JPS60132609A - Electromagnetic filter apparatus - Google Patents

Electromagnetic filter apparatus

Info

Publication number
JPS60132609A
JPS60132609A JP24173183A JP24173183A JPS60132609A JP S60132609 A JPS60132609 A JP S60132609A JP 24173183 A JP24173183 A JP 24173183A JP 24173183 A JP24173183 A JP 24173183A JP S60132609 A JPS60132609 A JP S60132609A
Authority
JP
Japan
Prior art keywords
filter element
filter device
electromagnetic filter
magnetic
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24173183A
Other languages
Japanese (ja)
Inventor
Fumitaka Hayata
早田 文隆
Takao Yugawa
湯川 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP24173183A priority Critical patent/JPS60132609A/en
Publication of JPS60132609A publication Critical patent/JPS60132609A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove fine particles in a fluid with high efficiency and to stably collect and separate the same, by magnetically holding a magnetic ion exchange resin to the final layer of a filter element consisting of a plurality of layer while releasing said resin by demagnetization. CONSTITUTION:At first, a filter element 20 is magnetized and valves 34, 36, 38 are opened to pass a slurry containing a magnetic ion exchange resin from a tank 32 while said resin is attracted to the final layer 28 on the filter element 20. In the next step, the valves 34, 36, 38 are closed while valves 40, 42 are opened and water to be treated is passed through said filter element 20 in an upward stream to be filtered. At the time of backwashing, the filter element 20 is demagnetized at first and the valves 40, 42 are closed while valves 34, 36 are opened to discharge the used ion exchange resin in an upward stream. Thereafter, magnetic particles collected in the filter element 20 are again passed in a downward stream and backwashed and recovered to regenerate the filter element 20. The above mentioned cycle is set to one unit and performed repeatedly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は流体中に懸濁する強磁性若しくは常磁性の微細
粒子を磁気的に捕捉分離する電磁フィルタ装置に関し、
より具体的には、複数層からなるフィルタエレメントと
、該ニレメン1に保持された磁性イオン交換樹脂とによ
シ上記微細粒子を段階的に捕足し得る電磁フィルタ装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electromagnetic filter device that magnetically captures and separates fine ferromagnetic or paramagnetic particles suspended in a fluid.
More specifically, the present invention relates to an electromagnetic filter device that can trap the fine particles in a stepwise manner using a filter element composed of multiple layers and a magnetic ion exchange resin held in the Niremen 1.

〔背は技術〕[Technology is behind it]

火力、原子力発電所の復水中に含まれる微細な磁性粒子
を除去する手段として、磁気を利用した電磁フィルタ装
置が用いられている。
2. Description of the Related Art Electromagnetic filter devices that utilize magnetism are used as means for removing minute magnetic particles contained in condensate from thermal and nuclear power plants.

同装置は2強磁性材料製の金属細線が密に集ったフィル
タエレメントと、このフィルタエレメントを収納する被
処理水通過用の容器と、この容器の周囲にあってフィル
タエレメンIf磁化する為の電磁コイルと、電磁コイル
の外部空間において゛磁束を集束するリターンフレーム
等とからなる。
The device consists of a filter element in which thin metal wires made of two ferromagnetic materials are densely gathered, a container for passing through the water to be treated that houses this filter element, and a container surrounding the container to magnetize the filter element If. It consists of an electromagnetic coil and a return frame that focuses magnetic flux in the space outside the electromagnetic coil.

コイルに通電することにより磁束を発生させると、この
磁束を横切るフィルタエレメントを構成する細線の表面
に空間磁界が生じ、被処理水中に懸濁している磁性粒子
がフィルタエレメント表面に磁気的に捕捉される。捕捉
量がある値以上になったところで、コイルに流れる電流
を切シ、フィルタエレメントに洗浄水を流して捕捉粒子
を除く再生工程を行う。
When a magnetic flux is generated by energizing the coil, a spatial magnetic field is generated on the surface of the thin wires that make up the filter element that crosses this magnetic flux, and magnetic particles suspended in the water to be treated are magnetically captured on the surface of the filter element. Ru. When the amount of trapped particles exceeds a certain value, the current flowing through the coil is cut off, and a regeneration process is performed in which the trapped particles are removed by flowing cleaning water through the filter element.

