JPS60133408A - Light junction device - Google Patents

Light junction device

Info

Publication number
JPS60133408A
JPS60133408A JP24242183A JP24242183A JPS60133408A JP S60133408 A JPS60133408 A JP S60133408A JP 24242183 A JP24242183 A JP 24242183A JP 24242183 A JP24242183 A JP 24242183A JP S60133408 A JPS60133408 A JP S60133408A
Authority
JP
Japan
Prior art keywords
light guide
waveguide
light
optical waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24242183A
Other languages
Japanese (ja)
Inventor
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24242183A priority Critical patent/JPS60133408A/en
Publication of JPS60133408A publication Critical patent/JPS60133408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a light junction device of high efficiency by forming the second light guide for junction specified in refractive index (RI) on the first light guide specified in RI, so as to reduce the film thickness of the second light guide section gradually as the section becomes farther apart from the terminal section, and covering the terminal face with a reflection prevention film. CONSTITUTION:An input light guide 11 made of amorphous silicon hydride is formed by the plasma CVD method on a PLZT type light guide 1 formed on a sapphire base 2, and formed into a 3-dimensional light guide shape so as to overlie on the light guide 1 by etching. In forming the guide 11, it is tapered gently, by using a mask. The end faces of the base 2, and the light guides 1, 11 are ground with a diamond grindstone by using the clamping fixture of said base 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光情報処理、光フアイバ通信・計測等に用い
る光結合装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical coupling device used for optical information processing, optical fiber communication/measurement, etc.

従来例の構成とその問題点 従来、平面基板上に形成された薄膜光導波路に、半導体
レーザあるいは光ファイバを直接結合させる方法として
、第1図に示す様に、薄膜光導波路1の端面を、基板2
のへき開あるいは研磨により導波路1に対しほぼ垂直に
なる様に形成し、この端面に半導体レーザあるいは光フ
ァイバ3の導波路4を接近させて、その導波光6を薄膜
光導波路1中に励振させていた。6は導波路1に導入さ
れた導波光である。しかるに、薄膜光導波路1の構造寸
法が、同一基板2上に形成される他の光回路素子(図示
せず)によって決り、例えば基板2上の他の部分にPL
ZT糸光スイッチを形成した場合では、薄膜光導波路1
の厚さが約0.36μmと薄くなり、端面研磨時の光導
波路部の面だけを発生し、励振する半導体レーザあるい
は光ファイバからの光6のスポットサイズの2〜10μ
mに比較して極めて薄くなっており、直接結合による効
率は数%にしかならず、その低効率か問題となっていた
。7.8は放射光、9.10はそれぞれ導波光6,6の
強度分布を示す。
Conventional Structure and Problems Conventionally, as a method for directly coupling a semiconductor laser or an optical fiber to a thin film optical waveguide formed on a flat substrate, as shown in FIG. Board 2
A semiconductor laser or a waveguide 4 of an optical fiber 3 is brought close to this end face, and the guided light 6 is excited into the thin film optical waveguide 1. was. Reference numeral 6 denotes guided light introduced into the waveguide 1. However, the structural dimensions of the thin film optical waveguide 1 are determined by other optical circuit elements (not shown) formed on the same substrate 2, and, for example, if the PL is placed on other parts of the substrate 2,
In the case of forming a ZT fiber optical switch, the thin film optical waveguide 1
The thickness of the optical waveguide is reduced to approximately 0.36 μm, and the spot size of the light 6 from the excited semiconductor laser or optical fiber is 2 to 10 μm.
It is extremely thin compared to M, and the efficiency due to direct coupling is only a few percent, which has been a problem. 7.8 shows the intensity distribution of the emitted light, and 9.10 shows the intensity distribution of the guided lights 6 and 6, respectively.

発明の目的 本発明は、薄膜光導波路と半導体レーザあるいは、光フ
ァイバとの直接結合装置において、高効率な結合装置を
提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a highly efficient direct coupling device between a thin film optical waveguide and a semiconductor laser or an optical fiber.

