JPS60135524A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JPS60135524A
JPS60135524A JP25140883A JP25140883A JPS60135524A JP S60135524 A JPS60135524 A JP S60135524A JP 25140883 A JP25140883 A JP 25140883A JP 25140883 A JP25140883 A JP 25140883A JP S60135524 A JPS60135524 A JP S60135524A
Authority
JP
Japan
Prior art keywords
silicon steel
sheet
annealing
rolled
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25140883A
Other languages
Japanese (ja)
Inventor
Mitsumasa Kurosawa
黒沢 光正
Masao Iguchi
征夫 井口
Hiroshi Shimizu
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25140883A priority Critical patent/JPS60135524A/en
Publication of JPS60135524A publication Critical patent/JPS60135524A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a silicon steel sheet having a low iron loss and high magnetic flux density in the stage of working a high Si-contg. silicon steel by hot rolling and cold rolling to a sheet material then subjecting the sheet material to final finish annealing after decarburization and primary recrystallization annealing to produce the silicon steel sheet by incorporating a specific amt. of Ni and Mo into the silicon steel. CONSTITUTION:A silicon steel ingot of high Si contg. 0.01-0.08% C, 3.1-4.5% Si, 0.005-0.2% Sb and 0.005-0.1% 1 king of S and Se or both in total is added and incorporated therein with 0.05-1.0% Ni and 0.003-0.1% Mo. Such steel ingot is hot rolled to a sheet material which is ten subjected to homogenizing annealing, then to one pass or >=2 passes of cold rolling including intermediate annealing, by which the cold rolled sheet having the final sheet thickness is manufactured. Such sheet is subjected to decarburization and primary recrystallization annealing by heating the same to 820 deg.C in a moist hydrogen atmosphere. A separating agent for annealing consisting essentially of MgO is coated of the sheet in succession thereto and the sheet is subjected to final finish annealing for 5hr at 1,180 deg.C in a hydrogen atmosphere to develop the secondary recrystal grains having (110)<001> orientation.

Description

【発明の詳細な説明】 この発明は圧延方向に磁化容易軸を有する方向性珪素鋼
板の製造方法に関し、特に鉄損を低丁させるべ(Si含
有量を3.1〜4.5%の高Si領域とした場合におい
て磁束密度が高い方向性珪素鋼板を得る方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing grain-oriented silicon steel sheets having an axis of easy magnetization in the rolling direction. The present invention relates to a method for obtaining a grain-oriented silicon steel sheet having a high magnetic flux density when the Si region is used.

周知のように方向性珪素鋼板は主として変圧器その他の
電気機器の鉄芯等に使用されるものであって、磁化特性
、鉄損特性等の励磁特性が優れていることが必要とされ
ている。これらの特性のうち、磁化特性゛は、磁化力1
1000Vにおける磁束密度B、。値により、鉄損特性
は50 Hzで1,7Tまで磁化したときの鉄損W17
150値で評価するのが通常である。
As is well known, grain-oriented silicon steel sheets are mainly used for the iron cores of transformers and other electrical equipment, and are required to have excellent excitation properties such as magnetization properties and iron loss properties. . Among these characteristics, the magnetization property is the magnetization force 1
Magnetic flux density B at 1000V. According to the value, the iron loss characteristic is iron loss W17 when magnetized to 1.7T at 50 Hz.
It is normal to evaluate using 150 values.

このような方向性珪素鋼板の磁気特性を向上させるため
には、最終製品中に残存する不純物や析出物を極力減少
させることはもとよシ、鋼板中の2次再結晶粒の磁化容
易軸である<100>軸を圧延方向に高度に集積させる
ことが基本的に重要である。そのためには、2次再結晶
時においてMnS 、 MnSe 、 AINの如き硫
化物、窒化物等の微細な析出物(いわゆるインヒビター
)によ、bt次再結晶粒の成長を抑制することが必要で
ある。
In order to improve the magnetic properties of grain-oriented silicon steel sheets, it is necessary to not only reduce impurities and precipitates remaining in the final product as much as possible, but also to improve the easy axis of magnetization of the secondary recrystallized grains in the steel sheet. It is fundamentally important to highly integrate <100> axes in the rolling direction. To this end, it is necessary to suppress the growth of bt recrystallized grains during secondary recrystallization using fine precipitates (so-called inhibitors) such as sulfides and nitrides such as MnS, MnSe, and AIN. .

