JPS60125649A - Vinylidene chloride group resin type internal foaming body - Google Patents

Vinylidene chloride group resin type internal foaming body

Info

Publication number
JPS60125649A
JPS60125649A JP58233602A JP23360283A JPS60125649A JP S60125649 A JPS60125649 A JP S60125649A JP 58233602 A JP58233602 A JP 58233602A JP 23360283 A JP23360283 A JP 23360283A JP S60125649 A JPS60125649 A JP S60125649A
Authority
JP
Japan
Prior art keywords
particles
resin
foaming
foam
vinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58233602A
Other languages
Japanese (ja)
Other versions
JPS6333782B2 (en
Inventor
Masahiko Sakata
坂田 禮彦
Nobuo Miura
信雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58233602A priority Critical patent/JPS60125649A/en
Priority to US06/678,416 priority patent/US4550003A/en
Priority to GB08431163A priority patent/GB2151231B/en
Priority to FR8418995A priority patent/FR2556354B1/en
Priority to DE3445323A priority patent/DE3445323C1/en
Priority to US06/747,036 priority patent/US4613626A/en
Publication of JPS60125649A publication Critical patent/JPS60125649A/en
Priority to US06/860,479 priority patent/US4785024A/en
Publication of JPS6333782B2 publication Critical patent/JPS6333782B2/ja
Priority to US07/224,004 priority patent/US4868055A/en
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To use a foamed body as a heat insulation board as it is by forming material in which many particles of multiporous foaming of vinylidene chloride group resin are adjoining and by fusing these particles tightly together. CONSTITUTION:Copolymer resin particles consisting of composition ratio by weight of 60/40 of vinylidene chloride of particles with diameter of 0.25mm. and methyl metaacrylate are put into an autoclave and after hermetically closed therein and vacuumed, a liquid mixture of foaming agent consisting of equivalent weights of flon 11 and flon 12 are added until a sample particle reaches underneath the liquid surface. After leaving at 70 deg.C for 4hr, and cooled down to 20 deg.C and reduced to the atmospheric pressure, the particles inside are taken out. After leaving the foaming particles in an open air, these particles are heated with steam for 34sec to foam and preliminary foaming particles of foaming ratio of 30 times are obtained. These preliminary foaming particles are molded by a steam mold and a flat foamed board is obtained.

Description

【発明の詳細な説明】 本発明は、塩化ビニリデン系樹脂発泡体に関し、更に詳
しくは、例えばそのままで断熱材板、緩衝成形容器とし
て使用することができる広い断面と自由な形状を有する
新規な塩化ビニリデン系樹脂発泡体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vinylidene chloride resin foam, and more specifically, the present invention relates to a vinylidene chloride resin foam, and more specifically, a novel vinylidene chloride resin foam having a wide cross section and a free shape that can be used as is, for example, as a heat insulating board or a cushion molded container. This invention relates to vinylidene resin foam.

近来合成樹脂を発泡させる技術の研究は盛んで、その結
果多くの合成樹脂が発泡可能となり、樹脂種に応じて各
々独自の技術分野を形成している。
In recent years, research into technology for foaming synthetic resins has been active, and as a result, many synthetic resins can be foamed, and each type of resin has its own unique technical field.

その中にあって塩化ビニリデン系樹脂は、今だに広断面
形状寸法の良質発泡体を得る技術が完成されておらず、
従って例えば、その′v!tで断熱材板として用い得る
様な広い断面形状、及び板面積を有する発泡成形体は実
在していない。
Among them, the technology for producing high-quality foams with wide cross-sectional shapes and dimensions for vinylidene chloride resins has not yet been perfected.
Therefore, for example, the 'v! There is no existing foam molded product with such a wide cross-sectional shape and plate area that it can be used as a heat insulating plate.

その理由として、一般に塩化ビニリデン系樹脂は、 1)樹脂を溶融加工する加工温度と、分解が進む分解温
度とが接近しすぎているため、押出加工工程で樹脂の熱
分解が起る。
The reasons for this are that, in general, vinylidene chloride resins: 1) The processing temperature at which the resin is melt-processed and the decomposition temperature at which decomposition proceeds are too close to each other, so thermal decomposition of the resin occurs during the extrusion processing process.

