JPS6013074A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS6013074A
JPS6013074A JP58121759A JP12175983A JPS6013074A JP S6013074 A JPS6013074 A JP S6013074A JP 58121759 A JP58121759 A JP 58121759A JP 12175983 A JP12175983 A JP 12175983A JP S6013074 A JPS6013074 A JP S6013074A
Authority
JP
Japan
Prior art keywords
vacuum chamber
electrode
plasma cvd
substrate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121759A
Other languages
Japanese (ja)
Other versions
JPH0615716B2 (en
Inventor
Teruo Misumi
三角 輝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58121759A priority Critical patent/JPH0615716B2/en
Publication of JPS6013074A publication Critical patent/JPS6013074A/en
Publication of JPH0615716B2 publication Critical patent/JPH0615716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make film characteristics uniform by disposing insulating members for stabilizing plasma discharge in the upper and lower parts of a cylindrical electrode constituting a vacuum chamber. CONSTITUTION:A plasma CVD device is provided with a cylindrical electrode 1 constituting a vacuum chamber and a counter electrode 2 disposed so as to rotate around the central axis of the vacuum chamber. Gaseous raw material is introduced into the vacuum chamber through a feed pipe 6 and the plasma discharge of the gas is formed to form a deposited film on the base body on the electrode 2. Insulating members 16 for stabilizing the plasma discharge are disposed in the upper and lower parts of said electrode 1.

Description

【発明の詳細な説明】 本発明は基体上に堆積膜を形成するプラズマCVD装置
に関するもので、例えばプラズマCVD技術ヲ用いて円
筒状基体表面にアモルファスシリコン膜を堆積し電子写
真感光体を形成する票のできるグ2ズマCVD装置−更
に同一反応室内に各種原料ガスを適当に供給する事にょ
9、シリコンナイトライド膜、シリコンオキシナイトラ
イド膜、シリコンオキサイド膜、シリコンカーバイト[
yt−上述感光体ドラム表面に連続的に積層堆積する事
のできるプラズマCVD装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma CVD apparatus for forming a deposited film on a substrate, and for example, uses plasma CVD technology to deposit an amorphous silicon film on the surface of a cylindrical substrate to form an electrophotographic photoreceptor. Gu2Zuma CVD equipment capable of high performance - Furthermore, it is possible to appropriately supply various raw material gases into the same reaction chamber.
yt- This relates to a plasma CVD apparatus capable of continuously depositing layers on the surface of the photoreceptor drum.

尚、以下の説明においては、主として堆積膜を形成する
基体を電子写真用円筒状基体とした実施例について説明
するが、本発明装置は長方形の基体を円筒状の対向電極
上に多角形を成すように配置し、アモルファス感光体膜
や、演算素子用アモルファス半導体膜を堆積する目的に
も利用する事ができ、また、金型、バイト等の摩耗し易
い工具等の表面に超硬質膜を堆積する事によって、耐摩
耗性を向上させ、寿命を延ばす目的にも利用する事がで
きる。
In the following description, an embodiment will be mainly described in which the substrate on which the deposited film is formed is a cylindrical substrate for electrophotography, but the apparatus of the present invention uses a rectangular substrate formed in a polygonal shape on a cylindrical counter electrode. It can also be used to deposit amorphous photoreceptor films and amorphous semiconductor films for arithmetic elements, and can also be used to deposit ultra-hard films on the surfaces of tools that wear easily, such as molds and bits. By doing so, it can be used to improve wear resistance and extend life.