従来このような方向性珪素鋼板の製造方法としては、特
公昭40−15664号公報に記載されているようにA
lN析出相を利用する方法、あるいは特公昭51−13
469号公報に記載されているようにsbとSおよび/
またはSeとの複合添加により鋼中に形成される析出分
散相を利用する方法などが提案されている。しかしなが
ら前者のAlN析出相を利用する方法は、磁束密度の高
い製品を得ることはできるが、最終仕上げ焼鈍後の2次
再結晶粒が大きくなるために鉄損が比較的高いという欠
点が残っている。一方後者の方法は、比較的磁束密度が
低いという欠点はあるものの、その製造方法にさらに数
多くの改善が積重ねられて、現在ではB10値で1.、
89 T以上、W1715o値で1、05 w/kg以
下の良好な磁気特性を得るに至っている。
Conventionally, as a manufacturing method of such a grain-oriented silicon steel sheet, as described in Japanese Patent Publication No. 40-15664,
Method using lN precipitated phase or Japanese Patent Publication No. 51-13
As described in Publication No. 469, sb, S and /
Alternatively, a method has been proposed that utilizes a precipitated dispersed phase formed in steel by combined addition with Se. However, although the former method, which uses AlN precipitated phases, can produce products with high magnetic flux density, it still has the disadvantage of relatively high iron loss due to the large secondary recrystallized grains after final annealing. There is. On the other hand, although the latter method has the disadvantage of a relatively low magnetic flux density, numerous improvements have been made to the manufacturing method, and the B10 value is now 1. ,
Good magnetic properties of 89 T or more and a W1715o value of 1.05 w/kg or less have been obtained.

しかしながら最近では省エネルギーの要請がさらに強1
って、より一層磁気特性の優れた方向性珪素鋼板が望l
れており、特に鉄損特性は長期にわたる変圧器等のラン
ニングコストを直接左右するものであるから、早急に低
鉄損化を図ることが強く望まれている。周知のように珪
素鋼板中のSiは鋼板の固有抵抗を高めて渦電流損を少
なくすることにより鉄損の低減に大きく貢献するもので
ある。現行の通常の方向性珪素鋼板ではSLを3.0係
程度含有させているが、Si含有者をさらに高めれば、
より一層の鉄損値低減が図られると考えられる。しかし
ながら現行以上にSi含有量を増大させることは、飽和
磁束密度の低ドをもたらし、B1゜値に対して不利とな
るばかりでなく、2次再結晶組織を不均一にして、安定
な特性が得られなくなるという問題があった。
However, recently, the demand for energy conservation has become even stronger1.
Therefore, a grain-oriented silicon steel sheet with even better magnetic properties is desired.
In particular, since iron loss characteristics directly affect long-term running costs of transformers, etc., it is strongly desired to reduce iron loss as soon as possible. As is well known, Si in a silicon steel plate greatly contributes to reducing iron loss by increasing the specific resistance of the steel plate and reducing eddy current loss. Current normal grain-oriented silicon steel sheets contain SL of about 3.0 coefficient, but if the Si content is further increased,
It is thought that further reduction in iron loss value will be achieved. However, increasing the Si content beyond the current level not only results in a lower saturation magnetic flux density, which is disadvantageous to the B1° value, but also makes the secondary recrystallization structure non-uniform, resulting in poor stable properties. The problem was that it was no longer available.

