JPS60131475A - Spotting device for fault point - Google Patents

Spotting device for fault point

Info

Publication number
JPS60131475A
JPS60131475A JP23965183A JP23965183A JPS60131475A JP S60131475 A JPS60131475 A JP S60131475A JP 23965183 A JP23965183 A JP 23965183A JP 23965183 A JP23965183 A JP 23965183A JP S60131475 A JPS60131475 A JP S60131475A
Authority
JP
Japan
Prior art keywords
power transmission
transmission line
faraday
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23965183A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sano
佐野 和汪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23965183A priority Critical patent/JPS60131475A/en
Publication of JPS60131475A publication Critical patent/JPS60131475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To spot a fault point on a power transmission line with high precision and high accuracy without any influence of a tide by spotting the fault point by using a Faraday element. CONSTITUTION:Light demultiplexed by an optical demultiplexer 63 provided to each steel tower on a power transmission line side is passed through a right- angled prism 511, polarizer 512, Faraday effect element 513 on the power transmission side, and analyzer 514 and then demultiplexed by an optical demultiplexer 516. Light from an optical fiber 518 is supplied to an analyzer 523 through the polarizer 521 and a Faraday effect element 522 at the power reception terminal side of the steel tower, and light signals of optical fibers 517 and 525 are inputted to an arithmetic circuit 505 through photodetectors 501 and 503 and amplifiers 502 and 504. Then, if there is a fault point at the steel tower, a transmitting circuit 506 outputs a specific transmit signal containing the information of the address setter 507 of the steel tower for a specific time and the signal is transmitted to optical receivers at both sides of the power transmission line through the optical fiber 62 of an overhead underground line.

Description

【発明の詳細な説明】 〔発明の利用分野〕 □ 本発明は送電線の故障点標定装置に係シ、特に磁性薄膜
などのファラデー素子を用いて故障点を標定する装置に
係る。
[Detailed Description of the Invention] [Field of Application of the Invention] □ The present invention relates to a fault point locating device for a power transmission line, and particularly to a device for locating a fault point using a Faraday element such as a magnetic thin film.

〔発明の背景〕[Background of the invention]

例えば磁性薄膜YIG(イツトリウム・鉄・ガーネット
)などの□ファラデー素子は、光の偏波面が磁界の強さ
に比例して回転する性質を持っている。
For example, a Faraday element made of a magnetic thin film YIG (yttrium, iron, garnet) has the property that the plane of polarization of light rotates in proportion to the strength of the magnetic field.

第1図において、光源G1から発せられる入射光は、G
2のようにランダムに偏光しているが、偏光子(偏光ビ
ームスプリッタ)G3を通すと、これが直線偏光G4と
なる。更にこれがY I ’Gなどのファラデー効果素
子G5を通るとき、このファラデー効果素子G5に磁界
Hを図の方向に加えると、その磁界の強さHに比例した
ファラデー回転角θだけ偏光面が回転し出力G6のよう
になり、これを検光子G7によりとのθの水平成分だけ
Ga4のように出力光として取シだし、回転角θの大き
さ、即ち磁界の大きさHを知ることができる。
In FIG. 1, the incident light emitted from the light source G1 is G
Although the light is randomly polarized as shown in 2, when it passes through a polarizer (polarizing beam splitter) G3, it becomes linearly polarized light G4. Furthermore, when this passes through a Faraday effect element G5 such as Y I 'G, if a magnetic field H is applied to this Faraday effect element G5 in the direction shown in the figure, the plane of polarization will be rotated by a Faraday rotation angle θ proportional to the strength H of the magnetic field. Then, the output becomes as shown in G6, and by using the analyzer G7, the horizontal component of θ is extracted as output light like Ga4, and the magnitude of the rotation angle θ, that is, the magnitude of the magnetic field H can be determined. .

この原理は公知の事実である。This principle is a known fact.

〔発明の目的〕[Purpose of the invention]

本発明では、係るファラデー素子を使用して送電線の故
障点標定を行なうことを目的とする。
An object of the present invention is to locate a fault point in a power transmission line using such a Faraday element.