一般にフィルタエレメントを構成する金属細線の径が細
くなる程、細線の表面に生ずる磁界の勾配は大きくなっ
て粒子の捕捉効率が高まる。また空隙率を小さくするこ
とも捕捉効率を高める。然し加工限界上、金屑細線の径
は約10μ?πが下限で、また許容圧力損失の観点から
充填率は約10%が限度であった。
Generally, as the diameter of the thin metal wire constituting the filter element becomes smaller, the gradient of the magnetic field generated on the surface of the thin wire becomes larger, and the particle trapping efficiency increases. Also, reducing the porosity also increases the trapping efficiency. However, due to processing limitations, the diameter of the thin gold wire is about 10μ? The lower limit is π, and the filling rate is limited to about 10% from the viewpoint of allowable pressure loss.

上記の様なフィルタエレメントを用いた従来の電磁フィ
ルタ装置にあっては、これを発電所め復水処理に適用し
た場合、その除去率は約70%が限界であった。この数
字は復水中に含まれる極めて磁性の低い水酸化鉄を充分
に捕捉出来ないことに原因がある。
In conventional electromagnetic filter devices using filter elements such as those described above, when applied to condensate treatment in power plants, the removal rate has been limited to about 70%. This number is due to the inability to sufficiently capture iron hydroxide, which has extremely low magnetism, contained in condensate.

この問題を解消する為、上記フィルタエレメントに磁性
イオン交換樹脂を併用する方法が提案されている。この
複合型フィルタエレメントにおいては、上記水酸化鉄も
有効に除去出来る為、その除去率は約90%以上となる
。然しこのフィルタエレメントの場合、流体抵抗が大き
くなる為、流体圧力により磁性イオン交換樹脂を含むフ
ィルタエレメントが経時的に圧密化し、従って差圧が急
上昇し、処理流量が低下すると共に、逆洗によりイオン
交換樹脂の排出が充分出来なくなり、濾過性能が経時劣
化する“という欠点があった。
In order to solve this problem, a method has been proposed in which a magnetic ion exchange resin is used in combination with the filter element. In this composite filter element, the iron hydroxide mentioned above can also be effectively removed, so the removal rate is about 90% or more. However, in the case of this filter element, the fluid resistance increases, so the filter element containing the magnetic ion exchange resin becomes compacted over time due to the fluid pressure, resulting in a sudden increase in differential pressure, lowering the processing flow rate, and reducing ions due to backwashing. The drawback was that the replacement resin could not be discharged sufficiently and the filtration performance deteriorated over time.

〔発明の目的〕[Purpose of the invention]

本発明は斯かる観点に基づいてなされたものであシ、上
記従来技術の欠点を解消し、流体中の磁性粒子を高効率
に除去出来、而も経時劣化が少なく安定した粒子の捕捉
分離が可能な電磁フィルタ装置を提供することを目的と
する。
The present invention has been made based on this point of view, and it solves the drawbacks of the above-mentioned conventional techniques, makes it possible to remove magnetic particles in a fluid with high efficiency, and enables stable capture and separation of particles with little deterioration over time. The purpose is to provide a possible electromagnetic filter device.

〔発明の構成〕[Structure of the invention]

上記目的を達成する為本発明においては、フィルタエレ
メントを複数の層から形成し、該層の最終層に磁性イオ
ン交換樹脂を磁気的に保持させる一方、屏磁によシ該樹
脂を解放させるようにした。
In order to achieve the above object, in the present invention, the filter element is formed from a plurality of layers, and the final layer of the layers magnetically retains the magnetic ion exchange resin, while the folding magnet releases the resin. I made it.

この構成によシ流体中の水酸化鉄を確実に捕捉出来ると
共に、フィルタエレメントの圧密変形による経時劣化を
防止し得ることとなった。
With this configuration, iron hydroxide in the fluid can be captured reliably, and deterioration over time due to compaction deformation of the filter element can be prevented.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明に係る電磁フィルタ装置の一実施例を示
す図である。図中10は被処理水通過用の容器即ちキャ
ニスタであり、これには多孔磁極12、マトリックス1
4.帰磁路継鉄16.電磁コイル18等が配備されてい
る。被処理水は矢印A−A方向に通過して処理され、ま
た逆洗の際は矢印B−B方向に水が通過する。
FIG. 1 is a diagram showing an embodiment of an electromagnetic filter device according to the present invention. In the figure, 10 is a container or canister for passing water to be treated, which includes a porous magnetic pole 12, a matrix 1
4. Return path yoke 16. An electromagnetic coil 18 and the like are provided. The water to be treated passes in the direction of arrow A-A and is treated, and during backwashing, water passes in the direction of arrow B-B.