従来塁の円筒状プラズマCVD装置の代表的な一例の概
略を第1図に示す。第1図中1は真空チャンバーを構成
している円筒状のカソード電極、2は該真空チャンバー
の中心軸の周シに回転するようにこれと同心に配置され
た対向電極たるアノード電極を構成している円筒状の基
体、3は該真空チャンバーの壁体、4は該壁体を該カソ
ード電極から絶縁するためのドーナツ形の絶縁ガイシ、
5は高周波電源、6は原料ガス供給パイプ、7は排気方
向、8はヒーター・9は上記円筒状の基体を回転するモ
ータ、10はアース、11&’j、真空計、12はメイ
ンバルブ、13はリークバルブ、14はシールド板、1
5Uマスフローコントo−ラ−を示す。
FIG. 1 shows an outline of a typical example of a conventional cylindrical plasma CVD apparatus. In FIG. 1, 1 is a cylindrical cathode electrode that constitutes a vacuum chamber, and 2 is an anode electrode that is a counter electrode that is arranged concentrically with the central axis of the vacuum chamber so as to rotate around it. 3 is a wall of the vacuum chamber; 4 is a donut-shaped insulating insulator for insulating the wall from the cathode electrode;
5 is a high frequency power supply, 6 is a raw material gas supply pipe, 7 is an exhaust direction, 8 is a heater/9 is a motor that rotates the cylindrical base, 10 is a ground, 11 &'j is a vacuum gauge, 12 is a main valve, 13 is a leak valve, 14 is a shield plate, 1
A 5U mass flow controller is shown.

上記のプラズマCVD装置の動作を簡牟に説明する。The operation of the above plasma CVD apparatus will be briefly explained.

まず、真空チャンバー内に円筒状の基体2をセットし、
排気系7によってチャンバー内を真空にする。同時に基
体2をヒーター8によって加熱し、基体2をモータ9に
よって回転し、基体の温度分布を均一にする。この時、
ヒーターは固定されている。基体温度が一定釦なったら
、ガス供給パイプ6から原料ガスを真空チャンバー内に
供給するロ真空チャンバー内にガスが安定して供給され
ている状態で13.56 ME(zの高周波電源5によ
シカソード電極1に高周波電圧を印加し、アース接地さ
れた基体2の間でグロー放電を発生させ、カソード電極
1から飛び出した電子のガス分子への衝突により、ガス
分子をラジカル反応させて基体上に堆積させ、基体2上
に堆積膜、例えばアモルファスシリコン膜を成膜する。
First, a cylindrical base 2 is set in a vacuum chamber,
The inside of the chamber is evacuated by the exhaust system 7. At the same time, the substrate 2 is heated by the heater 8 and rotated by the motor 9 to make the temperature distribution of the substrate uniform. At this time,
The heater is fixed. When the substrate temperature reaches a certain level, feed the raw material gas into the vacuum chamber from the gas supply pipe 6.With the gas being stably supplied into the vacuum chamber, the A high-frequency voltage is applied to the cathode electrode 1 to generate a glow discharge between the grounded substrate 2, and the electrons ejected from the cathode electrode 1 collide with gas molecules, causing the gas molecules to undergo a radical reaction and onto the substrate. A deposited film, for example, an amorphous silicon film, is formed on the substrate 2.

上記のような従来型のプラズマCVD装置において、堆
積した膜特性を左右するパラメーターとして、ガス流量
、高周波電力の入力の大きさ、真空度、基板温度等が代
表的な)4ラメ−ターとして挙げられる。しかしながら
従来型プラズマCVD装置においては上記/ぐラメータ
を比較的最適な条件に調整してもその装置構造に起因す
る膜特性を劣化される要因を有している。
In the conventional plasma CVD equipment mentioned above, there are four typical parameters that affect the characteristics of the deposited film, such as gas flow rate, high frequency power input, degree of vacuum, and substrate temperature. It will be done. However, in the conventional plasma CVD apparatus, even if the parameters described above are adjusted to relatively optimal conditions, there are factors that deteriorate the film characteristics due to the structure of the apparatus.