発明の構成 本発明は、屈折率n8 の基板上に形成された屈折率n
(の第1の光導波路上に、結合用とし1て屈折率n g
 (n g≧nf)を有する第2の光導波路を、その断
面形状が端面から離れるに従い膜厚が減少していく様に
形成し、かつ全体が屈折率na(n、(nf)のクラツ
ド材でおおわ拉た光導波路と、その光導波路にほぼ直角
に形成された端面に対向する様に半導体レーザあるいは
光ファイバを配置することより構成さ扛る。
Structure of the Invention The present invention provides a substrate with a refractive index n8 formed on a substrate with a refractive index n8.
(on the first optical waveguide of
(n g≧nf) is formed so that its cross-sectional shape decreases in film thickness as it moves away from the end face, and the entire second optical waveguide is made of a clad material with a refractive index na (n, (nf)). It is constructed by arranging a semiconductor laser or an optical fiber so as to face an optical waveguide which is covered with a wafer and an end face formed approximately perpendicular to the optical waveguide.

実施例の説明 第2図に本発明の一実施例を示す。サファイヤ基板2上
に形成した厚さ0.35μmのPLZT糸光導波光導波
路1率2.6)上に、入力導波路11として、水素化ア
モルファスシリコン膜〔α−8工:H(屈折率3.5 
) )をプラズマCVD法により約2μmの膜厚に形成
し、エツチングにより先導波路1に重なる様に3次元導
波路形状に加工した。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an embodiment of the present invention. A hydrogenated amorphous silicon film [α-8: H (refractive index: 3 .5
)) was formed to a thickness of approximately 2 μm by plasma CVD, and processed into a three-dimensional waveguide shape by etching so as to overlap the leading waveguide 1.

また、入力導波路11の形成の際に、マスクを用いて、
ゆるやかなテーパを形成した。テーパ部12の長さは約
1MMであった。また、α−8工:Hの光学ギャップエ
ネルギーは1.82evであった。
Furthermore, when forming the input waveguide 11, using a mask,
A gentle taper was formed. The length of the tapered portion 12 was approximately 1 mm. Further, the optical gap energy of α-8:H was 1.82 ev.

この様に形成した基板2および導波路2,11の端部を
サファイヤ基板のやといを用いてダイヤモンド砥粒を用
いて研磨した。入力導波路11の端部に若干の面だれを
生じたが、膜厚が2μmと厚いだめにほとんど問題にな
らない程度であった。
The ends of the substrate 2 and waveguides 2 and 11 thus formed were polished using a sapphire substrate with diamond abrasive grains. Although some surface sag occurred at the end of the input waveguide 11, it was hardly a problem since the film thickness was as thick as 2 μm.

このようにして得られた導波路に、半導体レーザ(波長
1.3μm、ビームサイズ約2μm)を直接結合(導波
光5を導波路1,11に入射させたところ、人力導波路
11の中1D付近に半導体レーザの光軸をあわせた時に
最も効率が高く、約3dBの損失におさえることができ
た。この波長でのα−3i:Hの光吸収損失はfヨとん
どみられながった。
A semiconductor laser (wavelength 1.3 μm, beam size approximately 2 μm) was directly coupled to the waveguide obtained in this way (when the guided light 5 was made incident on the waveguides 1 and 11, it was found that 1D The efficiency was highest when the optical axis of the semiconductor laser was aligned nearby, and the loss could be suppressed to about 3 dB.The optical absorption loss of α-3i:H at this wavelength is rarely observed. It was.

また、端部での反射による損失が約3O%あるため、A
Rコートを施すことにより、結合損失を1dB程度に軽
減できた。入力導波路を設けない場合では結合損失が約
10dBあった。また入力導波路11のテーパ部での散
乱はほとんどみ牧れなかった。
In addition, there is a loss of about 30% due to reflection at the edges, so A
By applying the R coating, the coupling loss could be reduced to about 1 dB. When no input waveguide was provided, the coupling loss was about 10 dB. Further, scattering at the tapered portion of the input waveguide 11 could hardly be observed.