2)樹脂溶融点近辺の温度下で樹脂が鉄・銅等の金属と
接触するとき樹脂の分解が著るしく促進困難である。
2) When the resin comes into contact with metals such as iron and copper at temperatures near the resin's melting point, the decomposition of the resin is markedly difficult to accelerate.

4)発泡温度近辺での樹脂の粘弾性の温度に対する依存
性が大きいために発泡条件の調整が難かしい。
4) It is difficult to adjust the foaming conditions because the viscoelasticity of the resin is highly dependent on temperature near the foaming temperature.

等が挙げられており、熱分解を起さずに高度に発泡した
良好均質々発泡体を得ることは極めて困難とされ、充分
な技術開発が出来ていないのが現状である。
etc., and it is considered extremely difficult to obtain a highly foamed, homogeneous foamed product without causing thermal decomposition, and the current state of the art is that sufficient technological development has not been achieved.

現に、文献等で紹介されている塩化ビニリデン系樹脂の
発泡体、及びその製法でも、例えば特公昭39−396
8号公報、特公昭42−16419号公報、米国特許第
2948048号公告明細書等に開示されている技術は
、特殊な化学発泡剤を選び、押出発泡させているもので
得られる発泡体は、発泡倍率が約2〜3倍と低く、その
断面もせいぜい人工膝、人工膝芯、かざり糸等で代表さ
れる小さい断面形状のものにすぎない。又、発泡するこ
との利用目的も表面光沢の調節、柔軟性の付与程度に止
まっている。
In fact, vinylidene chloride resin foams and their manufacturing methods have been introduced in literature, for example, in Japanese Patent Publication No. 39-396.
The technology disclosed in Japanese Patent Publication No. 8, Japanese Patent Publication No. 42-16419, US Patent No. 2,948,048, etc. selects a special chemical foaming agent and performs extrusion foaming. The foaming ratio is as low as about 2 to 3 times, and the cross section is at most a small one, such as those of artificial knees, artificial knee cores, decorative threads, etc. Furthermore, the purpose of foaming is limited to adjusting surface gloss and imparting flexibility.

又物理発泡剤を用い高発泡させる技術としては米国特許
第3983080号公告明細書の開示がある。
Further, as a technique for achieving high foaming using a physical foaming agent, there is a disclosure in US Pat. No. 3,983,080.

この記載では、細かく粉砕した塩化ビニリデン系樹脂と
物理発泡剤を混合し、これを低温(約120〜150℃
)で押出発泡させると、密度が約240Kg/ m ”
以下、気泡径が約0.1〜ltMnの発泡体が得られる
としている。
In this description, finely ground vinylidene chloride resin is mixed with a physical blowing agent, and this is heated at a low temperature (approximately 120 to 150°C).
), the density is approximately 240 kg/m ”
Hereinafter, it is assumed that a foam having a cell diameter of about 0.1 to ltMn can be obtained.

しかしながら、本発明者等の追試によると、この方法で
は、表面が凹凸で気泡径が著るしく不揃いの紐状押出発
泡物が短時間得られるに止まり、熱分解を安定して制御
することは困難で樹脂の熱分解が進行して来て押出発泡
を継続させることができないのが実状である。
However, according to additional tests conducted by the present inventors, this method can only produce string-like extruded foam with uneven surfaces and significantly irregular cell diameters in a short period of time, and it is difficult to stably control thermal decomposition. The actual situation is that it is difficult to continue extrusion foaming due to the progress of thermal decomposition of the resin.