すなわち、従来型プラズマCVD装置においては真空チ
ャンバーの壁体が通常はステンレス、アルミニウム等の
金属材で構成されその部分はアース状態にある。一方、
対向電極として設けたアノード電極である基体も通常は
アース状態にある。この場合当然、アース状態にある真
空チャンバーの壁体も基体と同様にアノード電極として
の効果をもつ・このような従来型プラズマCVD装置に
おいてプラズマ放電を発生させた場合、真空チャンバー
全体のプラズマ放電状態が均一ではなく、真空チャンバ
ー上下の壁体部分では、チャンバー中央部の放電状態と
は異なった放電が形成されてしまうO すなわち、高周波電力の入力側であるカソード電極に隣
接している真空チャンバー壁体の端部においては、特に
プラズマ放電の強度が強くなったシ、その形状によって
はスパーク状の異常放電を起こす場合もある。
That is, in a conventional plasma CVD apparatus, the wall of the vacuum chamber is usually made of a metal material such as stainless steel or aluminum, and that part is in a grounded state. on the other hand,
The base, which is an anode electrode provided as a counter electrode, is also normally in a grounded state. In this case, naturally, the wall of the vacuum chamber, which is in the grounded state, also has the effect of an anode electrode in the same way as the substrate.When plasma discharge is generated in such a conventional plasma CVD apparatus, the plasma discharge state of the entire vacuum chamber changes. is not uniform, and a discharge that is different from the discharge state at the center of the chamber is formed on the upper and lower walls of the vacuum chamber. At the ends of the body, the intensity of the plasma discharge is particularly strong, and depending on its shape, abnormal spark-like discharge may occur.

上記のようにチャンバー全体の放電が不均一な場合は、
それは膜特性の不均一全形成してしまう。
If the discharge across the chamber is uneven as described above,
It results in the formation of non-uniform film properties.

特に従来型プラズマCVD装置においては基体長さ方向
の膜質が均一でない欠点があった0本発明の目的は従来
型プラズマCVD装置の様にプラズマ放電の不安定性、
不均一を防止する事が出来、基体全体にわたって膜特性
が均一で良好な堆積膜を形成する卯ができるプラズマC
VD装置を提供することにある。
In particular, conventional plasma CVD equipment has the disadvantage that the film quality is not uniform in the longitudinal direction of the substrate.
Plasma C that can prevent non-uniformity and form a good deposited film with uniform film properties over the entire substrate.
Our goal is to provide a VD device.

本発明によるプラズマCVD装置の特徴とするところは
・真空チャンバーを構成している円筒状電極の上部およ
び下部に、プラズマ放電を安定させるための絶縁部材を
配置したことである。
The plasma CVD apparatus according to the present invention is characterized in that insulating members for stabilizing plasma discharge are disposed above and below the cylindrical electrode constituting the vacuum chamber.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

上述のように、本発明によるプラズマCVD装置は、第
1図に示すような従来のプラズマCVD装置のカソード
電極1と、真空チャンバーの上下の壁体3との間にプラ
ズマ放電の不均一を解消するための絶縁部材を配置した
ものでその代表的な一例を第2図に示す。第2図に示す
本発明の実施B様は、絶縁部材16を配置した以外は第
1図に示す従来型のプラズマCVD装置の構成と同じで
あるので、第1図に示すものと同じ部分は同じ符号によ
って指示して、その詳細な説明は省略する@第2図に示
す実施態様において、カソード電極1の上下に配置した
絶縁部材16はテフロン樹脂等の絶縁材料をドーナツ状
に加工したもので、下側の絶縁部材にはガスを排気する
ための穴が4個所に設けである。この絶縁部材13は第
1図に示す従来の装置における絶縁がイシ4とは異ムシ
、カソード電極1の上下で真空チャンバーの」二下のア
ース状態にある壁体との放電を完全にシールドしてプラ
ズマ放電の不均一を解消するように配置されている。
As described above, the plasma CVD apparatus according to the present invention eliminates the non-uniformity of plasma discharge between the cathode electrode 1 of the conventional plasma CVD apparatus and the upper and lower walls 3 of the vacuum chamber as shown in FIG. A typical example is shown in FIG. 2, in which insulating members are arranged for this purpose. Embodiment B of the present invention shown in FIG. 2 has the same configuration as the conventional plasma CVD apparatus shown in FIG. 1 except for the arrangement of the insulating member 16, so the same parts as shown in FIG. In the embodiment shown in FIG. 2, the insulating members 16 disposed above and below the cathode electrode 1 are made of an insulating material such as Teflon resin processed into a donut shape. The lower insulating member has four holes for exhausting gas. This insulating member 13 is different from the insulation in the conventional device shown in FIG. It is arranged so as to eliminate non-uniformity of plasma discharge.

