JPS60134609A - Sampling phase detector - Google Patents

Sampling phase detector

Info

Publication number
JPS60134609A
JPS60134609A JP24340183A JP24340183A JPS60134609A JP S60134609 A JPS60134609 A JP S60134609A JP 24340183 A JP24340183 A JP 24340183A JP 24340183 A JP24340183 A JP 24340183A JP S60134609 A JPS60134609 A JP S60134609A
Authority
JP
Japan
Prior art keywords
frequency signal
field effect
low
gallium
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24340183A
Other languages
Japanese (ja)
Other versions
JPH0157524B2 (en
Inventor
Takeshi Takano
健 高野
Yoshiharu Tozawa
戸沢 義春
Takao Shima
島 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24340183A priority Critical patent/JPS60134609A/en
Publication of JPS60134609A publication Critical patent/JPS60134609A/en
Publication of JPH0157524B2 publication Critical patent/JPH0157524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • H03D13/007Circuits for comparing the phase or frequency of two mutually-independent oscillations by analog multiplication of the oscillations or by performing a similar analog operation on the oscillations
    • H03D13/008Circuits for comparing the phase or frequency of two mutually-independent oscillations by analog multiplication of the oscillations or by performing a similar analog operation on the oscillations using transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manipulation Of Pulses (AREA)
  • Networks Using Active Elements (AREA)

Abstract

PURPOSE:To offer a sampling phase detector with high detecting sensitivity by using a gallium-arsenic field effect transistor (TR) as a switching element. CONSTITUTION:A low-frequency signal, e.g., 100MHz applied to a terminal 15 is fed to a step recovery diode 3 through a coil 8, the signal is converted into a narrow pulse train, the low-frequency component is eliminated by a capacitor 11 and the result is fed to the gate of the gallium-arsenic field effect TR12. On the other hand, an ultrahigh frequency signal voltage applied to the drain of the gallium-arsenic field effect TR12 from a terminal 16 is changed depending on ON/OFF of the gallium-arsenic field effect TR12. Although the extracted signal part is shifted when the phase of the ultrahigh frequency signal and the harmonic of the low-frequency signal is not coincident, the signal is integrated by a capacitor 13 and the relation becomes the same as the comparison of the harmonic component of the low-frequency signal and the ultrahigh frequency signal.

Description

【発明の詳細な説明】 (al 発明の技術分野 本発明はサンプリング位相検波器に係り、特に超高周波
信号を低周波信号でサンプルする事により直接的に低周
波信号の高調波成分と超高周波信号の位相比較を行うサ
ンプリング位相検波器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (al) Technical Field of the Invention The present invention relates to a sampling phase detector, and in particular, by sampling an ultra-high frequency signal with a low-frequency signal, it is possible to directly detect the harmonic components of the low-frequency signal and the ultra-high frequency signal. The present invention relates to a sampling phase detector that performs phase comparison.

山) 従来技術と問題点 利用周波数がどんどん高くなっているが、これ1−8 に伴って例えば20〜50GHz帯で10〜10程度の
周波数安定度のある信号源が必要になる場合がある。
PRIOR ART AND PROBLEMS As the frequencies used are getting higher and higher, a signal source with a frequency stability of about 10 to 10 in the 20 to 50 GHz band, for example, may be required.

この様な要求を満足する為には安定な水晶発振器の出力
を逓倍して所定の周波数を持つ出力を得るか、又は超高
周波発振器の出力を安定な水晶発振器の出力に位相同期
させて必要な安定度及び所定の周波数を持つ出力を得る
等の方法がある。
In order to satisfy these requirements, the output of a stable crystal oscillator must be multiplied to obtain an output with a predetermined frequency, or the output of an ultra-high frequency oscillator must be phase-synchronized with the output of a stable crystal oscillator. There are methods such as obtaining an output with stability and a predetermined frequency.

前者の場合は回路構成要素が多くなり、価格が高くなる
。一方、後者の場合は回路構成要素が少ないため価格は
前者よりも安くなると云う利点がある。
In the former case, the number of circuit components increases and the price increases. On the other hand, the latter has the advantage of being cheaper than the former because it has fewer circuit components.

第1図は後者の方法で安定度の高い超高周波信号を得る
際に用いられるサンプリング位相検波器の従来例を示す
FIG. 1 shows a conventional example of a sampling phase detector used when obtaining a highly stable ultra-high frequency signal using the latter method.

この回路の概略の動作は次の様である。The general operation of this circuit is as follows.