マトリックス14中のフィルタエレメント20は第2図
に示す如く第1乃至第4層22 、24. 。
The filter elements 20 in the matrix 14 are arranged in first to fourth layers 22, 24 . .

26.28の4つの層からなる。各層は5US430の
強磁性ステンレス鋼の細線を絡み合せ。
It consists of four layers of 26.28. Each layer is made of intertwined fine wires of 5US430 ferromagnetic stainless steel.

各接点を真空焼結法である金属間拡散接合により結合し
たもので、各細線は表面に滑らかな凹凸を有すると共に
、丸味を帯びた横断面角形をなす。
Each contact point is bonded by metal-to-metal diffusion bonding, which is a vacuum sintering method, and each thin wire has smooth irregularities on its surface and has a rounded rectangular cross section.

また第2図(3)、0に示すように、各層の細線の線径
及び充填率は、被処理粒子の粒度分布、捕捉性を考慮し
、被処理水の流れに沿って区分的11つ連続的に変化す
るようになっており、金属細線の91/−均配向角度が
磁束に対して80−100’の角度にある。第4層28
即ち最終層には粒径150μmの磁性イオン交換樹脂3
0(本実施例にあっては。
In addition, as shown in Figure 2 (3), 0, the wire diameter and filling rate of the fine wires in each layer are determined piecewise along the flow of the water to be treated, taking into consideration the particle size distribution and capture ability of the particles to be treated. It changes continuously, and the 91/- uniform orientation angle of the thin metal wire is at an angle of 80-100' with respect to the magnetic flux. Fourth layer 28
That is, the final layer contains magnetic ion exchange resin 3 with a particle size of 150 μm.
0 (in this example.

γ−FezO3粉体と通常のイオン交換樹脂とを複合造
粒したものである)が磁気的に吸着保持されており、こ
の粒径が想像線で示されている。
(This is a composite granulation of γ-FezO3 powder and a normal ion exchange resin) is magnetically adsorbed and held, and the particle size is shown by an imaginary line.

第3図は上記実施例装置の操作フローを示す図である。FIG. 3 is a diagram showing the operation flow of the apparatus of the above embodiment.

操作に際しては、先ずフィルタニレメン)20を磁化さ
せ、パルプ34.36.38を開き、タンク32から磁
性イオン交換樹脂を含むスラリーを通し、フィルタエレ
メント20上部の最終層28に該樹脂を吸着させる。次
にパルプ34゜36.38を閉じ、パルプ40.42を
開いて被処理水を上向流で通して濾過する。逆洗時は先
ず゛゛解磁、パルプ40.42を閉じ、パルプ34゜3
6を開いて上向流で使用済イオン交換樹脂を排水する。
In operation, first, the filter element 20 is magnetized, the pulp 34, 36, 38 is opened, a slurry containing a magnetic ion exchange resin is passed from the tank 32, and the resin is adsorbed to the final layer 28 on the top of the filter element 20. . Next, the pulp 34° 36.38 is closed and the pulp 40.42 is opened to allow the water to be treated to pass through in an upward flow for filtration. When backwashing, first demagnetize, close pulp 40.42, and close pulp 34゜3.
6 to drain the used ion exchange resin in an upward flow.

その後再度下向流でフィルタエレメント20中に捕捉さ
れた磁性粒子を逆洗回収し、フィルタエレメント20を
再生する。以上のサイクルを1単位として繰返し行う。
Thereafter, the magnetic particles captured in the filter element 20 are backwashed and recovered by the downward flow again, and the filter element 20 is regenerated. The above cycle is repeated as one unit.

本発明に使用する金属細線の線径範囲は加工上の限界等
の制約から約10〜300μmであり。
The wire diameter range of the thin metal wire used in the present invention is approximately 10 to 300 μm due to processing limitations and other constraints.

これに対しイオン交換樹脂の粒径範囲は約1〜100μ
mであシ、この両者間の磁気吸着力はその径比が−Q 
3 : 1の時最大となる。
In contrast, the particle size range of ion exchange resins is approximately 1 to 100μ.
m, and the magnetic attraction force between the two has a diameter ratio of -Q
Maximum when 3:1.

第4図囚〜(Oは上記本実施例に係るフィルタエレメン
トと前記従来のフィルタエレメントとの性能比較テスト
の結果を示す図であり、実線は本実施例を破線は従来技
術を示す。F層高50岨、磁束密度600w/hrの条
件で、被処理水としてはコロイド状水酸化鉄をRO処理
水に20〜100pph添加したものを模擬復水とした
Figures 4 to 4 are diagrams showing the results of a performance comparison test between the filter element according to the present embodiment and the conventional filter element, where the solid line indicates the present embodiment and the broken line indicates the prior art. The simulated condensate water was prepared by adding 20 to 100 pph of colloidal iron hydroxide to the RO treated water under conditions of a height of 50 m and a magnetic flux density of 600 w/hr.