〔発明の概要〕[Summary of the invention]

本発明は、上述のファラデー素子を第2図に、、示す送
電線5の各鉄塔1(又は2)、もしくはその近傍に置き
(図示はしてない)、送電線に流れる電流による磁界に
よって予め用意された光源からの光が、その7アラデー
素子を通過するときに与えられる偏光面の作用を応用し
たもので、より具体的には、 鉄塔の送電端側51側に置かれる第1のファラデー素子
(図示はしてない)を通過した出力光の受ける送電端側
電流is1によるファラデー回転角θlと、この出力光
を更に鉄塔の受電端側52側に置かれる第2のファラデ
ー素子(図示はしてない)を通過させたとき受電端側電
流iszによるファラデー回転角θ2の関係が、 該鉄塔に故障点がないときには1sl= isxであシ
o1=−θ2=−〇!、 該鉄塔に故障点があるときには151=K @ i、H
でありθ、=K・θ3、 となることから、これら第1のファラデー素子の出力光
及び第2のファラデー素子の出力光をそれぞれ別個に検
出し、それぞれの大きさく極性すなわち位相も含む)か
ら、 該鉄塔に故障点が有ったか否かを検出するようにしたも
のである。
In the present invention, the above-mentioned Faraday element is placed on each tower 1 (or 2) of the power transmission line 5 shown in FIG. It applies the effect of the polarization plane given when light from a prepared light source passes through the 7 Alladay elements, and more specifically, the first Faraday element placed on the power transmission end side 51 of the steel tower. The Faraday rotation angle θl due to the power transmission end side current is1 received by the output light that has passed through the element (not shown), and the Faraday rotation angle θl due to the power transmission end side current is1, which is applied to the output light that has passed through the element (not shown), and the Faraday rotation angle θl due to the power transmission end side current is1, and the second Faraday element (not shown) placed on the power receiving end side 52 of the steel tower. The relationship between the Faraday rotation angle θ2 due to the current isz on the receiving end side when passing the current isz is as follows: When there is no failure point in the tower, 1sl = isx. o1 = -θ2 = -〇! , When there is a failure point in the steel tower, 151=K @ i, H
θ, = K・θ3, Therefore, the output light of the first Faraday element and the output light of the second Faraday element are detected separately, and the magnitude and polarity, that is, the phase of each is also included). , to detect whether or not there is a failure point in the steel tower.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の代表的実施例を示す。 FIG. 3 shows a typical embodiment of the invention.

本実施例では、第2図の架空地線6の中の取付部60内
に光フアイバケーブル61.62が内蔵され、 該光ファイバ61を通しご送電線の一方端(例えば送電
端)に置かれた光源からの光信号を各鉄塔のところで、
前記第1のファラデー効果素子513の方に分岐するた
めに光分岐器63を各鉄塔の送電線側へ設け、 前記第2のファラデー効果素子522を通過した光をも
との光ファイバ61に挿入するために各鉄塔の光挿入器
64 を備えた場合を例に説明する。
In this embodiment, optical fiber cables 61 and 62 are built into the attachment part 60 of the overhead ground wire 6 shown in FIG. The optical signal from the light source is transmitted at each tower.
An optical splitter 63 is provided on the power transmission line side of each tower to branch toward the first Faraday effect element 513, and the light that has passed through the second Faraday effect element 522 is inserted into the original optical fiber 61. An example will be explained in which an optical inserter 64 is provided for each steel tower.

上述の光分岐器63で分岐された光はファイバ66を通
し、直角プリズム511を経て偏光子512で直線偏光
となシ、送電端側の第1のファラデー効果素子513を
通過させる。このとき電流issに比例した磁界F51
によシ、ファラデー効果素子513の出力光は、ファラ
デー回転角θlの偏光を受け、その水平成分だけが検光
子514によシ取シ出され、これが光7アイパ515を
経て光分岐器516によシ、光ファイバ517と光ファ
イバ518に分岐される。
The light branched by the above-mentioned optical splitter 63 passes through the fiber 66, passes through the right angle prism 511, becomes linearly polarized by the polarizer 512, and passes through the first Faraday effect element 513 on the power transmission end side. At this time, a magnetic field F51 proportional to the current iss
The output light of the Faraday effect element 513 receives polarized light with a Faraday rotation angle θl, and only its horizontal component is extracted by the analyzer 514, which passes through the light 7 eyeper 515 to the light splitter 516. Otherwise, it is branched into an optical fiber 517 and an optical fiber 518.

光ファイバ518の方へ与えられた光は第2の偏光子5
21を経て第2の7アラデー効果素子522を通過する
。このとき電流i52に比例した磁界F52により、第
2のファラデー効果素子522の出力光はファラデー回
転角θ2の偏光を受け、その水平成分だけが第2の検光
子523により取り出され、光ファイバ525へ与えら
れる。
The light directed toward the optical fiber 518 passes through the second polarizer 5
21 and a second 7 Alladay effect element 522 . At this time, due to the magnetic field F52 proportional to the current i52, the output light of the second Faraday effect element 522 is polarized with a Faraday rotation angle θ2, and only its horizontal component is extracted by the second analyzer 523 and sent to the optical fiber 525. Given.

