JPS60132358A - Complementary mos integrated circuit device - Google Patents

Complementary mos integrated circuit device

Info

Publication number
JPS60132358A
JPS60132358A JP58240303A JP24030383A JPS60132358A JP S60132358 A JPS60132358 A JP S60132358A JP 58240303 A JP58240303 A JP 58240303A JP 24030383 A JP24030383 A JP 24030383A JP S60132358 A JPS60132358 A JP S60132358A
Authority
JP
Japan
Prior art keywords
type
substrate
well
epitaxial layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58240303A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mizushima
水嶋 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58240303A priority Critical patent/JPS60132358A/en
Publication of JPS60132358A publication Critical patent/JPS60132358A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To suppress the occurrence of a latchup phenomenon without increasing the number of photoworkings in the manufacturing steps by providing an N type epitaxial layer of high impurity density higher than a one conductive type (N type) substrate on the substrate and then forming a P type well reaching the substrate. CONSTITUTION:An N type epitaxial layer 12 having the same conductive type as an N type substrate 11 and an impurity density larger than the substrate 11 is grown on the substrate 11. The impurity density of the layer 12 is set by considering the surface density after forming a P type well formed later. A mask layer 13 of an oxide film is coated on a portion except a P type well forming region, and a P type well 14 is formed by an ion implantation or diffusion. The impurity density of the well 14 is so formed as to be low in the layer 12 and the maximum value in a substrate region deeper than the epitaxial layer. Such an impurity density distribution is formed to raise the base density of a parasitic vertical N-P-N type transistor, and the current amplification factor is accordingly decreased.

Description

【発明の詳細な説明】 (技術分野) 本発明は相補型M(JS集積回路装置に関する。[Detailed description of the invention] (Technical field) The present invention relates to a complementary M (JS) integrated circuit device.

(在米技術) 相補型MO8集積回路装置には、その構造上、PNP’
、!:NPN の2種の寄生バイポーラトランジスタが
形成さA、この二つの寄生ノくイボーラトランジスタに
より寄生サイリスタが構成さ扛、入出力端子に過大な゛
匡正や磁流が印加さ几た時オン状態となバいわゆるラツ
テアッグ現象を生ずるという問題がおる。
(U.S.-based technology) Complementary MO8 integrated circuit devices have PNP's due to their structure.
,! : Two types of parasitic bipolar transistors of NPN are formed A, and these two parasitic Ibora transistors constitute a parasitic thyristor, which turns on when an excessive voltage or magnetic current is applied to the input/output terminal. There is a problem in that the so-called Ratteag phenomenon occurs.

第1図は従来の相補型M(JS集槓回路装置の一例の−
)T面図で必る。
Figure 1 shows an example of a conventional complementary M (JS integrated circuit device).
) Required for T-view.

N型半導体基板lにPウェル2忙設け、Pウェル内にN
型のソース拳ドレイン領域3.4とP+領域5七作り、
ソース・ドレイン明域間の上にゲ−)Gτ設けてへチャ
ンネルF E Tで作る。基板領域vcP型のソース・
ドレイン=A域6.7とN十槌域8とt作り、ソース・
ドレイン埃域間にゲートGτ設けてPチャンネルFET
で作る。この構造において、Pウェル2i1’I:形成
されたFETのソース3をエミッタ、Pウェル2をベー
ス%基板1tコレクタとする吾生NPN縦型トランジス
タと、基板領域に形成されたFETのソース6をエミッ
タ、基板1?ベース、Pウェル2tコレクタとする寄生
PNP横型卜2ンジスタが存在する。導電型tすべて逆
にすると通導IKm、の寄生バイボークトランジスタが
形成される。この2桓の寄生トランジスタとPウェルの
等測的抵抗Rwell 及びサブストレートの等価的な
抵抗Rsubより寄生ブイリスクが構成される。この寄
生サイリスクは、入出力端子に過大な外米雑音電圧や電
流が印加され間に過大電流が流れてデバイスの破壊める
いは劣化kljAすことが知られている。
Two P-wells are provided on an N-type semiconductor substrate l, and an N well is formed in the P-well.
Make source fist drain region 3.4 and P+ region 57 of type,
Gτ is provided above the source-drain bright region, and a channel FET is formed. Substrate area vcP type source
Drain = A area 6.7 and N Jutsuchi area 8 and t made, source
P-channel FET with gate Gτ provided between drain dust region
Make it with In this structure, P well 2i1'I: a vertical NPN transistor with the source 3 of the formed FET as the emitter, the P well 2 as the base and the collector as the substrate 1t, and the source 6 of the FET formed in the substrate region as the emitter. , board 1? There is a parasitic PNP horizontal type transistor with a base and a P well 2t collector. If all the conductivity types t are reversed, a parasitic biboke transistor of conducting IKm is formed. A parasitic builisk is constituted by these two parasitic transistors, the isometric resistance Rwell of the P well, and the equivalent resistance Rsub of the substrate. It is known that this parasitic noise risk occurs when an excessive external noise voltage or current is applied to the input/output terminals, and an excessive current flows between them, resulting in destruction or deterioration of the device.