更に一方、特公昭42−26524号公報、及び特開昭
49−59168号公報では、揮発性液状発泡剤を熱可
塑性樹脂状共重合体で被覆内蔵した、直径約1〜50μ
mの単細胞状の球状粒子を提案している。ここの記載で
は、熱可塑性樹脂共重合体の定義の中に塩化ビニリデン
とアクリロニトリル又はブチルアクリレートとの共重合
体が包含されており、更に実施例の一部分で該粒子を加
熱膨張融着させると発泡体様のものが形成される記載が
ある。しかしながら上記発泡体と本発明の発泡体は発泡
の原理、発泡体の構造、性能1.従って用途も異にする
もので、ここで予めその技術上の相違についてふれ、両
者間の区分を明確にしておく。
Furthermore, on the other hand, Japanese Patent Publication No. 42-26524 and Japanese Patent Application Laid-open No. 49-59168 disclose a foam with a diameter of approximately 1 to 50 μm that contains a volatile liquid blowing agent coated with a thermoplastic resin copolymer.
We are proposing unicellular spherical particles of m. In this description, a copolymer of vinylidene chloride and acrylonitrile or butyl acrylate is included in the definition of a thermoplastic resin copolymer, and furthermore, in some examples, when the particles are thermally expanded and fused, they foam. There is a description that a body-like substance is formed. However, the above foam and the foam of the present invention differ from each other in terms of the foaming principle, foam structure, and performance. Therefore, their uses are also different, so let us first touch on the technical differences and clarify the division between the two.

先ず技術上の最大の相違として、本発明の発泡体は後述
する通り、樹脂に発泡剤を含浸(溶解)させていること
で回復力、反撥力に富む多泡質体を単位とする集合発泡
体を得、更にその集合体形成を型内成形の技術で達成さ
せる結果として、独立気泡率に富み機械的強度に優れる
利点を発泡体に付与することに成功しているのである。
First of all, the biggest technical difference is that the foam of the present invention, as described later, is a collective foam unit consisting of a multi-foam body that has high resilience and repulsion by impregnating (dissolving) a foaming agent into the resin. As a result of obtaining the foam and forming the aggregate using in-mold molding technology, we have succeeded in imparting the advantages of a high closed cell ratio and excellent mechanical strength to the foam.

これに対し上記公報記載のものは樹脂でできた小さな風
船の中に液状の発泡剤を内蔵している構造(いわゆるマ
イクロノ々ルーン)であるから、仮にこれを加熱膨張融
着した場合でも、得られる成形発泡体は風船状の単一気
泡粒子を単位としだ集合体となり、独立気泡率が低く機
械的特性も悪いものである。
On the other hand, the one described in the above publication has a structure in which a liquid foaming agent is contained within a small balloon made of resin (so-called micro-no-roon), so even if it were to be heated and expanded and fused, The resulting molded foam is an aggregate of balloon-shaped single-cell particles, and has a low closed cell ratio and poor mechanical properties.

更にはマイクロ・々ルーノは専ら壁紙などに立体模様を
施すだめにインキ、塗料などに混合して使用されるもの
でその粒径は前出の通り1〜50μmと非常に小さいた
めこれを型内成型しようとしても型内に均一に充填出来
ないし、スチームが成型体の内部まで通らない等の問題
があり、本発明が対象にしている型内発泡成形では、集
合体にすることが出来ない粒子である点で基本的に相違
するのである。
Furthermore, Micro-Noruno is used exclusively by mixing with ink, paint, etc. to create three-dimensional patterns on wallpaper, etc. As mentioned above, its particle size is extremely small at 1 to 50 μm, so it is used in the mold. Even when molding is attempted, there are problems such as the inability to fill the mold uniformly and the steam not passing through to the inside of the molded product, and the in-mold foam molding targeted by the present invention cannot aggregate particles. They are fundamentally different in one respect.

 5一 本発明はこのような状況下になされたもので、その目的
の第1は、塩化ビニリデン系樹脂の持つ特質(即ち例え
ば、難燃性、耐油・耐化学薬品性、ガス・々リヤ性、機
械的強度等)を活かした発泡体を、そのまま例えば断熱
材用板体として使用できる断面及び形状寸法で提供する
ことであり、目的の第2は、上記第1の目的が、その形
状構造の設計上で選べる自由度が広く、且つ目標寸法に
そった状態のものとして提供することであり、目的の第
3は、上記第1第2の目的が、低い熱伝導率(断熱性に
優れること)を長期に亘って維持できる特色をもった発
泡体として提供することである。
51 The present invention was made under these circumstances, and its first purpose is to improve the characteristics of vinylidene chloride resins (for example, flame retardancy, oil and chemical resistance, gas and gas resistance). , mechanical strength, etc.), with a cross section and shape that can be used as is, for example, as a board for heat insulating material. The third objective is to provide a product with a wide degree of freedom in design and to meet the target dimensions. The purpose is to provide a foam that has the characteristics of being able to maintain its properties over a long period of time.

