフト14はハウジング
8aの外に突出しており、このシャフト14の外端はイ
ンタークーラ5に冷却風を送るファン15が固着される
。また吸入通路1の入口は図示してないエアクリーナが
、排気通路2の出口には図示してないマフラがそれぞれ
取付けられる。
A supercharger S is configured between the two. The supercharger S consists of a compressor C and a first turbine formed in the middle of each of the intake and exhaust passages 1.2, and the compressor gear 3 of the compressor C of the compressor C and the first turbine of the first turbine T1. The impellers 4 are directly connected to each other by a rotating shaft (not shown) within the supercharger housing. Further, an intercooler 5 for cooling intake air is disposed in the intake passage 1, and cools the intake air compressed by the compressor C. This intercooler 5 is an air-cooled type, and the intake passage 1 between the intercooler 5 and the intake boat 1a includes a throttle 6 for adjusting the amount of intake air and a surge tank 7 for keeping the pulsating pressure of the intake air constant. installed to adjust the flow rate of intake air. Further, the exhaust passage 2 has a bypass passage 8 branched from the exhaust passage 2 so as to communicate the upstream and downstream of the first turbine T1, and a Uniis gate valve 9 for opening and closing the bypass passage is installed in this branch part. There is. This valve 9 is opened and closed by being connected to a link rod 11 operated by an actuator 1O. The actuator IO is connected to a pressure introduction pipe 12 opened to the suction passage 1 and operates in response to the pressure of the suction passage 1. Further, a housing 8a is formed in the middle of the bypass passage 2, and a second turbine impeller 13 is supported by a shaft 14 within this housing 8a. The shaft 14 projects outside the housing 8a, and a fan 15 for sending cooling air to the intercooler 5 is fixed to the outer end of the shaft 14. An air cleaner (not shown) is attached to the inlet of the suction passage 1, and a muffler (not shown) is attached to the outlet of the exhaust passage 2.

次に上記構成において、作動を説明する。Next, the operation of the above configuration will be explained.

エンジンEの排気工程により、燃焼室Elより排気通路
2に排出される排気ガスは第1タービンT1を通過し、
その際排気エネルギーをタービン翼車4に与える。これ
によりタービン翼車4は回転し、図示してない回転軸を
介してコンプレッサ翼車3を駆動するので、エアクリー
ナより吸入通路に吸入された空気はコンプレッサCで予
圧を受けて過給され熱交換器5を通って、スロ7)ル6
により流量を調節された後、サージタンク7へ送られ、
エンジンの吸入工程時、燃料と混合燃焼室Elに供給さ
れる。この時コンプレッサCにより予圧を受けて過給さ
れる吸入空気は、断熱圧縮を ・受けて高温となるため
、インタークーラ5により冷却され、吸入空気密度を高
め充填効率を上げている。
Due to the exhaust process of the engine E, exhaust gas discharged from the combustion chamber El to the exhaust passage 2 passes through the first turbine T1,
At that time, exhaust energy is given to the turbine wheel 4. As a result, the turbine wheel 4 rotates and drives the compressor wheel 3 via a rotating shaft (not shown), so the air sucked into the suction passage from the air cleaner is pre-pressurized by the compressor C, supercharged, and undergoes heat exchange. Pass through vessel 5, slot 7) le 6
After adjusting the flow rate, it is sent to the surge tank 7,
During the intake stroke of the engine, it is mixed with fuel and supplied to the combustion chamber El. At this time, the intake air that is preloaded and supercharged by the compressor C undergoes adiabatic compression and reaches a high temperature, so it is cooled by the intercooler 5, increasing the intake air density and increasing the filling efficiency.