同図からもわかるように1本実施例のフィルタエレメン
トは金属細線の焼結結合により補強されゝている為、圧
密変形によシ処理流量比が激減したノ シ、圧密によシ差圧が異常に増大する経時劣化すること
なく安定した性能が得られることが判る。
As can be seen from the figure, the filter element of this example is reinforced by sintered bonding of thin metal wires, so the processing flow rate is drastically reduced due to consolidation deformation, and the differential pressure is abnormal due to consolidation. It can be seen that stable performance can be obtained without deterioration that increases over time.

尚、除去率については、従来技術の方が良い結果が得ら
れているが、これは圧密化閉塞により一時的に除去率が
向上したものと考えられる。
Regarding the removal rate, better results were obtained with the conventional technique, but this is thought to be because the removal rate was temporarily improved due to compaction and occlusion.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明に係る電磁フィルタ装置によれば、流
体中の水酸化鉄を確実に捕捉出来ると共に、フィルタエ
レメントの圧密変形による経時劣化もなく、高効率で且
つ安定した性能が得られるものである。
As described above, the electromagnetic filter device according to the present invention can reliably capture iron hydroxide in the fluid, and can provide highly efficient and stable performance without deterioration over time due to compaction deformation of the filter element. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電磁フィルタ装置の一実施例を示
す図、第2図(4)はそのフィルタエレメントの詳細を
示す図、第2図(B)、Ωは同フィルタニレメン・トの
金属細線の線径及び充填率を示す図。 第3図は第1図図示装置の操作フローを示す図。 第4図■〜0は本発明と従来技術によるフィルタ・黛し
メントの性能比較テストの結果を示す図であ91図中実
線は本発明を破線は従来技術を示す。 10・・・キャニスタ 12・・・多孔磁極14・・・
マトリックス 16・・・帰磁路継鉄18・・・電磁コ
イル 20・・・フィルタエレメント22〜28・・・
層 3O・・・磁性イオン交換樹脂32・・・タンク 
’ 34〜42・・・パル7−0第1図 第2図 (A) (B) (C) 線種(μm) を壊4:c%) 第3図 第4図 (A) 5P愈哨閂(h) (B) (C) 5r咄晴lid (t+)
FIG. 1 is a diagram showing an embodiment of the electromagnetic filter device according to the present invention, FIG. 2 (4) is a diagram showing details of the filter element, and FIG. FIG. 3 is a diagram showing the wire diameter and filling rate of fine metal wire. FIG. 3 is a diagram showing the operation flow of the apparatus shown in FIG. 1. FIGS. 4 - 0 are diagrams showing the results of a performance comparison test of filters and filters according to the present invention and the prior art. In FIG. 91, the solid line indicates the present invention and the broken line indicates the prior art. 10... Canister 12... Porous magnetic pole 14...
Matrix 16...Return path yoke 18...Electromagnetic coil 20...Filter elements 22-28...
Layer 3O...Magnetic ion exchange resin 32...Tank
' 34-42...Pal 7-0 Figure 1 Figure 2 (A) (B) (C) Line type (μm) Breaking 4:c%) Figure 3 Figure 4 (A) 5P sentry Bolt (h) (B) (C) 5r Hara lid (t+)

Claims (6)