即ち、端子4と5の間に加えられた低周波信号はステン
プリカバリ−・ダイオード3で正及び負の巾の狭いパル
ス列に変換された後ショットキーバリア・ダイオード1
及び2に加えられる。
That is, a low frequency signal applied between terminals 4 and 5 is converted into a narrow pulse train with positive and negative widths by a step recovery diode 3, and then passed through a Schottky barrier diode 1.
and added to 2.

そこで、このショットキーバリア・ダイオードl及び2
はスイッチング動作をする。
Therefore, these Schottky barrier diodes 1 and 2
performs a switching operation.

一方、端子6に加えられた超高周波信号は同しく前記シ
ョットキーバリア・ダイオードl及び2に加えられ、こ
こで混合されて前記低周波信号の高調波成分と超高周波
信号との位相差に比例した電圧が端子7から取出される
On the other hand, the ultrahigh frequency signal applied to terminal 6 is also applied to the Schottky barrier diodes 1 and 2, where it is mixed and is proportional to the phase difference between the harmonic components of the low frequency signal and the ultrahigh frequency signal. The voltage is taken out from terminal 7.

この回路はステップリカバリ−・ダイオード3の負荷と
なっているショットキーバリア・ダイオード1及び2の
インピーダンスが低い為に検波感度が低いと云う問題が
あった。
This circuit has a problem in that the detection sensitivity is low because the impedance of the Schottky barrier diodes 1 and 2 serving as a load for the step recovery diode 3 is low.

(C1発明の目的 本発明は上記従来技術の問題に鑑みなされたものであっ
て、スイッチング素子としてガリウム砒素電界効果型ト
ランジスタを使用する事により検波感度の高いサンプリ
ング位相検波器を提供する事を目的としている。
(C1 Purpose of the Invention The present invention was made in view of the above-mentioned problems of the prior art, and its purpose is to provide a sampling phase detector with high detection sensitivity by using a gallium arsenide field effect transistor as a switching element. It is said that

(dl 発明の構成 上記発明の目的は低周波信号を巾の狭いパルス列に変換
する手段と該変換手段で得られたパルス列と超高周波信
号とを電界効果型トランジスタに加えて混合する手段と
該混合手段で得られた該低周波信号の高調波成分と該超
高周波信号との位相差に比例した電圧を取出す手段とか
らなることを特徴とするサンプリング位相検波器を提供
することにより達成される。
(dl) Structure of the Invention The object of the invention is to provide a means for converting a low frequency signal into a narrow pulse train, a means for adding the pulse train obtained by the converting means and an ultra-high frequency signal to a field effect transistor, and mixing the pulse train. This is achieved by providing a sampling phase detector comprising means for extracting a voltage proportional to the phase difference between the harmonic component of the low frequency signal obtained by the means and the ultrahigh frequency signal.

fe) 発明の実施例 第2図は本発明の一実施例を、第3図は第2図の動作を
説明する為の図で左側の数字は第2図の同じ数字の部分
の波形を示す。
fe) Embodiment of the Invention Fig. 2 shows an embodiment of the present invention, Fig. 3 is a diagram for explaining the operation of Fig. 2, and the numbers on the left indicate the waveforms of the parts with the same numbers in Fig. 2. .

第2図に於て、8,50及び51は線輪を、10.11
及び13はコンデンサを、3はステップリカバリー・ダ
イオードを、12はガリウム砒素電界効果型トランジス
タを、14.53及び54は抵抗器を、15〜19は端
子をそれぞれ示す。
In Figure 2, 8, 50 and 51 are wire wheels, 10.11
and 13 are capacitors, 3 is a step recovery diode, 12 is a gallium arsenide field effect transistor, 14, 53 and 54 are resistors, and 15 to 19 are terminals, respectively.

これらの素子は次の様に接続されている。These elements are connected as follows.

ガリウム砒素電界効果型トランジスタ12のゲートはコ
ンデンサ比ステップリカバリニ・ダイオード3.抵抗器
14.線輪8.コンデンサ10からなる変換手段を介し
て端子15と、ソースは地気と、ドレインはコンデンサ
52を介して端子16及び線輪51を介して端子17と
、端子17はコンデンサ13を介して地気とそれぞれ接
続されている。
The gate of the gallium arsenide field effect transistor 12 is a capacitor ratio step recovery diode 3. Resistor 14. Line ring 8. The source is connected to the earth through a conversion means consisting of a capacitor 10, the drain is connected to the earth through the capacitor 52, the terminal 16 is connected to the terminal 17 through the wire ring 51, and the terminal 17 is connected to the earth through the capacitor 13. each connected.