この発明は以上の事情に鑑みてなされたもので、鉄損を
さらに低■させるために、現在一般に適用されている3
、0%程度のSiiを31〜4.5チの領域まで増量さ
せた際において、安定な2次再結晶組織を得て、磁束密
度も安定して高い方向性珪素鋼板を製造する方法を提供
することを目的とするものである。
This invention was made in view of the above circumstances, and in order to further reduce iron loss,
, provides a method for producing a grain-oriented silicon steel sheet with a stable secondary recrystallization structure and a stable and high magnetic flux density when Sii is increased from about 0% to a range of 31 to 4.5 inches. The purpose is to

本発明者等は、上述のように鉄損金より一層低減させる
ためにSiを3i〜4.5チの領域まで増量させた際に
、安定した2次再結晶組織を得る方策について種々実験
、検討を重ねたところ、素材中にNiとMOを複合添加
することによってその目的が達成されることを見出した
The present inventors conducted various experiments and studies on measures to obtain a stable secondary recrystallized structure when increasing the amount of Si to a range of 3i to 4.5chi in order to further reduce iron loss as described above. After repeated studies, they discovered that the objective could be achieved by adding a combination of Ni and MO to the material.

方向性珪素鋼にNiを添加すること自体は、既に特公昭
54−32412号公報においても提案されておF)、
Niの添加によって磁気特性はB10値で1、92 T
以上の高い磁束密度を得ることができるが、この場合、
工業的規模の製造において必ず安定した工程によシ製造
することができないという欠点がある。またMoを添加
すること自体は、特公昭57−14737号に記載され
ているように1次再結晶粒の成長を抑制する機能を強化
し、安定生産を可能にしているが、Slの増量に伴なう
磁束密度の低下を補うものではない。しかるにこの発明
におけるNiとMOの複合添加による効果は、sb +
 Se (S)系を基本インヒビター系とする高磁束密
度材において新たに見出された相補的効果であり、Sb
 −Se (S)インヒビター系において5i(5) の高い領域でも磁束密度を損なうことなく、安定した磁
気特性をもたらすことを知見し、この発明をなすに至っ
た。
The addition of Ni to grain-oriented silicon steel has already been proposed in Japanese Patent Publication No. 54-32412 (F),
Due to the addition of Ni, the magnetic properties have a B10 value of 1.92 T.
It is possible to obtain a higher magnetic flux density than above, but in this case,
The drawback is that it cannot always be produced using a stable process in industrial scale production. Furthermore, the addition of Mo itself strengthens the function of suppressing the growth of primary recrystallized grains as described in Japanese Patent Publication No. 57-14737, and enables stable production. It does not compensate for the accompanying decrease in magnetic flux density. However, the effect of the combined addition of Ni and MO in this invention is that sb +
This is a newly discovered complementary effect in high magnetic flux density materials with Se (S) system as the basic inhibitor system, and Sb
It was discovered that -Se (S) inhibitor system provides stable magnetic properties even in a high 5i (5) region without impairing the magnetic flux density, and this invention was made based on this finding.

すなわちこの発明は、co、ot〜008%。That is, in this invention, co, ot~008%.

Si 3.1〜4.5%、 Sb 0.005〜0.2
 % 、 S 、Seのいずれか1種または2種を合計
で0.005〜o、 1 %含有する珪素鋼素材を熱間
圧延し、1回もしくは中間焼鈍を挾む2回以上の冷間圧
延を施して最終製品厚の冷延鋼板とした後、脱炭・1次
再結晶焼鈍を施し、さらに最終仕上げ焼鈍により(1t
o )<001>方位の2次再結晶粒を発達させる一連
の工程よりなる方向性珪素鋼板の製造方法において: 前記珪素鋼素材中にNi 0.05〜1.0%とM。
Si 3.1-4.5%, Sb 0.005-0.2
A silicon steel material containing a total of 0.005 to 1% of any one or two of %, S, and Se is hot rolled and cold rolled once or twice or more with intermediate annealing in between. After that, a cold-rolled steel sheet with the final product thickness is obtained, followed by decarburization and primary recrystallization annealing, and then final finish annealing (1t
o) In a method for producing a grain-oriented silicon steel sheet comprising a series of steps of developing secondary recrystallized grains with <001> orientation: 0.05 to 1.0% Ni and M in the silicon steel material.

0、003〜O,1%を含有させることを特徴とするも
のである。
It is characterized by containing 0.003 to 0.1%.