さらに排気エネルギーが増加して、排気ガスにより第1
タービンT1と連動するコンプレッサーCが吸入空気を
一層過給し、吸入通路1内の吸気圧力が上昇し、吸気通
路の吸気圧力が、ノ・ノキング等のエンジン特性及び耐
久性などにより予め設定された圧力、例えば350 m
m11g〜7001璽Hg程度に達すると、吸入通路1
の吸気圧力は、圧力導入管12を伝わりアクチュエータ
IOを作動させる。そしてアクチュエータ10の作動は
リンクロッド11を介してウェイストゲートバルブ7に
伝達され、このバルブ7が開くことから、タービンT+
を通過していた排気ガスは排気通路2から分岐したバイ
パス通路8を通って排出される。このことから、第1タ
ービンT1出力の過度の上昇を押さえて一定に制御し、
過給機Sの破損を防止すると同時に、バイパス通路8を
流出する排気ガスの圧力は、第2タービン翼車13を駆
動させ、シャフト14を介して連動するファン15を作
動させてインタークーラ5により多い冷却風を取り入れ
る。したがって過給されて温度上昇した吸入空気は、こ
のインタークーラ5によりさらに冷却される。
Furthermore, the exhaust energy increases, and the exhaust gas causes the first
The compressor C that works with the turbine T1 further supercharges the intake air, increasing the intake pressure in the intake passage 1, and the intake pressure in the intake passage is set in advance based on engine characteristics such as noking and durability. pressure, e.g. 350 m
When the temperature reaches about 11g to 7001Hg, the suction passage 1
The intake pressure of is transmitted through the pressure introduction pipe 12 and operates the actuator IO. The operation of the actuator 10 is transmitted to the waste gate valve 7 via the link rod 11, and since this valve 7 opens, the turbine T+
The exhaust gas that has passed through is discharged through a bypass passage 8 branched from the exhaust passage 2. From this, the output of the first turbine T1 is controlled to be constant by suppressing an excessive increase in the output,
While preventing damage to the supercharger S, the pressure of the exhaust gas flowing out of the bypass passage 8 drives the second turbine impeller 13 and operates the fan 15 which is interlocked via the shaft 14. Take in a lot of cooling air. Therefore, the intake air whose temperature has increased due to supercharging is further cooled by the intercooler 5.

次に第2実施例を第3図に基づいて説明する。Next, a second embodiment will be explained based on FIG.

本実施例は第1実施例の空冷式インタークーラの代わり
に水冷式インタークーラを冷却する装置で、図中5′は
水冷式インタークーラ、5′aは水冷式インタークーラ
5′の冷却水を冷却する熱交換器であるサブラジェータ
である。このサブラジェータ5′aとインタークーラ5
′の間では図示してないモータにより水が循環しており
インタークーラ5′で熱を受けた冷却水はサブラジェー
タ5′aで放熱される。そしてバイパス通路8に設けら
れた第2タービン翼車13と連動するファン15は、こ
のサブラジェータ51 aの後方に装着されて、サブラ
ジェータ51 aに冷却風を送って冷却効果をさらに高
める。なお本実施例の他の構成及び作動は第1実施例と
同様である。
This embodiment is a device that cools a water-cooled intercooler instead of the air-cooled intercooler of the first embodiment. This is a subradiator, which is a heat exchanger for cooling. This subradiator 5'a and intercooler 5
Water is circulated between 1 and 2 by a motor (not shown), and the cooling water that has received heat in intercooler 5' is radiated by subradiator 5'a. A fan 15 that operates in conjunction with the second turbine wheel 13 provided in the bypass passage 8 is installed behind the sub-radiator 51a, and sends cooling air to the sub-radiator 51a to further enhance the cooling effect. Note that the other configuration and operation of this embodiment are the same as those of the first embodiment.

以上のようにファン15によって冷却される熱交換器が
インタークーラまたはインタークーラを冷却するサブラ
ジェータである場合は、コンプレッサによって過給され
て温度上昇した吸入空気はファン15によってさらに冷
却されてより充填効率が大きくなり、エンジンの出力を
さらに増加させることができる。
As described above, when the heat exchanger cooled by the fan 15 is an intercooler or a subradiator that cools the intercooler, the intake air whose temperature has increased due to being supercharged by the compressor is further cooled by the fan 15 and is filled with more air. Efficiency is increased and the output of the engine can be further increased.

さらにファン15によって冷却される熱交換器は、エン
ジン水冷水を冷却するラジェータまたはエンジンオイル
を冷却するオイルクーラでもよい。
Further, the heat exchanger cooled by the fan 15 may be a radiator that cools engine water or an oil cooler that cools engine oil.