上記目的を満す塩化ビニリデン系発泡体は、従来その出
現を待望されながら実在することのなかった、全く新規
な発泡体である。
The vinylidene chloride foam that satisfies the above objectives is a completely new foam that has been long awaited but has never actually existed.

本発明の上記目的は、本発明の要旨即ち実質非晶性であ
る塩化ビニリデン系樹脂でできた多胞質発泡粒子の多数
個が、相隣れる粒子相互を密に接して融着し、発泡体を
形成していることを特徴とする塩化ビニリデン系樹脂型
内発泡成形体を採用 6− することで容易に達成することが出来る。
The above-mentioned object of the present invention is to achieve the gist of the present invention, that is, a large number of porous foamed particles made of substantially amorphous vinylidene chloride resin are brought into close contact with each other and fused together, resulting in foaming. This can be easily achieved by employing a polyvinylidene chloride resin in-mold foamed molded product, which is characterized by the fact that it forms a body.

以下、本発明の内容を詳述するに当り、新規な発泡体で
ある点で先ずその製法上の要点を述べることで、従来の
不能事項をどう可能になし得だかの説明を行い、更に本
発明の発泡体の構成要件に至る関係を明確にする。
Below, in detailing the content of the present invention, we will first describe the main points of the manufacturing method since it is a new foam, explain how it can accomplish what was previously impossible, and then further explain the present invention. Clarify the relationship leading to the constituent elements of the foam of the invention.

本発明の発泡体を完成せしめた製法上の要点は、イ)基
材樹脂に実質非晶性の塩化ビニIJデン系樹脂を採用し
たこと、 口)発泡剤には揮発性有機発泡剤を選び、且つその樹脂
への含有は、例えば懸濁重合法で得られる様な微細樹脂
粒子の持つ、比表面積の大きさを利用した発泡剤との接
触含浸法を採用したこと、 ハ)発泡体の形成には、膨張性樹脂粒子(代表的にはポ
リスチレン発泡性粒子)に依る型内発泡成形法として公
知の成形法を採用出来るようにしたこと、 の上記イ)口)ノ・)の組合せであると要約できる。
The key points in the manufacturing process that completed the foam of the present invention are: a) the use of substantially amorphous vinyl chloride IJ-densate resin as the base resin; and b) the selection of a volatile organic blowing agent as the blowing agent. , and its inclusion in the resin is achieved by employing a contact impregnation method with a foaming agent that takes advantage of the large specific surface area of fine resin particles, such as those obtained by suspension polymerization, and c) of the foam. For the formation, it is possible to adopt a known molding method as an in-mold foam molding method using expandable resin particles (typically polystyrene expandable particles). It can be summarized that there is.

その理由を説明の便宜上、イ)口)ノ・)の区分の順で
説明する。
For the sake of convenience, the reasons for this will be explained in the order of (a), (b), (b), and (c).

先ずイ)の必要性は、樹脂内に含浸された発泡剤を多泡
質の発泡粒子となる発泡能として取出し得る樹脂の表面
状態(内部構造を含む)になすこと、及び、発泡温度近
辺での樹脂の流動粘弾性特性を発泡するに適した状態に
するためのものである。
First of all, the necessity of (a) is that the surface condition of the resin (including the internal structure) is such that the foaming agent impregnated in the resin can be extracted as a foaming ability that becomes multifoamed foam particles, and that This is to make the flow viscoelastic properties of the resin suitable for foaming.

このところの状況を端的に示すものとしく第1図A)、
B)を示す、即ち第1図A)、B)は、基材樹脂に当る
塩化ビニIJデン系樹脂粒子の表面状態を示した図で、
A)は本発明でいう実質非晶性の樹脂、B)は比較の結
晶性樹脂のものである。両者は共に電子顕微鏡に依る拡
大観察図である。
To clearly illustrate the current situation, Figure 1A)
B), that is, FIG. 1 A) and B) are diagrams showing the surface state of vinyl chloride IJ-based resin particles corresponding to the base resin,
A) is a substantially amorphous resin according to the present invention, and B) is a comparative crystalline resin. Both are enlarged views taken using an electron microscope.