以下この発明についてさらに詳細に説明する。This invention will be explained in more detail below.

この発明においては、最終的に高磁束密度方向性珪素鋼
板を得るために、基本成分としてC0,01〜0.08
%、 Si 3.1〜4.5チ、sbo、005(6) 〜02チ、 S 、 Seのいずれかl褌または2種を
合計で0.005〜0.1 %含有し、しかもこの発明
の特徴成分としてNi 0.05〜1.0%、 Mo 
O,OO3〜01チを併せて含有する珪素鋼素材を用い
る必要がある。
In this invention, in order to finally obtain a high magnetic flux density grain-oriented silicon steel sheet, C0.01-0.08 is used as a basic component.
%, Si 3.1 to 4.5%, sbo, 005(6) to 02%, S, and Se in a total of 0.005 to 0.1%, and the present invention Characteristic components include Ni 0.05-1.0%, Mo
It is necessary to use a silicon steel material containing O, OO3-01.

これらの素材成分の限定理由は次の通りである。The reasons for limiting these material components are as follows.

Cは、0.01%未満では熱延時に充分な量のγ相が生
成されず、熱延組織の均質化に不利となシ、一方0.0
8%を越えれば後工程における脱炭に長時間を要するよ
うになって生産性を阻害することとなるから、0401
〜008%の範囲内に限定した。
If C is less than 0.01%, a sufficient amount of γ phase will not be generated during hot rolling, which is disadvantageous for homogenizing the hot rolled structure;
If it exceeds 8%, it will take a long time to decarburize in the subsequent process, which will hinder productivity.
It was limited within the range of ~0.008%.

Siは3.1%未満では製品の渦電流損が増大し、低鉄
損化を図る上で好ましくなく、一方45チを越えれば冷
間圧延が困難となるから、31〜4.5チの範囲内とし
だ。
If Si is less than 3.1%, the eddy current loss of the product will increase, which is not preferable in terms of achieving low iron loss.On the other hand, if it exceeds 45 inches, cold rolling will become difficult; It's within range.

sbは0.005%未満では最終仕上げ焼鈍時における
2次再結晶に際して1次再結晶粒の成長抑制効果が少な
く、一方02%を越えれば磁束密度が低トし始めて磁気
特性を劣化させるから、0.005〜0.2%の範囲と
する必要がある。
If sb is less than 0.005%, the effect of suppressing the growth of primary recrystallized grains during secondary recrystallization during final finish annealing will be small, while if it exceeds 0.02%, the magnetic flux density will begin to decrease and the magnetic properties will deteriorate. It needs to be in the range of 0.005 to 0.2%.

S 、 Seは、いずれか一方を単独で使用する場合で
も、また併用する場合でも、それらの合計含有量が00
05%未満では最終仕上げ焼鈍時における2次再結晶に
際して1次再結晶粒の成長抑制効果が少なく、一方(l
 1. %を越えれば熱間加工性の低下および鉄損特性
の劣化を招くから、0.005〜0.1%の範囲内とす
る必要がある。
Whether S or Se is used alone or in combination, their total content is 00
If it is less than 0.05%, the effect of suppressing the growth of primary recrystallized grains during secondary recrystallization during final finish annealing is small;
1. If it exceeds 0.0%, hot workability and iron loss characteristics will deteriorate, so it is necessary to keep it within the range of 0.005 to 0.1%.