次に本発明によって得られる効果を示すために、上記の
第2図に示すプラズマCVD装置を使用してシリコン膜
の形成を行なった実施例および第1図に示す従来のプラ
ズマCVD装置を使用してシリコン膜の形成を行なった
参考例について説明する。
Next, in order to demonstrate the effects obtained by the present invention, an example in which a silicon film was formed using the plasma CVD apparatus shown in FIG. 2 above, and a conventional plasma CVD apparatus shown in FIG. A reference example in which a silicon film was formed will be described.

(実施例) まず真空チャンバー内に上下方向の長40anの円筒状
At基体上に80m+X30+Imの大きさの石英がラ
ス基板を長さ方向に4枚とシつけた。排気系7によって
チャンバー内を真空にし、同時に基体2をヒーター8に
よって加熱し基体2をモータ9に連結された回転軸によ
って回転しながら基体2の温度が250℃になる様にコ
ントロールした。
(Example) First, four quartz lath substrates each measuring 80 m+×30+Im were attached in the longitudinal direction onto a cylindrical At substrate having a vertical length of 40 anm in a vacuum chamber. The inside of the chamber was evacuated by an exhaust system 7, and at the same time, the substrate 2 was heated by a heater 8, and the temperature of the substrate 2 was controlled to be 250° C. while being rotated by a rotating shaft connected to a motor 9.

この時ヒーターは固定されている。基体温度が一定にな
ったら原料ガス供給ノやイゾ6からシランガスをマスフ
ローコントローラ15で300 secmにコントロー
ルし、なから真空チャンバー内に供給した。真空チャン
バー内にガスが安定して供給されている状態で13.5
6■(zの高周波電源5にょシ、カソード電極1に高周
波電圧を印加し、アース接地された基体2の間でグロー
放電全発生させた・この時の放電電力は0.18 W/
crn2とした。グロー放電を20分間行ない基体上に
シリコン膜の堆積全終了した。基体温度が室温まで冷却
した後、石英ガラス基板を取り出し、基体上部から下部
に向けて順次に、試料1、試料2、試料3、試料4とし
た。これら4枚の膜厚を測定した後、導電率測定用のア
ルミニウムくし形電極をそれぞれ蒸着し、導電率の測定
を行なった。膜厚および導電率の測定結果を第3図に示
す。第3図中、A、BおよびCは、それぞれ、上記試料
の光導電率、膜厚および暗導電率全庁す。
At this time, the heater is fixed. When the temperature of the substrate became constant, silane gas was controlled at 300 sec by the mass flow controller 15 from the raw material gas supply port or the IZO 6, and was then supplied into the vacuum chamber. 13.5 when gas is stably supplied to the vacuum chamber.
6) (A high frequency voltage was applied to the high frequency power source 5 and the cathode electrode 1, and a glow discharge was generated between the grounded base 2. The discharge power at this time was 0.18 W/
It was set as crn2. Glow discharge was performed for 20 minutes to complete the deposition of the silicon film on the substrate. After the substrate temperature cooled to room temperature, the quartz glass substrate was taken out, and Sample 1, Sample 2, Sample 3, and Sample 4 were prepared in order from the top to the bottom of the substrate. After measuring the film thicknesses of these four sheets, aluminum comb-shaped electrodes for measuring conductivity were deposited on each layer, and the conductivity was measured. The measurement results of film thickness and conductivity are shown in FIG. In FIG. 3, A, B, and C represent the photoconductivity, film thickness, and dark conductivity of the sample, respectively.