第2図に従ってその原理を若干説明する。半導体レーザ
3からの出射光5の強度分布9のビームサイズ(1/e
2の強度になるビームの輻)が約2μmのガウス分布を
しており、入力導波路11の端面付近の基本モード光1
3の強度分布14とよく整合がとれており、この部分で
の結合損失は極めて少ない。入力導波路11に励振され
た導波光13は、テーパ部12において、光導波路1へ
パワー光強度分布15の様に結合して、入力導波路1の
終端部ではそのほとんどが、光導波路1へ光パワーが移
っている。その時の強度分布は16となっている。この
様に、本発明によれば、任意の膜厚を有する薄膜光導波
路と半導体レーザあるいは光ファイバとの低損失の直接
結合が可能となる。
The principle will be briefly explained with reference to FIG. The beam size of the intensity distribution 9 of the emitted light 5 from the semiconductor laser 3 (1/e
2) has a Gaussian distribution of approximately 2 μm, and the fundamental mode light 1 near the end face of the input waveguide 11
It matches well with the intensity distribution 14 of No. 3, and the coupling loss in this part is extremely small. The guided light 13 excited in the input waveguide 11 is coupled to the optical waveguide 1 at the tapered portion 12 as shown in the power light intensity distribution 15, and at the terminal end of the input waveguide 1, most of it is coupled to the optical waveguide 1. Light power is being transferred. The intensity distribution at that time is 16. As described above, according to the present invention, it is possible to directly couple a thin film optical waveguide having an arbitrary thickness with a semiconductor laser or an optical fiber with low loss.

なお、実施例において、光導波路1にサファイヤ基板上
のPLZT系薄膜光薄膜光導波路たが、何もこれに限る
ことなく、導波機能を有するどの様な薄膜光導波路でも
よい。まだ、入力導波路材料にα−8i :Hを用いた
が例もこれに限定する必要はなく、光導波路1の屈折率
より等しいか大きい材料であれば伺でもよい、また、半
導体レーザの代シに光ファイバを用いても同様な効果が
得ら扛、かつ、その場合には、光導波路からの出力結合
用としても、低損失の結合がh」能である。
In the embodiment, the optical waveguide 1 is a PLZT thin film optical waveguide on a sapphire substrate, but is not limited to this, and any thin film optical waveguide having a waveguide function may be used. Although α-8i:H is used as the input waveguide material, there is no need to limit the example to this, and any material may be used as long as the refractive index is equal to or larger than the refractive index of the optical waveguide 1. A similar effect can be obtained by using an optical fiber instead, and in that case, low-loss coupling is also possible for output coupling from the optical waveguide.

また、薄膜光導波路1および入力導波路11は屈折率”
a(”a<nf )のクラツド材でおおわれてお9、こ
のクラツド材はその機能を満たす範囲内で例でもよく、
例えば空気、 SiO□、Tie、、等々でもよい。
Furthermore, the thin film optical waveguide 1 and the input waveguide 11 have a refractive index "
It is covered with a cladding material of a ("a<nf)9, and this cladding material may be any other material as long as it satisfies its function,
For example, air, SiO□, Tie, etc. may be used.

発明の効果 本発明により、従来10dB以上程度あった薄膜光導波
路と半導体レーザあるいは光ファイバとの直接結合損失
が、1(iB程度に軽減することが可能となった。
Effects of the Invention According to the present invention, the direct coupling loss between a thin film optical waveguide and a semiconductor laser or an optical fiber, which was conventionally about 10 dB or more, can be reduced to about 1 (iB).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光結合部を示す断面図、第2図は本発明
の一実施例の光結合部を示す断面図である。 1・・・・・・薄膜光導波路、2・・・・・・基板、3
・・・・・・半導体レーザあるいは光ファイバ、4・・
・・・・光導波路、6.13・パ・・・導波光、14,
15.16・・・・・・導波光強度分布、11・・・・
・・入力導波路、12・・・・・・テーパ部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 I ;り
FIG. 1 is a sectional view showing a conventional optical coupling section, and FIG. 2 is a sectional view showing an optical coupling section according to an embodiment of the present invention. 1... Thin film optical waveguide, 2... Substrate, 3
... Semiconductor laser or optical fiber, 4...
...Optical waveguide, 6.13・P... Waveguide light, 14,
15.16... Waveguide light intensity distribution, 11...
...Input waveguide, 12...Tapered part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure I;

Claims (2)