この発明における第1の特徴であるN1の添加量は、第
1図の実験データで示すように、0.05〜1.0%の
範囲で磁気特性向上に有効である。Niが005%未満
ではその効果がわずかであり、一方1.0%を越えても
よシ一層の改善効果を示さず、むしろ2次再結晶を不安
定にし、磁気特性の劣化を招く。特に第1図から明らか
なように、Si量が増加するに伴って歯無添加の場合の
磁束密度は低下するが、逆に0.05〜10俤のN1添
加による磁束密度向」ニ効果は、SL量が増大するに伴
って顕著となシ、このことから高Si領域におけるN1
添加が極めて有効であることが判る。なお第1図の実験
は、CO,048%、 Siが3.3%、3.8%。
The amount of N1 added, which is the first feature of this invention, is effective in improving magnetic properties in the range of 0.05 to 1.0%, as shown by the experimental data in FIG. If the Ni content is less than 0.005%, the effect is slight, while if it exceeds 1.0%, it does not show any further improvement effect, but rather makes secondary recrystallization unstable and causes deterioration of the magnetic properties. In particular, as is clear from Figure 1, as the amount of Si increases, the magnetic flux density in the case without tooth addition decreases, but conversely, the effect of adding 0.05 to 10 tons of N1 on magnetic flux density decreases. , becomes more noticeable as the SL amount increases, which indicates that N1 in the high Si region
It turns out that the addition is extremely effective. In the experiment shown in Figure 1, CO was 0.48% and Si was 3.3% and 3.8%.

43%の3水準、sb O,029%、SeO,023
%。
3 levels of 43%, sb O, 029%, SeO, 023
%.

Mo 0.016%含有する珪素鋼素材についてNi量
を0〜5.0%の範囲内で変化させ、各珪素鋼素材につ
いて後述する実施例1とほぼ同様の条件で処理して得ら
れた各製品の磁束密度B10値を調べたものである。
Each silicon steel material containing 0.016% Mo was treated with Ni content within the range of 0 to 5.0%, and each silicon steel material was treated under substantially the same conditions as in Example 1 described later. The magnetic flux density B10 value of the product was investigated.

さらにこの発明の第2の特徴であるMoの添加量は、O
,003%未満では1次再結晶粒の成長抑制ならびに(
1,10)<001>方位の2次再結晶粒を得る効果が
小さく、一方0.1%を越えれば熱間および冷間加工性
が劣化し、かつ鉄損が増大するから、0.003〜01
チの範囲内とする必要がある。
Furthermore, the second feature of this invention is that the amount of Mo added is O
,003%, the growth of primary recrystallized grains is suppressed and (
1,10) The effect of obtaining secondary recrystallized grains with <001> orientation is small, and if it exceeds 0.1%, hot and cold workability deteriorates and iron loss increases, so 0.003 ~01
It must be within the range of

上述のようなNiとMoの複合添加の効果は、第2図か
らも明らかである。すなわち、Ni0.05〜1.0%
、 Mo 0.003〜0.1 O%の範囲内において
安定して高い磁束密度が得られることが明らかである。
The effect of the combined addition of Ni and Mo as described above is also clear from FIG. That is, Ni0.05-1.0%
, It is clear that a stable high magnetic flux density can be obtained within the range of Mo 0.003 to 0.1 O%.

そして特にNi 0.1〜0,5%、 Mo 0.01
0〜0.050%の範囲内ではより高い磁束密度が得(
9) られる。なお第2図の実験は、CO,046%。
And especially Ni 0.1-0.5%, Mo 0.01
Higher magnetic flux density is obtained within the range of 0 to 0.050% (
9) It can be done. The experiment shown in Figure 2 was performed using CO, 046%.

Si3.36%、SbO,031%、SeO,026%
を含有する珪素鋼素材について、Mo−計1 Ni t
を種種変化させ、各珪素鋼素材について後述する実施例
1とほぼ同様の条件で処理して得られた各製品の磁束密
度B10値を調べたものである。
Si3.36%, SbO, 031%, SeO, 026%
Regarding the silicon steel material containing Mo-total 1 Ni t
The magnetic flux density B10 value of each product was investigated by varying the number of silicon steel materials and treating each silicon steel material under substantially the same conditions as in Example 1, which will be described later.

この発明の方法で使用される珪素鋼素材は、以上の各成
分のほか、通常の珪素鋼中に含有される公知の諸元素が
含有されていても特に支障はない。
The silicon steel material used in the method of the present invention may contain, in addition to the above-mentioned components, various elements known to be contained in ordinary silicon steel without any particular problem.

例えばMnは、0.002〜0.2%程度含有させるこ
とは好ましい。そのほかCu 、 B 、 Cr 、 
Ti 、 V 。
For example, it is preferable to contain Mn in an amount of about 0.002 to 0.2%. In addition, Cu, B, Cr,
Ti, V.