光ファイバ517の光信号、即ち第1のファラデー効果
素子513によシ回転角θlを受け、その水平成分が取
り出された光信号は、受光器501を介し増幅器502
へ与えられる。一方、光ファイバ525の光信号、即ち
第2の7ア2デー効果素子522によシ回転角θ2を受
け、その水平成分が取り出された光信号は、受光器50
3を介し増幅器504へ与えられる。尚、50は線路5
側の取付部である。
The optical signal of the optical fiber 517, that is, the optical signal which is subjected to the rotation angle θl by the first Faraday effect element 513 and whose horizontal component is extracted, is transmitted to the amplifier 502 via the optical receiver 501.
given to. On the other hand, the optical signal of the optical fiber 525, that is, the optical signal which is subjected to the rotation angle θ2 by the second 7A2 effect element 522 and whose horizontal component is extracted, is transmitted to the optical receiver 50.
3 to an amplifier 504. In addition, 50 is track 5
This is the side mounting part.

ここで該鉄塔に故障点がないときには、1st=−、i
 5 !であシ、上記θ1=−〇、=−01であるから
、増幅器502と504の出力同志は大きさが等しく、
極性が反対のためこれらを入力する演算回路505の出
力は零となる。
Here, when there is no failure point in the steel tower, 1st=-, i
5! Yes, since the above θ1 = -〇, = -01, the outputs of amplifiers 502 and 504 are equal in magnitude,
Since the polarities are opposite, the output of the arithmetic circuit 505 to which these are input becomes zero.

一方、該鉄塔に故障点が存在するときには、1s1=に
φisgであシθ1 =K・θ2となシベ増幅器502
と504の出力同志は、極性が同方向のため、これらを
入力とする演算回路505の出力は1となる。
On the other hand, when there is a failure point in the steel tower, 1s1 = φisg and θ1 = K・θ2.
Since the outputs of and 504 have the same polarity, the output of the arithmetic circuit 505 which receives these as input is 1.

従って、演算回路の出力を受ける送信用回路506は、
演算回路505の出力が1のとき自鉄塔のアドレス設淀
器507の情報を含む所定の送信信号を一定時1間光出
力するので、電光素子(発光)508はこれを光信号に
変え光ファイバ509を介して前記光挿入器65へ与え
、架空地線中の光ファイバ62へ与えるので、これが送
電線の両端の光受信器(図示せず)で受信され、その鉄
塔に故障点があったことを検出できる。
Therefore, the transmission circuit 506 that receives the output of the arithmetic circuit is
When the output of the arithmetic circuit 505 is 1, it optically outputs a predetermined transmission signal containing information from the address setting device 507 of the steel tower for a certain period of time, so the electric light element (light emitting) 508 converts this into an optical signal and connects it to the optical fiber. 509 to the optical fiber 62 in the overhead ground line, this is received by optical receivers (not shown) at both ends of the power transmission line, and there is a failure point in the tower. can be detected.

なお、各鉄塔には、バッテリーを設置し、CMO8など
で製作された演算回路や送信回路に直流電源を供給する
A battery will be installed on each tower to supply DC power to the arithmetic circuits and transmission circuits manufactured by CMO8 and other devices.

この直流電源については、架空地線に設ける第3の光フ
ァイバを介し、送電線の一方端から与えられる光出力を
受けとり、光電池にこれを各鉄塔側で与え、電気に変換
し安定回路を経て上述の演評回路や送信回路に与えると
ともできる。
This DC power source receives optical output from one end of the power transmission line via a third optical fiber installed on the overhead ground wire, supplies it to photovoltaic cells on each tower side, converts it into electricity, and passes it through a stabilizing circuit. It can also be applied to the above-mentioned evaluation circuit and transmission circuit.

〔発明の効果〕〔Effect of the invention〕

本発明によれば潮流等の影響を受けることが々い。また
極めて検出精度、確度の高い故障点標定装置を提供でき
る。そして、各種の検出器PT。
According to the present invention, it is often affected by tidal currents and the like. Furthermore, it is possible to provide a failure point locating device with extremely high detection accuracy and accuracy. And various detectors PT.