尚、端子18は抵抗器53及び線輪5oを介して前記ト
ランジスタ12のゲート電極と、端子19は抵抗器54
を介して端子17とそれぞれ接続される。
Note that the terminal 18 is connected to the gate electrode of the transistor 12 via the resistor 53 and the wire 5o, and the terminal 19 is connected to the resistor 54.
are respectively connected to the terminals 17 via the terminals 17 and 17.

この様に接続された回路の動作を第3図を参考にしなが
ら説明する。
The operation of the circuit connected in this way will be explained with reference to FIG.

先ず、端子15に加えられた例えば100MHzの低周
波信号は、線輪8を通ってステンプリカバリー・ダイオ
ード3に加えられて巾の狭いパルス列に変換された後コ
ンデンサ11で低周波成分が除去されガリウム砒素電界
効果型トランジスタ12のゲートに加えられる(第3図
の)。そこで、このガリウム砒素電界効果型トランジス
タ12はスイッチング動作を行うことになる。
First, a low frequency signal of, for example, 100 MHz applied to the terminal 15 passes through the coil 8 and is applied to the step recovery diode 3 where it is converted into a narrow pulse train, and then the low frequency component is removed by the capacitor 11. It is applied to the gate of gallium arsenide field effect transistor 12 (FIG. 3). Therefore, this gallium arsenide field effect transistor 12 performs a switching operation.

ここで、コンデンサ10は入力された低周波信号のステ
ンプリカバリー・ダイオード3に対するマツチング用コ
ンデンサとして、抵抗器14は安定化用抵抗器としてそ
れぞれ用いられている。
Here, the capacitor 10 is used as a matching capacitor for the input low frequency signal to the step recovery diode 3, and the resistor 14 is used as a stabilizing resistor.

又、端子18及び19には所定の直流電圧が加えられて
いる。
Further, a predetermined DC voltage is applied to the terminals 18 and 19.

一方、端子16からガリウム砒素電界効果型トランジス
タ12のドレインに加えられた超高周波信号電圧は前記
ガリウム砒素電界効果型トランジスタ12のオン/オフ
により第3図■に示す様に変化する。
On the other hand, the ultra-high frequency signal voltage applied from the terminal 16 to the drain of the gallium arsenide field effect transistor 12 changes as shown in FIG.

ここで、第3図■の打ち抜かれた部分すは超高周波信号
と低周波信号の高調渡分との位相が一致していれば超高
周波信号の同じ部分がいつも打ち抜かれる事になるが、
位相が一致しないと打ち抜かれる部分がずれて行(。そ
こで、第3図■に示す様に例えばaより左側の部分は電
圧の高い部分が、aの右側の部分は電圧の低い部分が打
ち抜かれるので、コンデンサ13で積分された時の電圧
の変化は第3図■に示す様に徐々に上昇して波を打つ。
Here, if the phase of the punched out portion of the ultra-high frequency signal and the harmonic portion of the low-frequency signal match in the punched out portion of Fig. 3 (■), the same portion of the ultra-high frequency signal will always be punched out.
If the phases do not match, the punched parts will be out of alignment (. Therefore, as shown in Figure 3 (■), for example, the part to the left of a is punched out with a high voltage part, and the part to the right of a is punched with a low voltage part. Therefore, the change in voltage when integrated by the capacitor 13 gradually rises and waves as shown in Figure 3 (■).

 これは結局、低周波信号の高調波成分と超高周波信号
との位相を比較した事になる。
This ultimately amounts to comparing the phases of the harmonic components of the low frequency signal and the super high frequency signal.

第4図は第2図のガリウム砒素電界効果型トランジスタ
12のゲート電圧Vgとドレイン電圧Vdに対する等検
波感度の地図を示す。
FIG. 4 shows a map of equal detection sensitivity with respect to gate voltage Vg and drain voltage Vd of the gallium arsenide field effect transistor 12 shown in FIG.

第5図fatは本発明の別の実施例を示し、第2図と同
一の記号は同一の部分を示す。
FIG. 5 fat shows another embodiment of the present invention, in which the same symbols as in FIG. 2 indicate the same parts.

又、第5図fblは第5図(alの動作を説明する為の
図で、左側の数字は第5図(alの同じ部分の波形を示
す。
Further, FIG. 5 fbl is a diagram for explaining the operation of FIG. 5 (al), and the numbers on the left side indicate the waveforms of the same portion of FIG. 5 (al).