(参考例) 第2図に示す絶縁部材13を除く以外は実施例と同じ第
1図に示す装置で、上記の実施例と同じ条件で同様にシ
リコン膜を堆積し、実施例と同様の方法で膜特性の評価
を行なった。その結果を第3図に示す。第3図中A/ 
、 B/およびC′は、それぞれ、上記実施例と同様の
試料における光導電率、膜厚および暗導電率を示す・ 第3図かられかるように、第2図に示す装置においては
、得られた光導電率、膜厚、暗導電率はいずれも試料1
.2.3.4について殆んど変化がないが、第1図に示
す従来の装置では、試料1.2.3.4において光導電
率、膜厚、暗導電率ともに相当に変動している。
(Reference example) A silicon film was deposited in the same manner as in the example using the same apparatus shown in FIG. 1 as in the example except for the insulating member 13 shown in FIG. The membrane properties were evaluated. The results are shown in FIG. A/ in Figure 3
, B/ and C' respectively indicate the photoconductivity, film thickness and dark conductivity of the same sample as in the above example. As can be seen from FIG. The measured photoconductivity, film thickness, and dark conductivity were all for sample 1.
.. There is almost no change in sample 2.3.4, but with the conventional apparatus shown in Figure 1, the photoconductivity, film thickness, and dark conductivity of sample 1.2.3.4 all fluctuate considerably. .

なお、上記の実施例ではチャンバー壁体とカソード電極
との間に絶縁部材を配置したが、例えばチャンバー壁自
体を絶縁部材で構成した9、あるいは、絶縁処理をほど
こす等によっても同様の効果を達成することができる。
In the above embodiment, an insulating member is placed between the chamber wall and the cathode electrode, but the same effect can also be achieved by, for example, constructing the chamber wall itself with an insulating member 9 or by applying insulation treatment. can be achieved.

絶縁部材の材料としては、テフロン樹脂を代表とする耐
熱性樹脂、アルミナ、セラミ″ツク等が代表的なものと
して挙げられる。
Typical materials for the insulating member include heat-resistant resins such as Teflon resin, alumina, and ceramics.

以上の実施例および参考例における膜特性の評価かられ
かるように、本発明により円筒状電極の上下に絶縁部材
を配置した装置は、従来装置に較べ導電率測定結果S/
N比も大きく膜特性の均一化を達成するという大きな効
果を有する。
As can be seen from the evaluation of film properties in the above examples and reference examples, the device in which insulating members are placed above and below the cylindrical electrode according to the present invention has a conductivity measurement result S/
The N ratio is also large, which has the great effect of achieving uniform film properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラズマCVD装置の一例を示す概略図
、第2図は本発明に係るプラズマCVD装置の一実施態
様を示す概略図、第3図は第1図および第2図に示す装
置によってシリコン膜を形成した時め膜特性の比較評価
の結果を示す図である。 1・・・真壁チャンバーを構成しているカソード電極・ 2・・・対向電極たるアノード電極を構成している基体
、 3・・・真空チャンバー壁体、 4・・・絶縁がいし、 5・・・高周波電源、6・・・
原料ガス供給パイプ、 7・・・排気方向、 8・・・ヒーター、9・・・モー
ター、 10・・・アース、11・・・真空計、 l2・・・ガス排気メインパルプ、 13・・・+) pパルプ 14・・・シールド板、1
5・・・マスクローコントローシー116・・・絶縁部
材。 第1図 馬3区
FIG. 1 is a schematic diagram showing an example of a conventional plasma CVD apparatus, FIG. 2 is a schematic diagram showing an embodiment of the plasma CVD apparatus according to the present invention, and FIG. 3 is the apparatus shown in FIGS. 1 and 2. FIG. 3 is a diagram showing the results of a comparative evaluation of film characteristics when a silicon film is formed by the method. DESCRIPTION OF SYMBOLS 1... Cathode electrode constituting the Makabe chamber, 2... Substrate constituting the anode electrode serving as the counter electrode, 3... Vacuum chamber wall, 4... Insulating insulator, 5... High frequency power supply, 6...
Raw material gas supply pipe, 7... Exhaust direction, 8... Heater, 9... Motor, 10... Earth, 11... Vacuum gauge, l2... Gas exhaust main pulp, 13... +) p pulp 14...shield plate, 1
5...Mask low contrast 116...Insulating member. Figure 1 Horse 3rd ward