【特許請求の範囲】[Claims] (1)屈折率ns を有する基板上に形成された屈折率
nf(nf>ns)を有する第1の光導波路上に、屈折
率n g (n ?” f)を有する第2の光導波路が
形成され、かつ、前記第2の光導波路の断面形状が端面
から離れるにしたがい膜厚が減少していく様な構造を有
する光導波路を備えてなる光結合装置。
(1) A second optical waveguide having a refractive index n g (n?”f) is formed on a first optical waveguide having a refractive index nf (nf>ns) formed on a substrate having a refractive index ns. 1. An optical coupling device comprising an optical waveguide having a structure in which the cross-sectional shape of the second optical waveguide decreases in film thickness as the distance from the end face increases.
(2)光導波路端面が、反射防止膜によりおおわれるこ
とを特徴とする特許請求の範囲第1項記載の光結合装置
(2) The optical coupling device according to claim 1, wherein the end face of the optical waveguide is covered with an antireflection film.
JP24242183A 1983-12-22 1983-12-22 Light junction device Pending JPS60133408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24242183A JPS60133408A (en) 1983-12-22 1983-12-22 Light junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24242183A JPS60133408A (en) 1983-12-22 1983-12-22 Light junction device

Publications (1)

Publication Number Publication Date
JPS60133408A true JPS60133408A (en) 1985-07-16

Family

ID=17088860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24242183A Pending JPS60133408A (en) 1983-12-22 1983-12-22 Light junction device

Country Status (1)

Country Link
JP (1) JPS60133408A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394205A (en) * 1986-10-09 1988-04-25 Hitachi Ltd Optical excitation device for bidirectional transmission
JPH01273239A (en) * 1988-04-25 1989-11-01 Sony Corp Optical reproducing pickup
JPH02109007A (en) * 1988-10-19 1990-04-20 Sanyo Electric Co Ltd Optical waveguide device
EP0687925A2 (en) 1994-06-08 1995-12-20 Hoechst Aktiengesellschaft Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
EP0695958A1 (en) * 1994-08-04 1996-02-07 Hoechst Aktiengesellschaft Tapered waveguide for optical coupling
JP2001330763A (en) * 2000-03-15 2001-11-30 Hoya Corp Condenser parts as well as light source module, laser device and signal amplifier device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394205A (en) * 1986-10-09 1988-04-25 Hitachi Ltd Optical excitation device for bidirectional transmission
JPH01273239A (en) * 1988-04-25 1989-11-01 Sony Corp Optical reproducing pickup
JPH02109007A (en) * 1988-10-19 1990-04-20 Sanyo Electric Co Ltd Optical waveguide device
EP0687925A2 (en) 1994-06-08 1995-12-20 Hoechst Aktiengesellschaft Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
EP0695958A1 (en) * 1994-08-04 1996-02-07 Hoechst Aktiengesellschaft Tapered waveguide for optical coupling
US5568579A (en) * 1994-08-04 1996-10-22 Hoechst Aktiengesellschaft Waveguide coupling device including tapered waveguide with a particular tapered angle to reduce coupling loss
JP2001330763A (en) * 2000-03-15 2001-11-30 Hoya Corp Condenser parts as well as light source module, laser device and signal amplifier device using the same

Similar Documents

Publication Publication Date Title
CA2708767C (en) Coupling between free space and optical waveguide using etched coupling surfaces
US6511571B2 (en) Method for fabricating an optical waveguide
JPH01260405A (en) Optical fiber
JPS575380A (en) Output light coupling system for semiconductor laser
JPH09506720A (en) Spatial filters for improving the polarization extinction ratio of proton exchange waveguide devices
EP0212773A2 (en) Cutoff polarizer and method
US4398795A (en) Fiber optic tap and method of fabrication
Benson Etched-wall bent-guide structure for integrated optics in the III-V semiconductors
JPS60133408A (en) Light junction device
Willner et al. Laser fabricated GaAs waveguiding structures
US4124270A (en) Monolithic, three-dimensional infrared waveguide for high power lasers
JP3223930B2 (en) Optical device
JP3666463B2 (en) Optical waveguide device and method for manufacturing optical waveguide device
JPH05107428A (en) End structure of optic fiber and manufacture thereof
JPH0743552A (en) Optical waveguide element for coupling semiconductor laser diode and waveguide type module using the same
JPS62296102A (en) Waveguide grating coupler
JPH0560928A (en) Waveguide type spot size converting element
JP2000321470A (en) Optical fiber and laser machining apparatus
JPS58196521A (en) Optical coupling circuit
JP6927094B2 (en) Optical waveguide connection structure
JPS5838621Y2 (en) Laser light source
JPH08146250A (en) Condenser lens and its production
JPH05196825A (en) Input/output structure of light guide
JPH02168206A (en) Refractive index distribution coupler
JPH0996745A (en) Semiconductor laser module