第5図(a)に於て、端子15に加えられ変成器27で
不平衡−平衡変換された例えばloOMllzの低周波
信号は、ステップリカバリー・ダイオード3及びコンデ
ンサ25及び26により→−及び−の極性を持つ巾の狭
いパルス列に変換れた後ガリウム砒素電界効果型トラン
ジスタ21及び21に加えられる。
In FIG. 5(a), a low frequency signal, for example loOMllz, applied to the terminal 15 and unbalanced-balanced converted by the transformer 27 is converted to →- and - by the step recovery diode 3 and capacitors 25 and 26. After being converted into a narrow pulse train with polarity, it is applied to gallium arsenide field effect transistors 21 and 21.

このガリウム砒素電界効果型トランジスタ21及び22
は端子18からピンチオフ以下の直流電圧が、端子19
からoV付近の直流電圧が、端子20からは定められた
十の直流電圧がそれぞれ加えられているが、前記の様に
この巾の狭いパルス列によりスイッチング動作を行う。
These gallium arsenide field effect transistors 21 and 22
The DC voltage below the pinch-off from terminal 18 is applied to terminal 19.
DC voltages around oV are applied from the terminals 20, and as described above, the switching operation is performed by this narrow pulse train.

一方、端子16に入力された超高周波信号は180度ハ
イブリッド回路23で互いに逆位相の超高周波信号が取
り出され、スイッチング動作をしているガリウム砒素電
界効果型卜゛ランジスタ21及び22のドレインにそれ
ぞれ加えられる。
On the other hand, the ultra-high frequency signals inputted to the terminal 16 are taken out by the 180-degree hybrid circuit 23 and are sent to the drains of the gallium arsenide field effect transistors 21 and 22 which are performing switching operations. Added.

そこで、ガリウム砒素電界効果型トランジスタ21及び
22のドレイン電圧は第5図(blの■及び■に示す様
に変化する。この電圧変化は積分用コンデンサ28及び
29で積分された後、増幅器3Oで加えられ第3図■と
同じ様な波形が得られる。
Therefore, the drain voltages of the gallium arsenide field effect transistors 21 and 22 change as shown in (■) and (■) in FIG. A waveform similar to that shown in Figure 3 (■) is obtained.

第6図(a)及び(b)は更に別の実施例を示すが、第
5図との違いは端子16から超高周波信号をガリウム砒
素電界効果型トランジスタ21及び22のドレインへ同
相で供給する様にしてあり、その他は同じ回路構成であ
る。
FIGS. 6(a) and 6(b) show yet another embodiment, and the difference from FIG. 5 is that the ultra-high frequency signal is supplied from the terminal 16 to the drains of the gallium arsenide field effect transistors 21 and 22 in the same phase. The other circuit configurations are the same.

そこで、2つガリウム砒素電界効果型トランジスタ21
及び22のドレイン電圧の変化は差動増幅器40を用い
て取り出している。
Therefore, two gallium arsenide field effect transistors 21
A differential amplifier 40 is used to extract changes in the drain voltages of 2 and 22.

lfl 発明の詳細 な説明した様に本発明によればスイッチング素子として
ショットキーバリア・ダイオードの代りにガリウム砒素
電界効果型トランジスタを用いたので、ステップリカバ
リー・ダイオードの負荷が軽(なった。
lfl As described in detail, according to the present invention, a gallium arsenide field effect transistor is used as a switching element instead of a Schottky barrier diode, so the load on the step recovery diode is reduced.

この為、ステップリカバリー・ダイオードで得られるパ
ルスは中がより狭く、且つ高さがより高くなって検波感
度が従来のものに比較して改善された。
For this reason, the pulse obtained by the step recovery diode has a narrower inside and a higher height, and the detection sensitivity has been improved compared to the conventional one.