第1図A) B)の対比で明らかなように、非晶質A)
は、表面に割目がなく、且つ比較的平滑であるのに対し
、結晶質のB)は紐状物が集積した形のブロック状のも
のが集合して全体として凹凸の表面を表面を形成し、且
つ空隙き裂が生じて見える。
As is clear from the comparison between A) and B) in Figure 1, amorphous A)
The surface of B) has no cracks and is relatively smooth, whereas the crystalline B) has a block-like structure in which string-like substances are accumulated, forming an uneven surface as a whole. However, void cracks appear.

この両者の状態はおそらく粒子の内部構造も同じ状態に
あると想像される。このブロックの形成は樹脂の結晶質
に由来するものと考案される。
It is assumed that the internal structure of the particle is probably the same in both states. The formation of this block is thought to be due to the crystalline nature of the resin.

このA) B)粒子の双方に、見掛は一ト同量の発泡剤
を含有させて加熱発泡させようとすると、A)側は高度
に発泡した多胞質粒子になり得るのに対し、B)側の方
は発泡したとは云えない程度にしか変化しないという相
違になって表われるのである。
If both A) and B) particles contain apparently the same amount of foaming agent and are heated and foamed, the A) side can become highly foamed porous particles. The difference on the B) side shows that the change is only to such an extent that it cannot be said that it has foamed.

上記現象の相違は、おそらく、A)側樹脂への発泡剤の
含有は樹脂内に発泡剤が溶解している形の発泡剤の含浸
であるのに対し、B)側は空隙き裂を通じての発泡剤の
含有であるために、A)側では多数の気泡核が形成しそ
れが成長する形での力強い発泡膨張をして発泡剤の膨張
能が活用されるのに比べ、B)側はき裂からの発泡剤の
逸散が大きいだめに発泡剤の発泡能が活用され難く、且
つその上にB)側では、溶融樹脂が冷却される過程に生
じる結晶質が、樹脂の流動的伸張を阻害し、気泡の形成
とその成長を難かしいものにしている現象と推察され、
本発明での非晶性樹脂の持つ役割を示すものとして注目
されるものである。
The difference in the above phenomenon is probably that the inclusion of the blowing agent in the resin on the A) side is due to the impregnation of the blowing agent in the form of a dissolved blowing agent in the resin, whereas on the B) side, the blowing agent is impregnated through the void cracks. Due to the inclusion of a foaming agent, side A) forms a large number of cell nuclei, which grow to form a powerful foaming expansion that takes advantage of the expansion ability of the foaming agent, whereas side B) The foaming ability of the foaming agent is difficult to utilize because of the large amount of foaming agent dissipated from the crack, and in addition, on the B) side, the crystalline material generated during the cooling process of the molten resin is caused by the fluid elongation of the resin. This is thought to be a phenomenon that inhibits the formation of bubbles and makes it difficult for them to grow.
This is noteworthy as it shows the role of the amorphous resin in the present invention.

次に第2図は、本発明で使用する樹脂の粒子径と最大発
泡倍率の関係を示す実験例図である。こ 9− の第2図が示す意味は、上記イ)の非晶質樹脂の採用に
加え上記口)即ち小粒径粒子にして接触含浸法を用いる
ことの必要性の一端を示すものである。
Next, FIG. 2 is an experimental diagram showing the relationship between the particle size of the resin used in the present invention and the maximum expansion ratio. The meaning shown in Figure 2 of 9-9 is that, in addition to the use of amorphous resin in (a) above, it is also necessary to use the contact impregnation method with (a) small-sized particles. .

即ち、一般に塩化ビニリデン系樹脂は、揮発性発泡剤、
ことにフレオン系有機発泡剤に対してノ々リヤ性が高く
、これを均質な多胞質が得られるように発泡剤の含浸を
行うことは困難と考えられていた。しかるに本発明では
、樹脂の上記選択と小粒径樹脂の組合せの採用によって
、これを可能にし第2図に示す様に、適宜な寸法範囲の
粒径を選ぶことによって、高度に発泡する発泡剤の含浸
を工業的な条件下で、容易に達成することが出来るよう
になった事実を示している。
That is, generally vinylidene chloride resin is a volatile blowing agent,
In particular, it has a high resistance to foaming compared to Freon-based organic foaming agents, and it has been considered difficult to impregnate it with a foaming agent so as to obtain a homogeneous porous structure. However, in the present invention, this is made possible by adopting a combination of the above selection of resin and a small particle size resin, and as shown in FIG. This shows that it has become possible to easily achieve impregnation under industrial conditions.