またファン15をエンジンルーム内の排風用に用いるこ
とも可能である。
It is also possible to use the fan 15 for exhausting air in the engine compartment.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は過給機の装着された内燃機関の排
気通路に付設されたバイパス通路中のタービン翼車及び
これと連動するファンを、従来充分に利用されずに排出
していた排気ガスから得られる排気エネルギーを利用し
て駆動したことから、熱交換器に入る冷却風をより多く
取り入れ一層冷却効果を高めることができる。またエン
ジンの充填効率をさらに向上すると共に過給機の耐久性
を向上するという優れた効果がある。
As described above, the present invention utilizes a turbine blade wheel in a bypass passage attached to an exhaust passage of an internal combustion engine equipped with a supercharger and a fan linked thereto, which is used to discharge exhaust gas that has not been fully utilized in the past. Since it is driven using exhaust energy obtained from gas, more cooling air can be taken into the heat exchanger, further increasing the cooling effect. Moreover, it has the excellent effect of further improving the charging efficiency of the engine and improving the durability of the supercharger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の過給機付内燃機関の模式図、第2図は本
発明の第1実施例を示す模式図、第3図は本発明の第2
実施例を示す模式図である。 1・・・吸入通路、2・・・排気通路、5.5’・・・
インタークーラ、5′a・・・サブラジェータ、8・・
・バイハス1lll、■s・・・第2タービン翼L15
川7アン。 代理人弁理士 岡 部 隆
FIG. 1 is a schematic diagram of a conventional internal combustion engine with a supercharger, FIG. 2 is a schematic diagram showing a first embodiment of the present invention, and FIG. 3 is a schematic diagram of a second embodiment of the present invention.
It is a schematic diagram showing an example. 1... Suction passage, 2... Exhaust passage, 5.5'...
Intercooler, 5'a...Subradiator, 8...
・Bihas 1llll, ■s...Second turbine blade L15
River 7 Ann. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 過給機の装着された内燃機関において、排気通路中にて
前記過給機の駆動力を得る第1タービン翼車の上流と下
流を連通ずるバイパス通路と、前記バイパス通路を開閉
する開閉弁と、吸入通路の吸入空気の圧力を受けて前記
開閉弁を開閉するアクチュエータと、前記バイパス通路
中に排気圧を受けて回転する第2タービン翼車と、該第
2タービン翼車と連動するファンと、該ファンによって
冷却される熱交換器を具備することを特徴とする過給器
付内燃機関の冷却装置。
In an internal combustion engine equipped with a supercharger, a bypass passage communicates upstream and downstream of a first turbine wheel that obtains driving force for the supercharger in an exhaust passage, and an on-off valve that opens and closes the bypass passage. an actuator that opens and closes the on-off valve in response to the pressure of intake air in the intake passage; a second turbine wheel that rotates in response to exhaust pressure in the bypass passage; and a fan that operates in conjunction with the second turbine wheel. A cooling device for an internal combustion engine with a supercharger, comprising a heat exchanger cooled by the fan.
JP58250714A 1983-12-25 1983-12-25 Cooling apparatus for internal-combustion engine with supercharger Pending JPS60135625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250714A JPS60135625A (en) 1983-12-25 1983-12-25 Cooling apparatus for internal-combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250714A JPS60135625A (en) 1983-12-25 1983-12-25 Cooling apparatus for internal-combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JPS60135625A true JPS60135625A (en) 1985-07-19

Family

ID=17211954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250714A Pending JPS60135625A (en) 1983-12-25 1983-12-25 Cooling apparatus for internal-combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPS60135625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000282A1 (en) * 1986-07-09 1988-01-14 Engine Technology Limited Supercharged ic engine air cooler
US5542399A (en) * 1993-12-23 1996-08-06 Robert Bosch Gmbh Method controlling an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000282A1 (en) * 1986-07-09 1988-01-14 Engine Technology Limited Supercharged ic engine air cooler
US5542399A (en) * 1993-12-23 1996-08-06 Robert Bosch Gmbh Method controlling an internal combustion engine

Similar Documents

Publication Publication Date Title
US4028892A (en) Turbocharged two-cycle engine with positive blower and internally mounted aftercooler
US6408832B1 (en) Outboard motor with a charge air cooler
US4959961A (en) Supercharged internal combustion engine
JPS6138328B2 (en)
JP4445676B2 (en) Diesel engine with turbocharger
JPH09280118A (en) Egr device for diesel engine
JPS60135625A (en) Cooling apparatus for internal-combustion engine with supercharger
JPS6088821A (en) Suction air cooling device for supercharged engine
US7008175B2 (en) Radiator cooling fan replacement to increase engine efficiency
JPH0320501Y2 (en)
JPS60240523A (en) Motorcycle provided with turbosupercharger
KR20050070395A (en) Intake air control system using vortex tube
JPS6165016A (en) Intake device of engine with supercharger
JPS59224414A (en) Cooling device for internal-combustion engine with turbo charger
JPS6025605B2 (en) Supercharged engine with intercooler
JPH0640907Y2 (en) Two-stage turbocharger for internal combustion engine
JP3608668B2 (en) Diesel engine with intercooler
JP4222526B2 (en) EGR system
JPS6019938Y2 (en) turbo compound engine
JPS60190623A (en) Overcharger of internal combustion engine
JPS6019916A (en) Engine provided with turbo-supercharger
KR19980064356U (en) Intercooler cooling structure of turbocharger engine
KR100373262B1 (en) A Turbocharging Apparatus for A Vehicle Engine Used Engine Cooling Water Flow
JPS5834260Y2 (en) Cooling device for exhaust bypass valve device for internal combustion engine with turbo charger
JPH05240055A (en) Intake air cooling system in engine