従来、相補型MO8集積回路装置において、ラッチアッ
プ現象を防止するため、−ケイリスタを構成するを生縦
1NPN)9ンジスタと寄生横型PへPトランジスタの
電流増幅率會下げる手段がとられている。丁なわち寄生
縦型NPN)ランジスタQ1の電流増幅犀τ′下げ/)
ため、第1図に示すように、ベース幅に相当する距離(
11に大さくと9.寄生横型P N P トランジスタ
の′1流増幅率全下げるため、ベース幅に相当する距離
d2 k大きくとっている。しかしd、−z大きくとる
ことば不純物拡散によるウェルの横方向の広が9も大き
くなることを意味し、またd2 葡大きくとることはN
チャンネル、Pチャンネルの各FET間距離が大きくな
るため高集積化が困難となる。
Conventionally, in a complementary MO8 integrated circuit device, in order to prevent the latch-up phenomenon, measures have been taken to reduce the current amplification factor of the P transistor constituting the transistor to a parasitic horizontal P transistor and a vertical P transistor. In other words, the current amplification of the parasitic vertical NPN transistor Q1 is lowered by τ'.
Therefore, as shown in Figure 1, the distance corresponding to the base width (
11 and 9. In order to completely reduce the '1 current amplification factor of the parasitic lateral PNP transistor, a distance d2k corresponding to the base width is set large. However, setting d, -z large means that the lateral spread of the well due to impurity diffusion9 also becomes large, and setting d2 large means that N
Since the distance between the channel and P-channel FETs becomes large, high integration becomes difficult.

第2図は従来の相補11MO8集幀回路装置の他の例の
断面図である。
FIG. 2 is a sectional view of another example of a conventional complementary 11MO8 integrated circuit device.

との相補型MOB集積回路装置では、ラッテアップを防
止する一手段としてN型半導体基板1にP十埋込層9を
設け、八−皺エビタキシアルM1゜を成長せしめ、その
後にPウェル2をイオン注入や熱拡散等の手段で形成し
埋込層9と接触させるPウェル形成方法がとられている
。この方法τコ凶用して作成し文相桶型MO8構造では
、Pウェルの抵抗Rwellに相当するウェルの等価的
な抵抗を低減させることができ、また寄生縦型NPN 
l−ランジスタのベース改変を上げることに相当するた
め、電流増幅率も低下し2クチアツプは起シにくくなる
In a complementary MOB integrated circuit device, a P well 2 is formed by forming an 8-wrinkle epitaxial layer M1° on an N-type semiconductor substrate 1 by forming an 8-wrinkle epitaxial layer M1° as a means of preventing ratt-up. A P-well formation method is used in which the P-well is formed by means such as injection or thermal diffusion and brought into contact with the buried layer 9. In the Bunsooke type MO8 structure created using this method, the equivalent resistance of the well corresponding to the resistance Rwell of the P well can be reduced, and the parasitic vertical NPN
Since this corresponds to increasing the base modification of the L-transistor, the current amplification factor also decreases, making it difficult for double-up to occur.

し〃)シ、この方法では、埋込層形成のだめのフォトワ
ーク工程と不純物導入工程、Pウェル形成の定めのフォ
トワーク工程と不純glJ4人工程とを要し工程が複雑
になる欠点がある。
(ii) This method has the drawback that it requires a photowork process for forming the buried layer, an impurity introduction process, a photowork process for forming the P well, and a 4-person process for impurity GLJ, making the process complicated.

(発明の目的) 不発明の目的は、上記欠点全除去し、製造工程FCs−
けるフォトワーク回数7増さず、また集積密度全低下き
せることなく、2ツチアツグ現象の発生を抑えた相補m
Mo5集積回路装置を提供することにある。
(Objective of the invention) The object of the invention is to eliminate all the above defects and improve the manufacturing process FCs-
Complementary m that suppresses the occurrence of the two-shot lag phenomenon without increasing the number of photoworks or reducing the total integration density.
An object of the present invention is to provide an Mo5 integrated circuit device.

(発明の構成) 不発明の相補型MO8集積回路装置は、−導電型基板と
、該半導体基板の上に設けられ該半導体基板よりも高い
不純?l濃朋を有する一導電型エビタキシアル層と、該
エピタキシアル層内面がらぽエピタキシアル層全通って
前記半導体基板に達゛するように設けられた反対導電型
ウェルと、該つエル内であってかつ前記エピタキシアル
層内に設けられた二つの一導電型領域tソース・ドレイ
ンとして構成さ几るl−導電型チャンネルのMOSFE
Tと、前記ワエル以外の前記エビタキンアル層に設けら
nた二つの反対導電型領域ンソース・ドレインとして構
成される反対導電型チャ/ネルのMOSFET とt含
んで構成烙詐る。
(Structure of the Invention) The uninvented complementary MO8 integrated circuit device includes a -conductivity type substrate and an impurity higher than that of the semiconductor substrate provided on the semiconductor substrate. an epitaxial layer of one conductivity type having a conductivity of one conductivity, and a well of an opposite conductivity type provided such that the inner surface of the epitaxial layer reaches the semiconductor substrate through the entirety of the epitaxial layer; and an L-conductivity type channel MOSFE configured as two one-conductivity type regions provided in the epitaxial layer as a T source and a drain.
and a MOSFET of an opposite conductivity type channel configured as a source and a drain, and two opposite conductivity type regions provided in the Evitaquin Al layer other than the above-mentioned wafer.

(冥施例) 次に、不発明の芙施例について図面を用いて説明する7
゜ 第3図(a)〜(C)は本発明の一実施例の製造方法を
説明するための工程順に示した断面図である。
(Next example) Next, we will explain the non-inventive example using drawings 7
3(a) to 3(C) are sectional views shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

まず、第3図(a)K示すように、N型半導体11の上
に基板と同導電温で基板よりも不純物#度の大きいNf
iエビタヤシアル層12紮成長させる。
First, as shown in FIG. 3(a)K, Nf, which has the same conductivity temperature as the substrate and a higher degree of impurity than the substrate, is placed on the N-type semiconductor 11.
i. Grow 12 strands of Evitata palm layer.

エビタキンアル層12の厚さは後に形成するソース・ド
レイン層の深さより深く、かつPウェルよシ浅くなるよ
うに設定する。また、エピタキシャル層12の不純物傭
度は%後で形成するPウェル形成後の表面濃度全考慮し
て設定する。P7zル形成予定領域以外を酸化膜等のマ
スク層13で覆い、イオン注入法、拡散等によf)Pウ
ェル14を形成する。このとき、P型不純物の拡散係数
に対してN型不純物の拡散係数が十分小さいことが望ま
しい。なお、Pウェル14の不純物濃度は、図に破線で
示したエピタキシアル層12と、Millとの界面を境
界にして不純物濃度が急激に変化している。
The thickness of the Evitaquin Al layer 12 is set to be deeper than the depth of the source/drain layer to be formed later and shallower than the P well. Further, the impurity concentration of the epitaxial layer 12 is set by taking into account the total surface concentration after the P well is formed. The area other than the region where the P7z well is to be formed is covered with a mask layer 13 such as an oxide film, and f) a P well 14 is formed by ion implantation, diffusion, or the like. At this time, it is desirable that the diffusion coefficient of the N-type impurity is sufficiently smaller than the diffusion coefficient of the P-type impurity. Note that the impurity concentration of the P well 14 changes rapidly at the interface between the epitaxial layer 12 and the Mill, which is indicated by a broken line in the figure.

次に、第3図(b)に示すように、通常の方法により素
子間分離用のフィールド酸化11115.ゲート酸化膜
16を形成する。ここで必要に応じて基板全面icP型
不純9IJf低エネルギー、吐ト゛−ズ量でイオン注入
し、PチャンネルMO8FET金作製する領域のエピタ
キシアル層12の表面の不純物濃度?下げるとともに、
Pウェル領域の表面不純物濃度の最適化ケ行っても良い
Next, as shown in FIG. 3(b), field oxidation 11115. A gate oxide film 16 is formed. Here, if necessary, ions are implanted all over the substrate with IC P-type impurity 9IJf at low energy and discharged dose to determine the impurity concentration on the surface of the epitaxial layer 12 in the region where P-channel MO8FET gold is to be fabricated. Along with lowering
The surface impurity concentration of the P-well region may be optimized.

次に%第3図(C)に示すように1通常の方法に従って
ゲート17.18N型ンース・ドレイン4119゜20
P+憤域21.P型ソース・ドレイン領域22゜23、
N+領域24葡形成し、保穫膜形成後窓あけして電極2
5.26.27 で形成する。これにより本発明の一実
施例の相補型MO8集積回路装置が製作される。
Next, as shown in Figure 3(C), according to the usual method, the gate 17.18N type drain 4119°20
P+ rage area 21. P-type source/drain regions 22°23,
After forming the N+ region 24 and forming the protective film, a window is opened and electrode 2 is formed.
5.26.27 Formed. In this way, a complementary MO8 integrated circuit device according to an embodiment of the present invention is manufactured.

第4図は第3図(a)に示したPウェル部分の深さ方向
の不純物濃度?示す濃度分布図である。
Is the impurity concentration in the depth direction of the P well part shown in FIG. 3(a) shown in FIG. 4? FIG.

第4図において、縦軸は不純物閾度、横軸はエピタキシ
アル層12の表面からの深さt示し、実線21は不純物
の総和、破線22&よP型不純物、一点鎖線23はN型
不純物の濃度葡それぞ扛円く丁。
In FIG. 4, the vertical axis represents the impurity threshold, the horizontal axis represents the depth t from the surface of the epitaxial layer 12, the solid line 21 represents the total impurity, the broken line 22 represents the P-type impurity, and the dashed line 23 represents the N-type impurity. The concentration of grapes is exactly the same.

txk depi はエピタキシアル層12の浮式ン下
す。
txk depi floats down the epitaxial layer 12.

実線21で示すように、不純物の総オ■濃度は、エピタ
キシアル層12で低く、エピタキシアル層よ4]tlV
−X基板領域で最大値をとるように形成されている。こ
のような不純物濃度分布にすることによジ、寄生縦型N
PN)7ンジスタのベース製置を上げ、従って市原増幅
率τ下げることができると共に、Pウェルの等測的な抵
抗71氏下させ、2ツチアツプ現象の発生荀抑えること
ができる。このことが本発明の車要なポイントである。
As shown by the solid line 21, the total O concentration of impurities is low in the epitaxial layer 12, and is lower than the epitaxial layer 4]tlV.
It is formed to have a maximum value in the −X substrate region. By creating such an impurity concentration distribution, the parasitic vertical N
It is possible to increase the base configuration of the PN)7 transistor, thereby lowering the Ichihara amplification factor τ, and also to lower the isometric resistance of the P well by 71 degrees, thereby suppressing the occurrence of the double-up phenomenon. This is the essential point of the present invention.

に丁れば同様に行うことができることは明らかである。It is clear that the same thing can be done if

(発明の効果) 以上詳細に説明したように、本発明によれば、製造工程
にa−けるフォトワーク回数f増さず、また集積密度を
低下させることなく、ランチアップ現象の発生を抑えた
相補型MO8集積(ロ)路装置ン得ることができる。
(Effects of the Invention) As explained in detail above, according to the present invention, the occurrence of the launch-up phenomenon can be suppressed without increasing the number of photoworks in the manufacturing process or reducing the integration density. A complementary MO8 integrated circuit device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相補型MO8集積回路装置の一例の断面
図、第2図は従来の相補型M O8集積回路装置の他の
例のり[曲回、第3図(a)〜(C)は不発明の一実施
例の製造方法τ説明するための工程順に示した断凹図、
第4図は第3図(a)にボしたPウェル部分の深さ方向
の不純物濃度分布す濃度分布図である。 l・・・・・・N型半導体基板、2・・・・・・PL7
エル、3゜4・・・・・・Nuン−ス・ドレイン領域、
5・・・・・・P+領域、6,7・・・・・・P型ソー
ス・ドレイン領域、8・・・・・・N十領域、9・・・
・・・P十埋込層、10・・・・・・N−型エビタキン
アルI!1,11・・・−・・Nm半導体基板% 12
9.・0.・N型エピタキシアル層、13・・・・・・
マスク、14・・・・・・Pウェル、15・・・・・・
フィールドW化膜、l 6・・・・・・ゲート酸化膜、
17.18・・・・・・ゲート、19゜20・・・・・
・N型ソース・ドレイン領域、21・・・・・・P+領
域、22.23・・・・・・P′!iンースソーレイン
領域、24・・・・・・へ十領域、25,26.27・
・・・・・1扛極。 」i − 代理人 弁理士 内 原 口、。
FIG. 1 is a sectional view of an example of a conventional complementary MO8 integrated circuit device, and FIG. 2 is a cross-sectional view of another example of a conventional complementary MO8 integrated circuit device. is a cutaway diagram showing the order of steps for explaining the manufacturing method τ of an embodiment of the invention,
FIG. 4 is a concentration distribution diagram showing the impurity concentration distribution in the depth direction of the P well portion shown in FIG. 3(a). l...N-type semiconductor substrate, 2...PL7
L, 3゜4... Nuance drain region,
5...P+ region, 6,7...P type source/drain region, 8...N+ region, 9...
...P ten buried layers, 10...N-type Evitaquin Al I! 1,11...--Nm semiconductor substrate% 12
9.・0.・N-type epitaxial layer, 13...
Mask, 14...P well, 15...
Field W oxide film, l 6...Gate oxide film,
17.18...Gate, 19°20...
・N-type source/drain region, 21...P+ region, 22.23...P'! i so rain area, 24...... ten area, 25, 26.27.
...1 stroke. ” i - Agent Patent Attorney Uchiharaguchi.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板と、該半導体基板の上に設けられ該
半導体基板よりも高い不純物濃度を有する一導電型エビ
タキシアル層と、該エビクキ/アル層表面から該エピタ
キシアル層を通って@1]記半導体基板に達するように
設けらf′L、た反対導電型ウヱルと、該フェル内であ
ってかつ前記エピタキシアル層内に設けられた二つの一
導電型領域をソース・ドレインとして構成される一導電
型チヤンネルのMOSFETとb MiJ記ウェル以外
の前記エピタキシアル層に設けられた二つの反対導′亀
型領域全ソース・ドレインとして構成さnる反対導′屯
型チャ/ネルのMOSFETとfzc@むことτ%徴と
する相補型M(J8集積回路装置。
a semiconductor substrate of one conductivity type; an epitaxial layer of one conductivity type provided on the semiconductor substrate and having an impurity concentration higher than that of the semiconductor substrate; A well of opposite conductivity type f′L is provided to reach the semiconductor substrate, and a well of one conductivity type provided within the well and within the epitaxial layer is used as a source and drain. MOSFET of conductivity type channel and b MOSFET of opposite conductivity type channel/channel configured with two opposite conductivity tortoise type regions provided in the epitaxial layer other than the MiJ well as all sources and drains and fzc@ Complementary type M (J8 integrated circuit device) with τ% characteristic.
JP58240303A 1983-12-20 1983-12-20 Complementary mos integrated circuit device Pending JPS60132358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240303A JPS60132358A (en) 1983-12-20 1983-12-20 Complementary mos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240303A JPS60132358A (en) 1983-12-20 1983-12-20 Complementary mos integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60132358A true JPS60132358A (en) 1985-07-15

Family

ID=17057449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240303A Pending JPS60132358A (en) 1983-12-20 1983-12-20 Complementary mos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60132358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696062A3 (en) * 1994-07-28 1996-12-11 Hitachi Ltd CMOS semiconductor device and manufacturing method thereof
JP2015023177A (en) * 2013-07-19 2015-02-02 富士通セミコンダクター株式会社 Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377649B1 (en) * 1994-07-25 2003-06-02 가부시끼가이샤 히다치 세이사꾸쇼 Method of manufacturing semiconductor wafer, Method of manufacturing semiconductor wafer, Semiconductor integrated circuit device and Semiconductor integrated circuit device
EP0696062A3 (en) * 1994-07-28 1996-12-11 Hitachi Ltd CMOS semiconductor device and manufacturing method thereof
US6368905B1 (en) 1994-07-28 2002-04-09 Hitachi, Ltd. Process for manufacturing a semiconductor wafer, a semiconductor wafer, process for manufacturing a semiconductor integrated circuit device, and semiconductor integrated circuit device
US6630375B2 (en) 1994-07-28 2003-10-07 Hitachi, Ltd. Process for manufacturing a semiconductor wafer, a semiconductor wafer, process for manufacturing a semiconductor integrated circuit device, and semiconductor integrated circuit device
US6806130B2 (en) 1994-07-28 2004-10-19 Renesas Technology Corp. Process for manufacturing a semiconductor wafer, a semiconductor wafer, process for manufacturing a semiconductor integrated circuit device, and semiconductor integrated circuit device
JP2015023177A (en) * 2013-07-19 2015-02-02 富士通セミコンダクター株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
Snoeys et al. A new NMOS layout structure for radiation tolerance
US5534723A (en) Semiconductor integrated circuit device having output and internal circuit MISFETS
US4306916A (en) CMOS P-Well selective implant method
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
JPH03119732A (en) Neutral impurity for increasing opera- tional life of semiconductor device
US5610089A (en) Method of fabrication of semiconductor integrated circuit device
JPS61248459A (en) Complementary type mis semiconductor integrated circuit
JPH0652792B2 (en) Semiconductor device
US6476430B1 (en) Integrated circuit
JP2001284540A (en) Semiconductor device and its manufacturing method
EP0091256A2 (en) CMOS device
US6297119B1 (en) Semiconductor device and its manufacture
JPH10135349A (en) Cmos type semiconductor device and its manufacturing method
JPH0230185A (en) Semiconductor device and manufacture thereof
JPS60132358A (en) Complementary mos integrated circuit device
JP2001035933A (en) Semiconductor device and fabrication thereof
JPS63244874A (en) Input protective circuit
JPS61290753A (en) Complementary type mis semiconductor integrated circuit device
JPH08316335A (en) Semiconductor device and fabrication thereof
JPH0346238A (en) Manufacture of semiconductor device
JP2001077356A (en) Vertical mos semiconductor device
JPH03105971A (en) Semiconductor integrated circuit device
JPH05136405A (en) Semiconductor device
JPH05235346A (en) Semiconductor device and manufacture thereof
JPS59124157A (en) Complementary type semiconductor integrated circuit