例えば、データの一例として周波数的26Gllzに於
て従来の検波感度的5mv/radが本発明の場合は約
30mv/radに、数GHz以下の周波数で約100
mV/radで飽和する所が本発明では直線的に増加し
て約2GHzで約1.OV/radであった。
For example, as an example of data, the conventional detection sensitivity of 5 mv/rad at a frequency of 26 Gllz becomes approximately 30 mv/rad in the case of the present invention, and approximately 100 mv/rad at a frequency of several GHz or less.
In the present invention, the saturation point at mV/rad increases linearly to about 1.0 mV/rad at about 2 GHz. It was OV/rad.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサンプリング位相器の従来例を、第2図は本発
明の一実施例を、第3図及び第4図は第2図の回路を説
明する為の図を、第5図(a)は本発明の別の実施例を
、第5図Tblは第5図(a)の動作を説明する為の図
を、第6図(alは更に別の実施例を、第6図山)は第
6図+a)の動作を説明する為の図をそれぞれ示す。 図中、3はステップリカバリー・ダイオードを、12は
ガリウムひ素電界効果型トランジスタを、11及び13
はコンデンサをそれぞれ示す。 0 O■ O QLツー八へ県 8 喝 N C) 0 Q0
FIG. 1 shows a conventional example of a sampling phase shifter, FIG. 2 shows an embodiment of the present invention, FIGS. 3 and 4 are diagrams for explaining the circuit in FIG. 2, and FIG. ) shows another embodiment of the present invention, FIG. 5 Tbl shows a diagram for explaining the operation of FIG. 5(a), and FIG. 6A and 6B respectively show diagrams for explaining the operation of FIG. 6+a). In the figure, 3 is a step recovery diode, 12 is a gallium arsenide field effect transistor, 11 and 13 are
indicate capacitors, respectively. 0 O ■ O QL to eight prefecture 8 cheer N C) 0 Q0

Claims (1)

【特許請求の範囲】[Claims] 低周波信号を巾の狭いパルス列に変換する手段と該変換
手段で得られたパルス列と超高周波信号とを電界効果型
トランジスタに加えて混合する手段と該混合手段で得ら
れた該低周波信号の高調波成分と該超高周波信号との位
相差に比例した電圧を皐出す手段とからなることを特徴
とするサンプリング位相検波器
A means for converting a low frequency signal into a narrow pulse train; a means for adding the pulse train obtained by the converting means and an ultra-high frequency signal to a field effect transistor and mixing the low frequency signal; A sampling phase detector comprising means for generating a voltage proportional to the phase difference between a harmonic component and the ultra-high frequency signal.
JP24340183A 1983-12-23 1983-12-23 Sampling phase detector Granted JPS60134609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24340183A JPS60134609A (en) 1983-12-23 1983-12-23 Sampling phase detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24340183A JPS60134609A (en) 1983-12-23 1983-12-23 Sampling phase detector

Publications (2)

Publication Number Publication Date
JPS60134609A true JPS60134609A (en) 1985-07-17
JPH0157524B2 JPH0157524B2 (en) 1989-12-06

Family

ID=17103310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24340183A Granted JPS60134609A (en) 1983-12-23 1983-12-23 Sampling phase detector

Country Status (1)

Country Link
JP (1) JPS60134609A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119208A (en) * 1982-01-09 1983-07-15 Sony Corp Phase detecting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119208A (en) * 1982-01-09 1983-07-15 Sony Corp Phase detecting circuit

Also Published As

Publication number Publication date
JPH0157524B2 (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US5113094A (en) Method and apparatus for increasing the high frequency sensitivity response of a sampler frequency converter
US6879817B1 (en) DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US6963734B2 (en) Differential frequency down-conversion using techniques of universal frequency translation technology
US6798678B2 (en) Frequency voltage converter
JPH01129607A (en) Insulated amplifier including precision voltage-dutycycle converter and low ripple high band width charge balance demodulator
JP2008536432A (en) Mixer circuit
US4352210A (en) Linear mixer with reduced spurious responses
JPS60134609A (en) Sampling phase detector
US20210399685A1 (en) Odd Harmonic Generation Device and Method
US6753704B2 (en) Sampling phase detector
US4933974A (en) Switched capacitor pilot phase and magnitude detector
JPH0980096A (en) Method and instrument for measuring capacitance
JPS6340897Y2 (en)
US20150070072A1 (en) Harmonic mixer
JPH0221685B2 (en)
GB873254A (en) Improvements in or relating to circuit-arrangements for push-pull frequency demodulation or phase comparison
JPH0374043B2 (en)
JP3302779B2 (en) I / O isolated current / current converter
JPH02203286A (en) Testing method for semiconductor device
JPH0323708Y2 (en)
Parusov et al. An extension of the conductance-to-electrical signal conversion range of capacitance transducers by using self-excited oscillators with a thermistor bridge
JPS62216506A (en) Frequency discriminator
JPH0590849A (en) Differential amplifier circuit
JPS61210720A (en) Phase comparator
JPH02192208A (en) Fm detection circuit