Nb 、 Ta’、 Co 、 Sn 、 P 、 A
s 、旧、 pb等の不可避的元素が微量含有されるこ
とも妨げない。また脱酸剤として使用したAlが微量、
例えば001俤以下残存しても、この発明の効果は充分
に得られるが、通常AA’の残存量はO,005%以下
である。
Nb, Ta', Co, Sn, P, A
There is no hindrance to the inclusion of trace amounts of unavoidable elements such as s, old, and pb. Also, there is a trace amount of Al used as a deoxidizing agent.
For example, even if less than 0.001% remains, the effects of the present invention can be sufficiently obtained, but normally the remaining amount of AA' is less than 0.005%.

以上の如き成分の珪素鋼素材を溶製、鋳造する方法とし
ては、従来公知の如何なる方法を用いても良く、例えば
転炉製鋼法によって溶製して、連続鋳造法あるいは造塊
−分塊圧延法によってスラブ素材(10) とすれば良い。このような素材に対しては、加熱後通常
の熱間圧延によって熱延コイルに圧延し、必要に応じて
均一化・焼鈍、酸洗を施した後、1回の冷間圧延、また
は中間焼鈍を挾んで2回以上の冷間圧延を施し、最終板
厚とする。この冷間圧延工程は、通常の常温での冷間圧
延でも良いが、圧延時の板割れを防ぐために温間圧延を
適用することが望ましい。また最終冷間圧延時の圧下率
は、少くとも50%以上の強圧下とすることが望ましい
。このようにして最終板厚とされた冷延板は、脱脂した
後、必要に応じて軽度の酸洗を施し、次いで脱炭・1次
再結晶焼鈍として、750〜950℃の温度にて湿水素
中で:3〜15分程度保持する焼鈍を行なう。そしてM
gOを主成分とする焼鈍分離剤を鋼板表面に塗布し、最
終仕上げ焼鈍を施す。この最終仕上げ焼鈍としては従来
公知の種々の方法を適用できるが、例えば1000℃以
」ニの温度で5時間以上、水素もしくは水素と窒素。
Any conventionally known method may be used to melt and cast the silicon steel material having the above-mentioned components. For example, it may be melted by a converter steel manufacturing method, and then it can be melted by a continuous casting method or by ingot making and blooming rolling. Slab material (10) may be used according to the law. For such materials, after heating, they are rolled into hot-rolled coils by normal hot rolling, homogenized, annealed, and pickled as necessary, and then cold rolled once or intermediately annealed. The final plate thickness is obtained by sandwiching and cold rolling two or more times. This cold rolling process may be performed by ordinary cold rolling at room temperature, but it is preferable to apply warm rolling to prevent plate cracking during rolling. Further, it is desirable that the reduction rate during the final cold rolling is a strong reduction of at least 50% or more. After degreasing the cold-rolled sheet to the final thickness in this way, it is lightly pickled if necessary, and then subjected to decarburization and primary recrystallization annealing at a temperature of 750 to 950°C. In hydrogen: Annealing is performed by holding for about 3 to 15 minutes. And M
An annealing separator containing gO as a main component is applied to the surface of the steel plate, and final annealing is performed. Various conventionally known methods can be applied to this final annealing, but for example, hydrogen or hydrogen and nitrogen at a temperature of 1000° C. or higher for 5 hours or more.

Arなどの混合雰囲気中で焼鈍すれば良い。Annealing may be performed in a mixed atmosphere such as Ar.

以下に実施例について説明する。Examples will be described below.

実施例1 C0,038%、Si3.31%、 Mn 0.068
%。
Example 1 C0,038%, Si3.31%, Mn 0.068
%.