Claims (1)

【特許請求の範囲】[Claims] 真空チャンバーを構成している円筒状電極、および該真
空チャンバーの中心軸の周シに回転するように配置され
た対向電極を備え、上記の真空チャンバー内に原料ガス
を導入し、該ガスのプラズマ放電を形成して上記の対向
電極上の基体上に堆積膜を形成するプラズマCVD装置
において、該電極の上部および下部にプラズマ放電を安
定させるための絶縁部材を配置した事を特徴とするゾラ
ズv CvD装置。
A cylindrical electrode constituting a vacuum chamber and a counter electrode arranged to rotate around the central axis of the vacuum chamber are provided. A raw material gas is introduced into the vacuum chamber, and a plasma of the gas is generated. A plasma CVD apparatus that forms a discharge to form a deposited film on the substrate on the counter electrode, characterized in that an insulating member is disposed above and below the electrode to stabilize the plasma discharge. CvD device.
JP58121759A 1983-07-05 1983-07-05 Plasma CVD equipment Expired - Lifetime JPH0615716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121759A JPH0615716B2 (en) 1983-07-05 1983-07-05 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121759A JPH0615716B2 (en) 1983-07-05 1983-07-05 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPS6013074A true JPS6013074A (en) 1985-01-23
JPH0615716B2 JPH0615716B2 (en) 1994-03-02

Family

ID=14819179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121759A Expired - Lifetime JPH0615716B2 (en) 1983-07-05 1983-07-05 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH0615716B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183469A (en) * 1985-02-07 1986-08-16 Toshiba Corp Film forming device
WO2021140757A1 (en) * 2020-01-06 2021-07-15 セントラル硝子株式会社 Metal material, method of producing metal material, method of passivating semiconductor processing apparatus, method of manufacturing semiconductor device, and method of manufacturing filled container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752112U (en) * 1980-09-11 1982-03-25
JPS5889943A (en) * 1981-11-26 1983-05-28 Canon Inc Plasma cvd device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752112U (en) * 1980-09-11 1982-03-25
JPS5889943A (en) * 1981-11-26 1983-05-28 Canon Inc Plasma cvd device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183469A (en) * 1985-02-07 1986-08-16 Toshiba Corp Film forming device
WO2021140757A1 (en) * 2020-01-06 2021-07-15 セントラル硝子株式会社 Metal material, method of producing metal material, method of passivating semiconductor processing apparatus, method of manufacturing semiconductor device, and method of manufacturing filled container

Also Published As

Publication number Publication date
JPH0615716B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
EP0717127B1 (en) Plasma processing method and apparatus
JPS60155676A (en) Plasma cvd device
JPS6137354B2 (en)
JPS6013074A (en) Plasma cvd device
JP3437961B2 (en) Apparatus and method for monitoring substrate bias during plasma processing of a substrate
JPH07288192A (en) Plasma treatment apparatus
JPS6357503B2 (en)
JPS622544A (en) Noiseless discharge type gas plasma treating device
JPS6153432B2 (en)
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JP3368142B2 (en) Deposition film forming equipment
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS6115973A (en) Plasma cvd device
JPH0418456B2 (en)
JPS637373A (en) Deposited film forming device by plasma cvd method
JPH0565590B2 (en)
JPS6024376A (en) Plasma cvd device
JPH05160028A (en) Surface processor
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JPS6026667A (en) Deposited film forming device
JPS62139878A (en) Film forming device by plasma
JPS62196377A (en) Device for forming deposited film by plasma chemical vapor deposition method
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment