JPS60133269A - Separate type air conditioner - Google Patents

Separate type air conditioner

Info

Publication number
JPS60133269A
JPS60133269A JP24277083A JP24277083A JPS60133269A JP S60133269 A JPS60133269 A JP S60133269A JP 24277083 A JP24277083 A JP 24277083A JP 24277083 A JP24277083 A JP 24277083A JP S60133269 A JPS60133269 A JP S60133269A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
expansion valve
degree
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24277083A
Other languages
Japanese (ja)
Other versions
JPH0579895B2 (en
Inventor
孝之 杉本
奥沢 良幸
信雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP24277083A priority Critical patent/JPS60133269A/en
Priority to US06/682,312 priority patent/US4644756A/en
Priority to DE8484309057T priority patent/DE3483533D1/en
Priority to AU37101/84A priority patent/AU564902B2/en
Priority to EP84309057A priority patent/EP0188630B1/en
Publication of JPS60133269A publication Critical patent/JPS60133269A/en
Publication of JPH0579895B2 publication Critical patent/JPH0579895B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は分離形空気調和装置、詳しくは、圧縮機及び熱
源側熱交換器を備えた室外ユニットと利用側熱交換器を
備えた室内ユニットとから成り、前記室外ユニットに、
電気式膨張弁を設けた分離形空気調和装置に関する。 (従来技術) 従来ご気調和装置において、前記電気式膨張弁を用いて
吸入ガスの過熱度を制御するように成したものは、例え
ば実開昭50−22751号公報にも記載されているよ
うに一体形空気調和装置においてはすでに知られている
。この従来のものを第4図に基づいて説明する。 第4崗中、(5O]は圧に?igaTh(51)は凝稲
器、(52)は電気式膨張弁、(5ろ)は蒸発器で、こ
れら機器を冷媒配管で順次接続して冷媒回路を形成して
いる。而して、吸入ノJスの過熱度を検出すべく、前記
蒸発器(56〕の入口側部分に該蒸発器(56)での冷
媒蒸発温度を検出するm 1 温rU検出aM (54
) ヲ、又niJ 記載66 t* (55】の出口側
に吸入ガス温度を検出する第2温度検出器(55)を設
けると共に、これら検出器(54)、(55)を制御器
(56)に検出信号送信用の配線により接続し、更に該
制御器(56)を前記膨張弁(52〕に配線uすζ続し
、斯くして前記各検出器(54)、(55)からの出力
に基づき前記制御器(56)が出す制御信号により、前
記膨張弁(52〕の開度を吸入ガスの過熱度が一定にな
るように制御する如く成していたのである。 ところで、凝縮器として作用する熱源側熱交換器および
前記膨張弁(52)を室外ユニットに、又、蒸発器とし
て作用する利用側熱交換器を室内ユニットに配設する分
離形窒気調和装置において、冷房運転時に吸入ガスの過
熱度を制御すべく前記した従来の方式、即ち、前記利用
側熱交換器(蒸発器(5ろ)〕の人口及び出口部分に前
記各温度検出器(54)、(55)を設けて、冷媒の蒸
発温度、吸入ガス温度をそれぞれ直接検出して前記膨張
弁(52〕を制御する方式を用いると、前記熱交換器(
蒸発器(53)】#こおける冷媒蒸発温度を横用すべく
、前記第1温度検出器(54)を必ず室内ユニットに配
設しなければならず、口のため、前記第1温度検出器(
54)と前記膨張弁(52)とを検出信号送信用の配線
で接続すべく室内・室外ユニット間に連絡用のわたり配
線を設けなければならないのであって、この結果、配線
作業が煩雑になる問題があった。 (発明の目的] 本発明は上記従来の問題点に鑑みて発明したもので、目
的は、室外ユニット内において吸入ガスの圧力で液冷媒
を蒸発させる蒸発域をもつ回路を形成し、該回路におい
て蒸発温度(吸入ガスの圧力相当飽和製度]が検出でき
るように成すことにより、前記電気式膨張弁を用いなが
ら、室内・室外ユニット間に送信用の前記わたり配線を
設けることなく、前記膨張弁により吸入ガスの過熱度を
制御できるように成す点にある。 (発明の構成] 而して本発明の構成は、圧縮機及び熱源側熱交換器を備
えた室外ユニットと利用側熱交換器を備えた室内ユニッ
トとから成り、前記室外ユニットにm気式膨張弁を設け
た分離形空気調和装置において、前記室外ユニットに、
該室外ユニットにおける吸入ガスの圧力相当飽和温度を
検出する検出回路を設けると共に、該検出回路及び吸入
ガス通路lこそれぞれ前記温度検出器を設けて、吸入ガ
スの過熱度を検出するごとく成し、斯<、 $1 。 2温度検出器をいずれも室外ユニット内に配設しながら
前記第1,2温度検出器からの出力により前記電気式膨
張弁の開度を411節して、前記吸入ガスの過熱度を制
御できるようにしたのである。 (実 施 例] 以下本発明の一実施例を図面に基づいて説明する。 第1図に示したものは、圧縮機(1)、凝縮器として作
用する熱源側熱交換器(2)、電気式膨張弁(6〕を備
える室外ユニツ)(A)に、蒸発器として作用する利用
側熱交換器(4〕を備えた一台の室内ユニッ)CB)を
接続して成る分離形空気調和装置である。 また、前記室外ユニツ)(A)に備える前記銅器(1)
(2)(3)を冷媒配管で接続しており、(5]は圧縮
機(1)に接続する吸入ガス通路となる吸入ガス管、(
6]は前記圧縮機(1]と前記熱源側熱交換器(2〕と
を接続する吐出ガス管、(7]は前記熱源側熱交換器〔
2〕に接続する液管で、該液管に前記膨張弁(6)を介
装している。′ 尚、(9)は前記吸入ガス管(5]に設けるアキュムレ
ータ、(10)は前記第1接続管(7〕に設ける受液器
である。 そして、前記吸入ガス管(5)、液管(7)に各連絡管
(11)(11)を介して前記室内ユニット(B)の利
用側熱交換器(4)を接続することにより冷媒回路を形
成している。 而して斯く構成する分離形望%調和装置において、 第1に、室外ユニツI−(A)内において吸入ガスの圧
力相当飽和温度を検出すべく液管(7)における前記膨
張弁(5]の人口側と前記吸入ガス管〔5)における前
記アキュムレ−7り(9)の入り側との間を減圧機構と
してのキャピラリーチューブをもP検出回路(12)で
接続するのである。尚、前記キャピラリーチューブ(1
6]は、Mil記検量検出回路2]を流れる冷媒量を調
節するものである。 斯くすると前記検出回路(12ンに前記液管(7)力)
ら高圧液冷媒が流入し、この液冷媒は前記キャピラリー
チューブ(1ろ)で減圧され、出口側において前記吸入
ガス管(5)内と同一圧力で蒸発するのである。そして
、 第2に、同量検出回路(12)における前記キャピラリ
ーチューブ(16]の出口側にサーミスタから成る第1
温度検出器〔14〕を、又、前記吸入ガス管(5]にお
ける前記検出回路(12]の接続位置より室内ユニツ)
(B)側に、同じくサーミスタから成る第2温度検出器
(15)をそれぞれ付設し、斯くすることにより、前記
第1温度検出器(14]により吸入ガスの圧力相当飽和
温度を、又前記第2温度検出器(15)により吸入ガス
温度を検出でき、又これら検出温度から過熱度が検出で
きるようlこ成すのである。更に、第3に、これら第1
.2温度検出器(14)(15)と前記電気式膨張弁(
5)とを検出信号送信用の配線により接続し、前記第1
.2温度検出器(14)(15)の出力する信号を基に
、前記吸入ガスの過熱度を一定の設定過熱度に保持する
即く前記膨張弁(3)の開度を調節する知く或すのであ
る。 尚、前記膨張弁(3]は抜弁(′5)の開度を、i14
節するステッパー電動機を備え、又該電動機には前記第
1,2温度検出器(14)(15)の出力を人力して過
熱度を算出すると共に、該過熱度とと前記設定過熱度と
を比較して前記電動機を動作させる制御J (K )を
接続している。 以上の如くa阪する前記空気調和装置の作用を説明する
。 前記圧縮機(1]の駆動により、冷媒は圧縮機(1)−
熱源側熱交換器
(Technical Field) The present invention relates to a separate air conditioner, and more specifically, the present invention comprises an outdoor unit equipped with a compressor and a heat source side heat exchanger, and an indoor unit equipped with a user side heat exchanger, and the outdoor unit includes:
The present invention relates to a separate air conditioner equipped with an electric expansion valve. (Prior Art) Conventional air conditioners that use the electric expansion valve to control the degree of superheating of intake gas are described in, for example, Japanese Utility Model Application Publication No. 50-22751. This is already known in integrated air conditioners. This conventional device will be explained based on FIG. 4. In the 4th section, (5O) is the pressure?igaTh (51) is the condenser, (52) is the electric expansion valve, and (5ro) is the evaporator. A circuit is formed.In order to detect the degree of superheat of the suction gas, there is a circuit on the inlet side of the evaporator (56) that detects the refrigerant evaporation temperature in the evaporator (56). Temperature rU detection aM (54
) wo, also niJ Description 66 t* A second temperature detector (55) for detecting the intake gas temperature is provided on the outlet side of (55), and these detectors (54) and (55) are connected to a controller (56). The controller (56) is connected to the expansion valve (52) by wiring for transmitting detection signals, and the output from each of the detectors (54) and (55) is connected to the expansion valve (52) by wiring. Based on the control signal issued by the controller (56), the opening degree of the expansion valve (52) is controlled so that the degree of superheating of the suction gas is constant. In a separate nitrogen conditioner, in which the heat source side heat exchanger and the expansion valve (52) are arranged in an outdoor unit, and the user side heat exchanger, which acts as an evaporator, is arranged in an indoor unit, the In order to control the degree of superheating of the gas, the above-mentioned conventional method is used, that is, the temperature detectors (54) and (55) are provided at the intake and outlet portions of the user-side heat exchanger (evaporator (5)). If a method is used in which the expansion valve (52) is controlled by directly detecting the refrigerant evaporation temperature and the suction gas temperature, the heat exchanger (52)
[Evaporator (53)] In order to make use of the refrigerant evaporation temperature in the evaporator (53), the first temperature detector (54) must be installed in the indoor unit. (
54) and the expansion valve (52) with a wiring for transmitting a detection signal, it is necessary to provide a connecting wiring between the indoor and outdoor units, and as a result, the wiring work becomes complicated. There was a problem. (Object of the Invention) The present invention was invented in view of the above-mentioned conventional problems, and an object of the present invention is to form a circuit having an evaporation zone in which liquid refrigerant is evaporated by the pressure of suction gas in an outdoor unit; By making it possible to detect the evaporation temperature (saturation rate equivalent to the pressure of suction gas), the electric expansion valve can be used without providing the transmission wiring between the indoor and outdoor units. It is possible to control the degree of superheating of the suction gas. (Configuration of the Invention) The configuration of the present invention is configured to include an outdoor unit equipped with a compressor and a heat exchanger on the heat source side, and a heat exchanger on the user side. In a separate air conditioner, the outdoor unit is equipped with an m-air expansion valve, and the outdoor unit includes:
A detection circuit is provided for detecting a pressure-equivalent saturation temperature of the suction gas in the outdoor unit, and the detection circuit and the suction gas passage are each provided with the temperature detector to detect the degree of superheat of the suction gas,斯<, $1. The degree of superheating of the suction gas can be controlled by controlling the opening degree of the electric expansion valve by 411 points based on the outputs from the first and second temperature detectors while arranging two temperature detectors in the outdoor unit. That's what I did. (Embodiment) An embodiment of the present invention will be described below based on the drawings.What is shown in FIG. A separate air conditioner consisting of an outdoor unit (A) equipped with a type expansion valve (6) and an indoor unit (CB) equipped with a user-side heat exchanger (4) that acts as an evaporator. It is. In addition, the above-mentioned copperware (1) provided for the above-mentioned outdoor unit) (A)
(2) and (3) are connected by refrigerant piping, and (5) is the suction gas pipe that becomes the suction gas passage connected to the compressor (1);
6] is a discharge gas pipe connecting the compressor (1) and the heat source side heat exchanger (2), and (7) is the heat source side heat exchanger [
2], and the expansion valve (6) is interposed in the liquid pipe. ' Note that (9) is an accumulator provided in the suction gas pipe (5), and (10) is a liquid receiver provided in the first connection pipe (7). A refrigerant circuit is formed by connecting the user-side heat exchanger (4) of the indoor unit (B) to (7) via each communication pipe (11) (11). In the separate desired percentage harmonizer, firstly, in order to detect the pressure-equivalent saturation temperature of the suction gas in the outdoor unit I-(A), there is a A capillary tube as a pressure reducing mechanism is also connected between the inlet side of the accumulator 7 (9) in the gas pipe [5] by the P detection circuit (12).
6] is for adjusting the amount of refrigerant flowing through the calibration detection circuit 2]. In this way, the detection circuit (the liquid pipe (7) is connected to the 12-inch)
A high-pressure liquid refrigerant flows in, the pressure of this liquid refrigerant is reduced in the capillary tube (filter 1), and it evaporates at the outlet side at the same pressure as in the suction gas pipe (5). Second, a first thermistor is provided on the outlet side of the capillary tube (16) in the same amount detection circuit (12).
The temperature sensor [14] is also connected to the indoor unit from the connection position of the detection circuit (12) in the suction gas pipe (5).
A second temperature detector (15) also made of a thermistor is attached to the (B) side, so that the saturation temperature corresponding to the pressure of the suction gas can be detected by the first temperature detector (14), and the saturation temperature corresponding to the pressure of the intake gas can be detected by the first temperature detector (14). The two temperature detectors (15) can detect the intake gas temperature, and the degree of superheat can be detected from these detected temperatures.Furthermore, thirdly, these first
.. 2 temperature detectors (14) (15) and the electric expansion valve (
5) with the wiring for transmitting the detection signal, and
.. 2. Based on the signals output from the temperature detectors (14) and (15), the degree of superheating of the suction gas is maintained at a constant set degree of superheating, and the degree of opening of the expansion valve (3) is adjusted accordingly. That's what I do. In addition, the expansion valve (3) has the opening degree of the vent valve ('5) i14.
The stepper motor is equipped with a stepper motor that calculates the superheat degree by manually inputting the outputs of the first and second temperature detectors (14) and (15), and also calculates the superheat degree and the set superheat degree. A control J (K) is connected to compare and operate the electric motor. The operation of the air conditioner as described above will be explained. By driving the compressor (1), the refrigerant flows through the compressor (1)-
Heat source side heat exchanger

【2】−受液器(10]−電気式膨張弁
(5ノー利用側熱交換器(4〕−アも、ムレータ(9]
−圧縮機〔1〕と循環し。 前記吸入ガス管(5〕には、前記利用側熱交換器(4〕
で蒸発し、過熱ガスとなった低圧冷媒ガスが流入するの
である。 これと同時に、、前記液管(7)を流れる高圧液冷媒の
一部は前記検出回路(12)に流入し、前記キャピラリ
ーチュー7(15Jで減圧され、該チューブ(13〕の
出口側で前記吸入ガス管(5]内と同圧の圧力(吸入ガ
スの圧力]で蒸発し、飽和蒸気となり前記吸入ガス管(
5]に合流するのである。 斯くして前記第1温度検出器(14)により吸入ガスの
圧力相当飽和温度が、又前記第2温度検出器(15)に
より吸入ガス湿度が検出でき。 従って、これらの温度η)ら吸入ガスの過熱度が検出で
きるのであって、更に前記第1,2温度検出器(14)
 (15)の出力に基づき前記1が強弁(6)の開度が
調1Rjされ、この結果前記吸入ガスの過熱度を前記設
定過熱度に制御できるのである。 以上の如く吸入ガスの圧力相当飽和温度を検出するため
の前記検出回路(12]を室外ユニット(A)側に別途
に設け、この回路(12)に吸入ガスの圧力相当飽和温
度を検出する前記第1温度検出器(14)を付設した力
)ら、冷媒の蒸発温度を検出するために従来のように前
記利用側熱交換器(4)の入0a近傍に温度検出器を設
ける必要がなく、この結果前記膨張弁(3)と第1,2
温度検出器(14)(15)とを接続する検出信号送信
用の配線をすべて室外ユニツ)(AJ内に設けることが
でざるのである。 尚前記検出回路(12)の設は万は前記したものに限る
ことなく、@1図点線(イ]で示すように一端を前記液
管(7〕における前記膨張弁(3)の出口側に、又他端
を前記同様に吸入ガス管(5)に接続するようにしても
よい。又点線(口]で示す鷲ように、前記熱源側熱交換
器(2)と並列に補助熱交換器C15)を設け、この熱
交換器(16)の入口側に前記吐出管(6]と連通ずる
補助高圧ガス管(17]を接続する一方、出口側に液側
配゛冴となる補助高圧液管(18]を接続し、更1ここ
の補助制圧液管(18)と前記吸入ガス管(5)とを接
続して前記検出回路(12)を形成してもよい。又、前
記検出回路(12)+こおケア1 fj’ll ’ir
e、キャピラリーチューブ〔16〕の出口側に熱回収用
熱交換器(図示せず)を設け、該熱交法dを前記熱源側
熱交換器(2)の風上側に配設して熱回収を計り乍ら液
バツクを防止できるようにしてもよい。 吹
[2] - Liquid receiver (10) - Electric expansion valve (5)
- circulates with the compressor [1]. The intake gas pipe (5) is connected to the user-side heat exchanger (4).
The low-pressure refrigerant gas that evaporates and becomes superheated gas flows in. At the same time, a part of the high-pressure liquid refrigerant flowing through the liquid tube (7) flows into the detection circuit (12), is depressurized by the capillary tube 7 (15J), and is brought to the exit side of the tube (13). It evaporates at the same pressure (suction gas pressure) as inside the suction gas pipe (5) and becomes saturated steam.
5]. In this way, the saturation temperature corresponding to the pressure of the suction gas can be detected by the first temperature detector (14), and the humidity of the suction gas can be detected by the second temperature detector (15). Therefore, the degree of superheating of the intake gas can be detected from these temperatures η), and the first and second temperature detectors (14)
Based on the output of (15), the opening degree of the strong valve (6) is adjusted 1Rj, and as a result, the degree of superheating of the suction gas can be controlled to the set degree of superheating. As described above, the detection circuit (12) for detecting the pressure-equivalent saturation temperature of suction gas is separately provided on the outdoor unit (A) side, and the detection circuit (12) for detecting the pressure-equivalent saturation temperature of suction gas is provided separately on the outdoor unit (A) side. Since the first temperature detector (14) is attached, there is no need to provide a temperature detector near the input 0a of the user-side heat exchanger (4) in order to detect the evaporation temperature of the refrigerant as in the conventional case. , As a result, the expansion valve (3) and the first and second
All the wiring for transmitting detection signals connecting the temperature detectors (14) and (15) cannot be installed inside the outdoor unit (AJ).The installation of the detection circuit (12) is the same as described above. As shown by the dotted line (A) in Figure @1, one end of the liquid pipe (7) can be connected to the outlet side of the expansion valve (3), and the other end can be connected to the suction gas pipe (5) in the same manner as described above. In addition, an auxiliary heat exchanger C15) may be provided in parallel with the heat source side heat exchanger (2) as indicated by a dotted line (opening), and the inlet of this heat exchanger (16) An auxiliary high-pressure gas pipe (17) that communicates with the discharge pipe (6) is connected to the side, and an auxiliary high-pressure liquid pipe (18) that serves as a liquid side distribution unit is connected to the outlet side, and the auxiliary pressure control here is connected to the outlet side. The detection circuit (12) may be formed by connecting the liquid pipe (18) and the intake gas pipe (5).
e. A heat exchanger (not shown) for heat recovery is installed on the exit side of the capillary tube [16], and the heat exchange method d is installed on the windward side of the heat source side heat exchanger (2) to recover heat. It may also be possible to prevent liquid back-up while taking measures to prevent this. Squirting

【こ、不発明の第2実施例を第2図に基づいて説明す
る。 第2図に示したものはヒートポンプ式の分離形空気調和
装置nで、1台の室外ユニツ)(A)iころ台の室内ユ
ニツ)(B)(0)(D)を並列に接続している。 木′欠施例と前記した第1実施例の主な相違点は、 第11こ、冷・暖房運転を可能にすべく四路切換弁(1
9)を設け、抜弁(19]の一対の固定ボートに吐出ガ
ス管(6)と吸入ガス管(5]とを接続し、又一対の接
続ボートに冷・暖房運転時でそれぞれ高圧又は低圧ガス
管となる接続管(2O〕又低圧または高圧ガス管となる
ガス管(21〕を接続している点、 第2に、前記室外ユニツ)(A)に6台ノ室内ユニット
(B)、(0)(D)を接続すべく、前記室外ユニツ)
(A)における前記液管(7〕、ガス管(21)iこそ
れぞれ5木の波器支管(7a)ガス側支管(21a)を
接続し、更に前記波器支管(7a]に冷房運転時、過熱
度制御弁として作用し、また、暖房運転時過冷却度制御
弁として作用する電気式膨張弁(5〕をそれぞれ介装し
ている点)である。 尚、(22)は開閉弁、(2ろ〕は補助アキュムレータ
、(24)はドライヤーで、その他事1実施例の第1図
で示した符号と同符号のものは前記実施例と同じ構成を
示している。 しかして1本実施例における前記検出回路(12)の構
成は第1実施例において第1図点線(口〕で示したもの
と基本的に同じで熱源側熱交換器(2)と並列に補助熱
交換器(16)を設け、該熱交換器(16)の人口側に
前記吐出管(6)に連通ずる補助品圧ガス管〔17〕を
、又出口側に液側配管となる補助高圧液管(18〕を接
続し、更に、この補助高圧液管(18〕と前記吸入ガス
管(5)とを接続する如く成している。尚、(1ろ〕は
キャピラリーチューブである。そして、冷房運転時nj
J記各ガス側支管(21a)を流れる吸入ガスの過熱度
を各側に制御すべく、前記検出器ff1(12)におけ
るキャピラリーチューブ(13)の出口側に第1温度検
出器(14)を、又、前記各分岐第2ガス管(21a)
に各別に第277!度検出器(15)を設けて前記各I
f張強弁ろ)と、 1ii1記第1温度検出器(14)
および前記各膨張弁(ろ〕にそれぞれ対応する各第2温
度検出器(15)とを検出(g号送信用の配線(図示せ
ず〕で接続している。 尚木欠施例は暖房運転時において前記した如く前記膨張
弁(3〕を過冷却度制御弁として作用させることにより
、凝縮器として作用するIIIJ記利用側熱交換器(4
ンの熱効率を向上させるようにしており、斯くするため
に下記の如く構成している。即ち、 前記検出回路(12)における補助熱交換器(16〕の
出口側と前記キャピラリーチュー1(16)との間に吐
出ガスの圧力相当飽和77M度を検出する第6温度検出
器(25)を設けると共に、前記各第2接続管(8)に
各利用側熱交換器(4)の出口側の液冷媒の温度を検出
する第4温度検出器(26)を設け、これら温度検出r
i (25)(26]の検出する検出温度から各過冷却
度を検出し、 更に、前記各電気式膨張弁(6)と、前記第3′1M度
検出器(25)および前記各膨張弁(3)にそれぞれ対
応する各@44温検出器(26)とを検出信号送信用の
配線(図示せず〕で接続してこれら温度検出器(25)
(26)の出力を両に前記各膨張弁(3〕の開度を調節
する如く成しているのである。 尚前記第1,2温度検出器(i4)(15)とff13
 、4温度検出とf(25)(26)とは冷房、暖房運
転により選択的に作用させるようにしている。 改に、本発明の@6実施例を第5図に基づいて説明する
。 第3[に示したものは、一台の室外ユニット(A)に3
台の室内ユニット(B)(0)(DJを)重列に接続す
ると共に給湯ユニツ)(K)を接続し、冷・暖房運転以
外ζこ冷房・給湯運転、給湯運転を行えるようにしてい
る。 以下、各運転を行うための主回路を説明した後に前記検
出回路の構成を説明する。 ’ffl外ユニッ)(A)において(1)は圧縮機、〔
2)は熱源側熱交換器、(10]は受液器、(3〕は′
rf1 %式膨張弁(9〕はアキュムレータであり(S
 VI) (S V2)はそれぞれ前記各運転を行うた
めに冷媒回路を切換えるための四路切換弁、(27〕は
冷房運転時にのみ冷媒の流れを許す逆止弁、(70)は
暖房連転時給湯運転時膨張弁として作用させる開度制御
可能な′電磁弁、(28)(29)はデフ0スト運転時
のみ開放する開閉弁である。 又(4)は室内ユニット(B)(0)(D)に設ける各
利用側熱交換器、(50)は前記給湯ユニッ)(33に
設ける給湯用熱交換器である。 尚、その他車31fflGこ示した符号で第2実施例第
2図に示したものと同符号のものはそれぞれ第2実施例
と同一構成を示すもKのである。 而して第1表3こ示す如く前記四路切換弁(S71) 
(S Vl)を切換操作し、また各開閉弁(29)を開
閉操作し、更lこ@記各膨張弁(3)及び電動弁〔70
)を過熱度制御(以下、SHと表示するン弁として作用
させる力)、過冷却制御(以下Sa〕と表示する〕弁と
して作用させるかによって、前記4通りの運転が行える
。 第1表 尚、四路切換弁(S Vl) (SVりハ通′屯(ON
)により第6図点線側配管を連通し、非通゛市(OFF
)により第6図実線側配管を連通ずるものである。 又各間閉弁(29)は通’di(ON)門形のものであ
る。又、第1表において、各膨張弁Cろ)、11L動弁
(70)iこおいて示した番号、例えば(14−15)
は後記する温度検出器を示すものである。 又、第6図において実線矢印(ハ)は冷房運転時の冷媒
回路を、点線矢印に】は冷房・給湯運転、一点fJ線矢
印(ホ)は給湯運転を、二点鎖線矢印(へ)は暖房運転
時の冷媒回路を示すものである。 以上の如く構成する分離形空気調和装置において、前記
検出回路を下記の如く構成するのである。 即ち、第1実施例の第1図に実線【0]で示したものと
基本的に同じで、液’tilF(7)に一端を接続する
と共に、他端を吸入ガス管(5]に接続する前記検出回
路(12)を設けるのである。尚、(51)は暖房運転
時の逆流防止用の逆上弁である。 そして前記検出回路(12]における前記キャピラリー
チューブ(13)の出口側に吸入ガスの圧力相当飽和′
IML度を検知する第1温度検出器(14)を設け、ま
た、冷房、冷房給湯運転時に低圧ガス通路となるガス側
支管(21a)に吸入ガス7!!度を検知する第2温度
検出器(15)を設け、これら検知温度から冷房、冷房
給湯運転時の過熱度を検出、できるようにする−万、1
■記吸入ガス管(5]に暖房、給湯運転時吸入ガス温度
を検知する¥S5温度検出器(71)を設け、第1、第
5温度検出器(14)(71)により暖房、給湯運転時
の過熱度を検出できるようにしている。 更に、本実施例においては暖房運転時には前記した吸入
ガスの過熱度制御のみならず凝縮液冷媒の過冷却度制御
を行うために暖房運転時においては第2実施例の検出回
路(12)と同じ作用をもつように、前記キャピラリー
チューブ(16)の人口側と暖房運転時高圧ガス通路と
なるガス管(21〕とをf!f:続し、この接続回路に
補助熱交換器(16)、逆圧弁(32)を介装するー万
、前記補助熱交換器(16)の出口側に吐出ガスの圧力
相当飽和温度を検知する第6温度検出器(25〕を設け
、また前記波器支管(7a)に凝縮液冷媒温度を検知す
る第4温度検出器(26)を設けて、これら温度検出器
(25)(26)により暖房運転時の凝縮液冷媒の過冷
却度を検出できるようにしている。 尚、第6図においては前記膨張弁(3)、電動弁(7O
〕と各温度検出器(14,15,25゜26.71)と
の接続配線、制御器を省略している0 尚、前記受液器c 1G )tこは、貯留液冷媒量を変
化させることにより、暖房運転時に前記膨張弁(3〕と
前記電動弁(70)とを同時に開度制御するために、こ
れら弁(3)(703間の液管(7]に出入する冷媒量
にアンバランスが生じるのを調整する機能をもたせてい
る。又、該受液器(1O)のガス城と低圧側とを接続し
、前記キャピラリーチューブ(35)を介装するバイパ
ス管(36)は、前記受液器(10〕内の貯留冷媒量の
増減を可能にするためのガス抜き通路を形成するもので
ある。 尚、上記実施例においては、前記膨張弁(3)はステッ
パー電動機を備えるものを用いたが、これ以外に特公昭
55−143362号公報に記載されている様な熱電形
の電気式膨張弁や、特開昭53−13’ 52号公報に
記載されているソレノイドを用いた電気式膨張弁(流は
調整弁)を用いてもよい。 (発明の効果ン 以上の硼く、本発明は前記室外ユニツ)(A)Iこ、譲
至外ユニツ)(A)における吸入ガスの圧力相当飽和温
度を検出する検出回路(12〕を設けると共に、該検出
回路(12]及び吸入ガス通路(5)lこそれぞれ前記
温度検出器(14J(15)を設けて、吸入ガスの過熱
度を検出するごとく成す−ガ、+76記各温度検出器(
14)(15)からの出力lこよりnn記−動式ノが強
弁(6)の調度制御を行なう如く成した力)ら、前記第
1,2温度検出器(14)(15)と前記膨張弁(3)
とを接続する検出(4号送信用の配線をすべて室外ユニ
ット(A)内に設けられ、従って′電気式膨張弁(3)
を用い乍ら、前記至内、室外ユニツ)(A)(83間に
前記膨張弁(3)の制御のための前記配線を殊更に設け
る必要がなく、この結果、従来の方式に比して配線作業
を著しく容易になし得るのである。
[A second embodiment of the present invention will be explained based on FIG. 2. The one shown in Figure 2 is a heat pump type separate air conditioner n, in which one outdoor unit (A) (indoor unit with i rollers) (B) (0) and (D) are connected in parallel. There is. The main difference between the wood-missing embodiment and the first embodiment described above is that the 11th embodiment has a four-way switching valve (1) to enable cooling and heating operation.
9), connect the discharge gas pipe (6) and suction gas pipe (5) to a pair of fixed boats of the vent valve (19), and connect high-pressure or low-pressure gas to the pair of connecting boats during cooling and heating operations, respectively. The connection pipe (2O) which is a pipe and the gas pipe (21) which is a low-pressure or high-pressure gas pipe are connected.Secondly, six indoor units (B), ( 0) To connect (D), the outdoor unit)