Sb O,025% 、 Se 0.020%を含む鋼
塊にN1を0〜0.5チ添加し、かつMoをo、ots
%とした鋼塊およびMoを添加しない鋼塊を用い、13
50℃に加熱した後、熱間圧延して厚さ24鰭の熱延板
とした。各熱延板に900℃×3分間の均一化焼鈍を施
した後、圧下率約70%の第1次々間圧延を施し、続い
て950℃×3分間の中間焼鈍を施し、圧下率約65%
の第2次々間圧延を施して0.3能厚の冷延板としだ。
N1 was added to a steel ingot containing 0.025% of SbO, 0.025% and 0.020% of Se, and 0 to 0.5% of Mo was added to the steel ingot.
13% using a steel ingot and a steel ingot without adding Mo.
After heating to 50°C, it was hot-rolled to obtain a hot-rolled plate with a thickness of 24 fins. Each hot-rolled sheet was subjected to uniform annealing at 900°C for 3 minutes, then subjected to first successive rolling at a rolling reduction of approximately 70%, followed by intermediate annealing at 950°C for 3 minutes, with a rolling reduction of approximately 65%. %
A cold-rolled sheet with a thickness of 0.3 was obtained by performing a second successive rolling process.

その後湿水素中にて820℃で脱炭・1次再結晶焼鈍を
施し、MgOを主成分とする焼鈍分離剤を塗布して、水
素中において1180℃で5時間の最終仕上げ焼鈍を施
した。
Thereafter, decarburization and primary recrystallization annealing was performed at 820°C in wet hydrogen, an annealing separator containing MgO as a main component was applied, and final finish annealing was performed at 1180°C in hydrogen for 5 hours.

実施例1により得られた各製品の磁気特性を、素材のN
i 、 Mo添加量と対応して第1表に示す。
The magnetic properties of each product obtained in Example 1 were determined by the N of the material.
i and the amount of Mo added are shown in Table 1.

第1表 第1表から明らかなように、Ni 、 Moを複合添加
した本発明例においては、いずれも低鉄損と高磁束密度
が達成されていることがわかる。
As is clear from Table 1, in the examples of the present invention in which Ni and Mo were added in combination, low iron loss and high magnetic flux density were achieved.

実施例2 CO,042%、 Mn 0.072% 、 Sb O
,024% 。
Example 2 CO, 042%, Mn 0.072%, SbO
,024%.

Se 0.022 S 、 Mo 0. OL 8 %
を含有する鋼塊に、Si3.3〜4.4%を添加し、か
つNiO,20%を添加した鋼塊およびNiを添加しな
い鋼塊を用い、(13) 1350℃に加熱した後、熱間圧延して厚さ2.4圏の
熱延板とした。これらの熱延板に900℃で3分間の均
一化焼鈍を施した後、400℃で圧丁率約70%の温間
圧延を行ない、引続いて950℃で3分間の中間焼鈍を
施した。その後、圧下率約65%の2次温間圧延によシ
ロ3■厚の冷延板とし、引続いて湿水素中にて820℃
で3分間の脱炭・1次再結晶焼鈍を施し、MgOを主成
分とする焼鈍分離剤を塗布して、水素中にて1180℃
で5時間の最終仕上げ焼鈍を施した。
Se 0.022 S, Mo 0. Office lady 8%
(13) Using a steel ingot containing 3.3 to 4.4% Si and 20% NiO, and a steel ingot containing no Ni, heat the This was then rolled into a hot-rolled sheet with a thickness of about 2.4 cm. These hot-rolled sheets were uniformly annealed at 900°C for 3 minutes, then warm rolled at 400°C with a cutting rate of about 70%, and then intermediately annealed at 950°C for 3 minutes. . After that, it was made into a cold rolled sheet with a thickness of 3 cm by secondary warm rolling at a reduction rate of about 65%, and then heated at 820°C in wet hydrogen.
After decarburizing and primary recrystallization annealing for 3 minutes at
Final annealing was performed for 5 hours.

この実施例2によシ得られた製品の磁気特性を、素材の
Si 、 Mo 、 Ni量と対応して第2表に示す。
The magnetic properties of the product obtained in Example 2 are shown in Table 2 in correspondence with the amounts of Si, Mo, and Ni in the material.

(14) 第2表 第2表から、Si含有量が高い領域でNi添加により磁
気特性が著しく向上することが判る。
(14) Table 2 It can be seen from Table 2 that the magnetic properties are significantly improved by adding Ni in the region where the Si content is high.