【特許請求の範囲】[Claims] (1)一方向に磁束が並んだ磁場中にある多孔質フィル
タエレメント中に流体を通過させ、該流体中から微細な
強磁性若しくは常磁性の粒子を磁気的に捕捉分離する電
磁フィルタ装置において、上記フィルタエレメントを複
数の層から形成し、該ことを特徴とする電磁フィルタ装
置。
(1) In an electromagnetic filter device that allows a fluid to pass through a porous filter element in a magnetic field in which magnetic flux is aligned in one direction, and magnetically captures and separates fine ferromagnetic or paramagnetic particles from the fluid, An electromagnetic filter device characterized in that the filter element is formed from a plurality of layers.
(2) 前記フィルタエレメントの最終層が5表面′に
滑らかな凹凸を有し且つ丸味を帯びた横断面角形をなす
強磁性体金属細線の絡み合ったものである特許請求の範
囲第(1)項に記載の電磁フィルタ装置。
(2) Claim (1), wherein the final layer of the filter element is an entanglement of fine ferromagnetic metal wires having smooth irregularities on the 5th surface and having a rounded, square cross section. The electromagnetic filter device described in .
(3) 前記金属細線が、互いの接点を焼結によ゛シ結
合されている特許請求の範囲第、2)項に記載の電磁フ
ィルタ装置。
(3) The electromagnetic filter device according to claim 2, wherein the thin metal wires are connected to each other by sintering their contact points.
(4) 前記金属細線の平均配向角度が磁束に対して8
0°〜100°の角度範囲にある特許請求の範囲第(2
)項に記載の電磁フィルタ装置。
(4) The average orientation angle of the thin metal wire is 8 with respect to the magnetic flux.
Claim No. 2 in the angular range of 0° to 100°
) The electromagnetic filter device described in item 1.
(5) 前記フィルタエレメントが、被処理液の流れ方
向に沿って金属細線の線径が区分的且つ連続的に細くな
るような多段涙層として形成されている特許請求の範囲
第(1)項に記載の電磁フィルタ装置0
(5) Claim (1) wherein the filter element is formed as a multi-stage lacrimal layer in which the wire diameter of the thin metal wire becomes thinner piecewise and continuously along the flow direction of the liquid to be treated. Electromagnetic filter device 0 described in
(6) 前記磁性イオン交換樹脂の粒径が、10〜10
0μmの範囲にある特許請求の範囲第(1)項に記載の
電磁フィルタ装置。
(6) The particle size of the magnetic ion exchange resin is 10 to 10
The electromagnetic filter device according to claim (1), which is in the range of 0 μm.
JP24173183A 1983-12-21 1983-12-21 Electromagnetic filter apparatus Pending JPS60132609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24173183A JPS60132609A (en) 1983-12-21 1983-12-21 Electromagnetic filter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24173183A JPS60132609A (en) 1983-12-21 1983-12-21 Electromagnetic filter apparatus

Publications (1)

Publication Number Publication Date
JPS60132609A true JPS60132609A (en) 1985-07-15

Family

ID=17078695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24173183A Pending JPS60132609A (en) 1983-12-21 1983-12-21 Electromagnetic filter apparatus

Country Status (1)

Country Link
JP (1) JPS60132609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783681B2 (en) 2000-11-10 2004-08-31 Ch2M Hill, Inc. Method and apparatus for treatment of drinking water
US7025884B2 (en) 2000-11-10 2006-04-11 Ch2M Hill, Inc. Method and apparatus for treatment of a fluid system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783681B2 (en) 2000-11-10 2004-08-31 Ch2M Hill, Inc. Method and apparatus for treatment of drinking water
US7025884B2 (en) 2000-11-10 2006-04-11 Ch2M Hill, Inc. Method and apparatus for treatment of a fluid system
US7144510B2 (en) 2000-11-10 2006-12-05 Ch2M Hill, Inc. Method and apparatus for treatment of a fluid stream

Similar Documents

Publication Publication Date Title
US4769130A (en) High-gradient magnetic separator
GB1578396A (en) Magnetic separator
JPH0314486B2 (en)
JP2728848B2 (en) Magnetic filter
JPS60132609A (en) Electromagnetic filter apparatus
JPS58143814A (en) Magnetic separation apparatus
JP2877551B2 (en) Oil purifier
JPS6159163B2 (en)
DE102018110730B4 (en) Arrangement and method for the filtration of magnetic particles
JPS60241914A (en) Corrosion-resistant filter medium for electromagnetic filter
JPS6024404Y2 (en) electromagnetic filter
JPS60153914A (en) Element for electromagnetic filter
RU2742805C2 (en) Method of purifying liquid nanostructured media from magnetic and weakly magnetic impurities and apparatus
JPS60100Y2 (en) electromagnetic filter machine
RU2190453C1 (en) High-gradient magnetic filter
JPS634820A (en) Filtrating apparatus using laminated magnet
JPS6323707A (en) Magnetic separator
JPS6014493Y2 (en) electromagnetic filter
JPH0259008A (en) Filtration treatment process
JPS5936252Y2 (en) electromagnetic filter
Watson et al. A superconducting high-gradient magnetic separator with a current-carrying matrix
JPS59314A (en) Electromagnetic filter
JPS5943208B2 (en) magnetic separation filter
RU1768231C (en) Magnetic filter
JPS6193994A (en) Device for removing impurity in liquid metal