The liquid pipe (7) and the gas pipe (21) in (A) are connected to five corrugated branch pipes (7a) and gas side branch pipes (21a), respectively, and are further connected to the corrugated branch pipe (7a) during cooling operation. , an electric expansion valve (5) that acts as a superheat degree control valve and as a subcooling degree control valve during heating operation. Note that (22) is an on-off valve, (2ro) is an auxiliary accumulator, (24) is a dryer, and other items with the same symbols as those shown in FIG. 1 of the first embodiment indicate the same configuration as the previous embodiment. The configuration of the detection circuit (12) in the example is basically the same as that shown by the dotted line (opening) in Figure 1 in the first example, and the auxiliary heat exchanger (16) is connected in parallel with the heat source side heat exchanger (2). ), an auxiliary pressure gas pipe [17] communicating with the discharge pipe (6) is provided on the intake side of the heat exchanger (16), and an auxiliary high pressure liquid pipe (18) that becomes a liquid side pipe on the outlet side. Furthermore, this auxiliary high pressure liquid pipe (18) is connected to the suction gas pipe (5). Note that (1ro) is a capillary tube.
In order to control the degree of superheating of the suction gas flowing through each gas side branch pipe (21a) on each side, a first temperature detector (14) is installed on the outlet side of the capillary tube (13) in the detector ff1 (12). , and each branch second gas pipe (21a)
277th separately for each! A degree detector (15) is provided for each of the I
f Zhang Qiangbenro) and 1ii1 first temperature detector (14)
and each of the second temperature detectors (15) corresponding to each of the expansion valves (ro) for detection (connected with g-transmission wiring (not shown). Naokikaze example is for heating operation. At times, the expansion valve (3) acts as a supercooling degree control valve as described above, and the heat exchanger (4) on the utilization side described in IIIJ acts as a condenser.
It is designed to improve the thermal efficiency of the engine, and in order to do so, it is constructed as follows. That is, a sixth temperature detector (25) for detecting the pressure equivalent saturation of 77 M degrees of the discharged gas between the outlet side of the auxiliary heat exchanger (16) in the detection circuit (12) and the capillary tube 1 (16). At the same time, a fourth temperature detector (26) for detecting the temperature of the liquid refrigerant on the outlet side of each user-side heat exchanger (4) is provided in each of the second connecting pipes (8), and these temperature detection r
i (25), detects each degree of supercooling from the detected temperature detected by (26), and further detects each of the electric expansion valves (6), the 3'1M degree detector (25), and each of the expansion valves. These temperature detectors (25) are connected to the respective @44 temperature detectors (26) corresponding to (3) with wiring for transmitting detection signals (not shown).
The output of (26) is configured to adjust the opening degree of each of the expansion valves (3).The first and second temperature detectors (i4) (15) and ff13
, 4 temperature detection and f(25) and (26) are selectively activated by cooling and heating operations. The @6 embodiment of the present invention will be explained again based on FIG. The one shown in No. 3 [shows 3] in one outdoor unit (A).
The indoor units (B) (0) (DJ) are connected in parallel and the hot water supply unit (K) is connected in parallel so that in addition to cooling and heating operations, cooling, hot water supply, and hot water operation can be performed. . Hereinafter, after explaining the main circuit for performing each operation, the configuration of the detection circuit will be explained. 'ffl outside unit) (A), (1) is the compressor, [
2) is the heat source side heat exchanger, (10] is the liquid receiver, and (3) is '
The rf1% expansion valve (9) is an accumulator (S
VI) (S V2) is a four-way switching valve for switching the refrigerant circuit to perform each of the above operations, (27) is a check valve that allows refrigerant to flow only during cooling operation, and (70) is a continuous heating control valve. The solenoid valves (28) and (29) are open/close valves that are opened only during the zero-default operation.The solenoid valves (28) and (29) are open/close valves that are opened only during the zero-default operation. ) (D) are the user-side heat exchangers, and (50) is the hot water supply heat exchanger installed in the hot water supply unit) (33). Items with the same reference numerals as those shown in 1 and 2 indicate the same configurations as those in the second embodiment, respectively.As shown in Table 1, Table 3 shows the four-way switching valve (S71).
(S Vl), open and close each on-off valve (29), and then open and close each on-off valve (29) and each expansion valve (3) and electric valve [70
) is used as a superheating control (hereinafter referred to as SH) or supercooling control (hereinafter referred to as Sa) valve, the above four types of operation can be performed. , four-way switching valve (SVl)
) to connect the piping on the dotted line side in Figure 6, and
) to connect the piping on the solid line side in Figure 6. Also, each closing valve (29) is of a gate type (ON). In addition, in Table 1, the numbers shown for each expansion valve (C) and 11L valve (70), for example (14-15)
indicates a temperature sensor which will be described later. Also, in Fig. 6, the solid line arrow (C) indicates the refrigerant circuit during cooling operation, the dotted line arrow 】 indicates cooling/hot water supply operation, the one-point fJ line arrow (E) indicates hot water supply operation, and the double-dashed line arrow (E) indicates hot water supply operation. This shows the refrigerant circuit during heating operation. In the separate air conditioner configured as described above, the detection circuit is configured as follows. That is, it is basically the same as that shown by the solid line [0] in FIG. 1 of the first embodiment, with one end connected to the liquid 'tilF (7) and the other end connected to the suction gas pipe (5). The detection circuit (12) is provided with the detection circuit (12). Note that (51) is a backflow valve for preventing backflow during heating operation. Inhaled gas pressure equivalent saturation′
A first temperature detector (14) is provided to detect the IML degree, and the intake gas 7! ! A second temperature detector (15) is provided to detect the temperature, and the degree of superheating during cooling and cooling water supply operation can be detected from these detected temperatures.
■The intake gas pipe (5) is equipped with a S5 temperature detector (71) that detects the intake gas temperature during heating and hot water supply operation, and the first and fifth temperature detectors (14) (71) are used for heating and hot water supply operation. Further, in this embodiment, in order to control not only the degree of superheating of the suction gas described above but also the degree of supercooling of the condensate refrigerant during heating operation, In order to have the same effect as the detection circuit (12) of the second embodiment, the population side of the capillary tube (16) is connected to a gas pipe (21) that becomes a high-pressure gas passage during heating operation, An auxiliary heat exchanger (16) and a back pressure valve (32) are interposed in this connection circuit. A sixth temperature detection device is provided on the outlet side of the auxiliary heat exchanger (16) to detect the saturation temperature corresponding to the pressure of the discharged gas. A fourth temperature detector (26) for detecting the condensate refrigerant temperature is provided in the corrugator branch pipe (7a), and these temperature detectors (25) and (26) are used to detect the It is possible to detect the degree of supercooling of the condensate refrigerant. In addition, in Fig. 6, the expansion valve (3) and the electric valve (7O
] and each temperature sensor (14, 15, 25° 26.71) and the controller are omitted. Note that the liquid receiver c1G)t changes the amount of stored liquid refrigerant. By this, in order to simultaneously control the opening of the expansion valve (3) and the electric valve (70) during heating operation, an adjustment is made to the amount of refrigerant flowing in and out of the liquid pipe (7) between these valves (3) (703). It has a function of adjusting the occurrence of balance.Also, a bypass pipe (36) connecting the gas castle and the low pressure side of the liquid receiver (1O) and interposing the capillary tube (35), It forms a gas venting passage for making it possible to increase or decrease the amount of refrigerant stored in the liquid receiver (10). In the above embodiment, the expansion valve (3) is equipped with a stepper motor. In addition to this, a thermoelectric electric expansion valve as described in Japanese Patent Publication No. 55-143362 and a solenoid as described in Japanese Patent Application Laid-Open No. 53-13'52 were used. An electric expansion valve (flow regulating valve) may be used. A detection circuit (12) for detecting the saturation temperature corresponding to the pressure of -Ga, +76 each temperature detector (
14) The output from (15) is the force generated by the actuator to control the temperature of the strong valve (6), and the first and second temperature detectors (14) and (15) and the expansion Valve (3)
Detection connecting to
However, there is no need to particularly provide the wiring for controlling the expansion valve (3) between the indoor and outdoor units (A) (83), and as a result, compared to the conventional system, Wiring work can be made much easier.