以上のようにこの発明の方法によれば、鉄損をより低下
させるべ(Si含有量を3.1〜4.5q6とした高S
i領域において、素材成分として適量のNiおよびMo
を複合添加することにより磁束密度B、。値をも安定し
て高めることができ、したがって低鉄損でしかも高磁束
密度の方向性珪素鋼板を安定に得ることができる顕著な
効果が得られる。
As described above, according to the method of the present invention, it is possible to further reduce iron loss (high S content with Si content of 3.1 to 4.5q6).
In the i region, appropriate amounts of Ni and Mo are used as material components.
The magnetic flux density B is increased by adding . Therefore, the remarkable effect of stably obtaining a grain-oriented silicon steel sheet with low core loss and high magnetic flux density can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は珪素鋼素材中のNi含有量と製品における磁束
密度B1o値との関係を3種の81含有量について示す
相関図、第2図は珪素鋼素材中のN1およびMoの含有
量と製品における磁束密度B10値との関係を示す相関
図である。 出願人 川崎製鉄株式会社
Figure 1 is a correlation diagram showing the relationship between the Ni content in the silicon steel material and the magnetic flux density B1o value in the product for three types of 81 content, and Figure 2 is the relationship between the Ni content in the silicon steel material and the Mo content. It is a correlation diagram showing the relationship with the magnetic flux density B10 value in a product. Applicant Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 CO,01〜008%(重量%、以下同じ)、Si 3
.1〜4.5%、Sb0.005〜0.2%、 S 、
 Seのいずれか1種または2種を合計で0.005〜
0.1%含有する珪素鋼素材を熱間圧延し、1回またけ
中間焼鈍を挾む2回以上の冷間圧延を施して最終製品厚
の冷延鋼板とした後、脱炭・1次再結晶焼鈍を施し、さ
らに最終仕上げ焼鈍によシ(110)<001>方位の
2次再結晶粒を発達させる一連の工程よりなる方向性珪
素鋼板の製造方法において、 前記珪素鋼索は中にNi O,05〜1.0係とM。 0003〜0.1 %とを含有させることを特徴とする
方向性珪素鋼板の製造方法。
[Claims] CO, 01-008% (weight %, same hereinafter), Si 3
.. 1-4.5%, Sb0.005-0.2%, S,
A total of 0.005 to 1 or 2 of Se
A silicon steel material containing 0.1% is hot-rolled, cold-rolled two or more times with one intermediate annealing in between to make a cold-rolled steel sheet with the final product thickness, and then decarburized and subjected to primary A method for producing a grain-oriented silicon steel sheet comprising a series of steps of recrystallization annealing and final finish annealing to develop secondary recrystallized grains with (110)<001> orientation, wherein the silicon steel rope has Ni inside. O, 05-1.0 section and M. 0003 to 0.1%.
JP25140883A 1983-12-24 1983-12-24 Production of grain oriented silicon steel sheet Pending JPS60135524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25140883A JPS60135524A (en) 1983-12-24 1983-12-24 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25140883A JPS60135524A (en) 1983-12-24 1983-12-24 Production of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS60135524A true JPS60135524A (en) 1985-07-18

Family

ID=17222395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25140883A Pending JPS60135524A (en) 1983-12-24 1983-12-24 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS60135524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321695A2 (en) * 1987-11-20 1989-06-28 Nippon Steel Corporation Process for production of grain oriented electrical steel sheet having high flux density
JP2010063689A (en) * 2008-09-11 2010-03-25 Panasonic Corp Air conditioning fan unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321695A2 (en) * 1987-11-20 1989-06-28 Nippon Steel Corporation Process for production of grain oriented electrical steel sheet having high flux density
JP2010063689A (en) * 2008-09-11 2010-03-25 Panasonic Corp Air conditioning fan unit

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
KR102249920B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
JPH0443981B2 (en)
JP3928275B2 (en) Electrical steel sheet
JPS60135524A (en) Production of grain oriented silicon steel sheet
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density