CTを不要とできる。CT can be made unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はファラデー素子の動作原理を示す図、第2図は
送電線構成を示す図であ多、第3図は本発明の一実施例
図である。 512.514,521,523・・・偏光プリズム、
513.522・・・ファラデー素子、524,516
゜63・・・光分岐器、64.65・・・米挿入器。 代理人 弁理士 高橋明夫
FIG. 1 is a diagram showing the operating principle of a Faraday element, FIG. 2 is a diagram showing the configuration of a power transmission line, and FIG. 3 is a diagram showing an embodiment of the present invention. 512.514,521,523...polarizing prism,
513.522...Faraday element, 524,516
゜63...Optical splitter, 64.65...Rice inserter. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、送電線の各鉄塔の絶縁用碍子で支持される該送電線
の送電端側に流れる電流による磁界を印加される第1の
ファラデー素子と、該送電線の受電端側に流れる電流に
よる磁界を印加される第2のファラデー素子とを備え、
これら両ファラデー素子を通過する光信号の出力光にお
けるファラデー回転角の大きさもしくは極性、もしくは
大きさと極性をもとに該送電線に系統故障が起ったこと
を検出することを特徴とする故障点標定装置。 2゜送電線の架空地線に内蔵された光ファイバを介して
、各鉄塔に設けた故障点検は部に光源となる光信号を与
え、該光信号を基に故障点を標定することを特徴とする
第1項記載の故障点標定装置。
[Scope of Claims] 1. A first Faraday element to which a magnetic field is applied due to a current flowing to the power transmission end side of the power transmission line supported by an insulator of each tower of the power transmission line, and a power receiving end of the power transmission line. a second Faraday element to which a magnetic field is applied by a current flowing to the side;
A failure characterized by detecting that a system failure has occurred in the power transmission line based on the magnitude or polarity of the Faraday rotation angle in the output light of the optical signal passing through both Faraday elements, or the magnitude and polarity. Point locating device. 2゜Failure inspection installed in each tower is provided with an optical signal that serves as a light source through an optical fiber built into the overhead ground wire of the power transmission line, and the fault point is located based on the optical signal. The failure point locating device according to paragraph 1.
JP23965183A 1983-12-21 1983-12-21 Spotting device for fault point Pending JPS60131475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23965183A JPS60131475A (en) 1983-12-21 1983-12-21 Spotting device for fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23965183A JPS60131475A (en) 1983-12-21 1983-12-21 Spotting device for fault point

Publications (1)

Publication Number Publication Date
JPS60131475A true JPS60131475A (en) 1985-07-13

Family

ID=17047869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23965183A Pending JPS60131475A (en) 1983-12-21 1983-12-21 Spotting device for fault point

Country Status (1)

Country Link
JP (1) JPS60131475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328760B2 (en) 2002-06-14 2008-02-12 Kubota Corporation Semi tracked-type working vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328760B2 (en) 2002-06-14 2008-02-12 Kubota Corporation Semi tracked-type working vehicle

Similar Documents

Publication Publication Date Title
CN104569544B (en) Faradic currents sensor and faraday's temperature sensor
US20110115469A1 (en) Optical fiber electric current sensor, electric current measurement method, and fault zone detection apparatus
US5834933A (en) Method for magnetooptic current measurement and magnetooptic current-measuring device
JPH0224349B2 (en)
CN103076155A (en) Optical fiber Verdet constant measurement system on basis of double optical paths
JPS61139221A (en) Fault section discrimination for electric line
JP3611975B2 (en) Optical CT with failure judgment function
JPS60131475A (en) Spotting device for fault point
KR20110022434A (en) Optical current transformer and signal processing method thereof
CN106706992B (en) Using the closed-loop feed-back type all -fiber current transformer of polarization detection method
US10948342B2 (en) Bell state measurement apparatus based on single-mode optical fiber
JP2717410B2 (en) Optical demodulator
JP3350280B2 (en) Optical current transformer
JPS58215569A (en) Detecting method of cloud-to-ground discharge section
JPS62110162A (en) Apparatus for detecting zero phase current
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JPS5927266A (en) Current measuring apparatus using polarization plane-preserving optical fiber
JPH0843454A (en) Overcurrent detection method and device
JPS63313030A (en) Optical fiber testing device
CN106706991B (en) Optical current transformer
JP2668127B2 (en) Optical current measurement device
KR950009869B1 (en) Measuring device for voltage and current
CN116203299A (en) All-fiber current transformer device based on optical switch and current measurement method thereof
JP4400657B2 (en) Current measuring device
JPS6282338A (en) Optical fiber testing device