【図面の簡単な説明】[Brief explanation of drawings]

弔1図は本発明の第1実施例を示す冷媒回路図、第2図
は同第2実施例の冷媒回路図、第6図は同第5実施例の
冷媒回路図、第4図は従来例を示す冷媒回路図である。 (1)・−・圧縮機 (2]・−・熱源側熱交換器 (3]・・・N気式膨張弁 (4)−・・利用側熱交換器 (5]・・・吸入ガス管 (吸入ガス通路) (12)・・・検出回路 (14)・・・第1温度検出器 (15]−・・第21M度検出器 (A)・・・室外ユニット (B)(OJ(DJ川室内ユニット
Figure 1 is a refrigerant circuit diagram showing the first embodiment of the present invention, Figure 2 is a refrigerant circuit diagram of the second embodiment, Figure 6 is a refrigerant circuit diagram of the fifth embodiment, and Figure 4 is a conventional refrigerant circuit diagram. FIG. 3 is a refrigerant circuit diagram showing an example. (1) --- Compressor (2] --- Heat source side heat exchanger (3) --- N air expansion valve (4) --- User-side heat exchanger (5) --- Suction gas pipe (Suction gas passage) (12)...Detection circuit (14)...First temperature detector (15] -...21st M degree detector (A)...Outdoor unit (B) (OJ (DJ Kawauchi indoor unit

Claims (1)

【特許請求の範囲】[Claims] (1) 圧縮機(1)及び熱源側熱交換器(2)を備え
た室外ユニツ)(A)と、利用側熱交換器(4)を備え
た室内ユニツ)(B)とから成り、iU記¥外ユそット
(A)iこ、電気式膨張弁(6)を設けた分離形至気調
和装置において、前記室外ユニツ)(A)に、該室外ユ
ニツ)(A)における吸入ガスの圧力相当飽和温度を検
出する検出回路(12)を設けると共に、該検出回路〔
12〕及び吸入ガス通路(5)にそれぞれ+jil記温
度検出器(14)、(15)を設けて吸入ガスの過熱度
を検出するごとく成す一万、前記各温度検出器(14)
、(15)からの出力により+71記lル気式膨張弁(
6)の開度制411を行なうごとくしたことを特徴とす
る分離形空気調和装置6゜
(1) Consisting of an outdoor unit (A) equipped with a compressor (1) and a heat source side heat exchanger (2), and an indoor unit (B) equipped with a user side heat exchanger (4), the iU In a separate air conditioner equipped with an electric expansion valve (6), the outdoor unit (A) is provided with intake gas in the outdoor unit (A). A detection circuit (12) is provided for detecting the saturation temperature equivalent to the pressure of
12] and the suction gas passage (5) are provided with temperature detectors (14) and (15), respectively, to detect the degree of superheating of the suction gas.
, (15) causes +71 mark pneumatic expansion valve (
6) Separate air conditioner 6° characterized by having the opening degree system 411 as described above.
JP24277083A 1983-12-21 1983-12-21 Separate type air conditioner Granted JPS60133269A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24277083A JPS60133269A (en) 1983-12-21 1983-12-21 Separate type air conditioner
US06/682,312 US4644756A (en) 1983-12-21 1984-12-17 Multi-room type air conditioner
DE8484309057T DE3483533D1 (en) 1983-12-21 1984-12-21 AIR CONDITIONER.
AU37101/84A AU564902B2 (en) 1983-12-21 1984-12-21 Multi-room type air-conditioner
EP84309057A EP0188630B1 (en) 1983-12-21 1984-12-21 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24277083A JPS60133269A (en) 1983-12-21 1983-12-21 Separate type air conditioner

Publications (2)

Publication Number Publication Date
JPS60133269A true JPS60133269A (en) 1985-07-16
JPH0579895B2 JPH0579895B2 (en) 1993-11-05

Family

ID=17094016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24277083A Granted JPS60133269A (en) 1983-12-21 1983-12-21 Separate type air conditioner

Country Status (1)

Country Link
JP (1) JPS60133269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363471A (en) * 1989-07-31 1991-03-19 Sanyo Electric Co Ltd Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157449A (en) * 1983-02-24 1984-09-06 松下精工株式会社 Controller for regrigerant of heat pump type air conditioner
JPS6092062U (en) * 1983-11-30 1985-06-24 株式会社東芝 air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157449A (en) * 1983-02-24 1984-09-06 松下精工株式会社 Controller for regrigerant of heat pump type air conditioner
JPS6092062U (en) * 1983-11-30 1985-06-24 株式会社東芝 air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363471A (en) * 1989-07-31 1991-03-19 Sanyo Electric Co Ltd Air conditioner

Also Published As

Publication number Publication date
JPH0579895B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US7360372B2 (en) Refrigeration system
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
JP2987951B2 (en) Operation control device for air conditioner
JPS60133269A (en) Separate type air conditioner
JPH04214153A (en) Refrigerating cycle device
JP2765970B2 (en) Air conditioner
JPH07151413A (en) Separate type air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JPH046355A (en) Multiple-room type air-conditioner
JPH0579894B2 (en)
JP2508183B2 (en) Air conditioner
JPH0611201A (en) Air conditioning apparatus
JP3048658B2 (en) Refrigeration equipment
JPH05172434A (en) Air conditioning apparatus
JPS60133274A (en) Multi-chamber type air conditioner
JP2804618B2 (en) Air conditioner
JP2923058B2 (en) Heat pump type air conditioner
JPH0571834A (en) Air-conditioning device
JPH04283363A (en) Freezer device
JPS60133268A (en) Refrigerator
JPH06331226A (en) Temperature control method and device thereof for binary refrigerating system
JPS5885042A (en) Cooling and heating apparatus
JPH05215426A (en) Dehumidifying and drying machine
JPS60140049A (en) Refrigerator
JPH02213658A (en) Freezing cycle of air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term