第3図は、発泡剤を含浸した本発明でいう樹脂の、発泡
剤(発泡能)の保持性(持続性)の1例を示す図である
。この第3図は本発明でいう樹脂への発泡剤の含浸が、
粒子の単なる比表面積の大きさだけを利用したものであ
れば、発泡剤の逸散量もその比表面積に比例して大きく
なり、発泡能が持続できないはずとする仮定を強く否定
する現−l〇 − 象として注目できる現象である。
FIG. 3 is a diagram showing an example of the retention (sustainability) of the foaming agent (foaming ability) of the resin referred to in the present invention impregnated with the foaming agent. This figure 3 shows that the impregnation of the foaming agent into the resin according to the present invention is
If only the size of the specific surface area of the particles was used, the amount of blowing agent lost would increase in proportion to the specific surface area, and this fact strongly refutes the assumption that foaming ability cannot be maintained. 〇 − This is a remarkable phenomenon.

更に第4図は、本発明でいう発泡剤を含浸した発泡性樹
脂粒を、3段階に亘って発泡膨張させたときに示す各段
階での発泡倍率を累積する形で示した実験図である。4
4図の示す意味は、本発明ることの事実を示し、且つ該
樹脂は、多段階の膨張発泡にも耐える粘弾性特性を持っ
た樹脂であることの事実を示すものである。上記$3・
4図の発泡能の保持性は、樹脂の持つガスバリヤ性に基
づく現象と推察される。
Furthermore, FIG. 4 is an experimental diagram showing the cumulative expansion ratio of each stage when foamable resin particles impregnated with the foaming agent referred to in the present invention are foamed and expanded in three stages. . 4
The meaning shown in Figure 4 indicates the fact that the present invention is carried out, and that the resin has viscoelastic properties that can withstand multi-stage expansion and foaming. Above $3・
The retention of foaming ability shown in Figure 4 is presumed to be a phenomenon based on the gas barrier properties of the resin.

上記現象に加えて更におどろくべき現象を示したのが第
5図である。第5図は、−ハ予備発泡した本発明でいう
樹脂発泡粒子を大気中に保持した場合、その粒子が再加
熱により示す再膨張能の大きさの経時変化を示す実験例
図である。第5図が示す現象は当初の発泡で使用された
はずの気泡内の発泡剤内圧が、大気の呼び込み作用で元
の気圧に以上1−坏る現象と考えられ、塩化ビニリデン
系樹脂では本発明者等によって初めて究明された特筆す
べき現象である。
In addition to the above phenomenon, FIG. 5 shows an even more surprising phenomenon. FIG. 5 is an experimental diagram showing the change over time in the re-expansion ability of the pre-expanded resin foam particles according to the present invention when they are kept in the atmosphere upon reheating. The phenomenon shown in Figure 5 is considered to be a phenomenon in which the internal pressure of the blowing agent in the bubbles that was supposed to be used in the initial foaming is reduced to the original pressure by more than 1 - due to the attraction of the atmosphere. This is a remarkable phenomenon that was discovered for the first time by researchers.

次にハ)の必要性は、熱分j’l11 シ易い也化ビニ
リデン系樹脂を、より低い温度で且つより短い時間で広
い滞留時間分布をもだすことなく一律にきわめて効率良
く加熱し、これを発泡成形体にするだめのものである。
Next, the need for c) is to uniformly and efficiently heat the vinylidene-based resin, which has a high thermal content, at a lower temperature and in a shorter time without creating a wide residence time distribution. It is not suitable for making into foam molded products.

ここに用いられる型内成形は、多数の***を有した壁で
できだ金型に発泡性樹脂粒又は予備発泡粒子を充填し、
型壁の外部から***をiHlじて水蒸気等の流体で加熱
することによって発泡膨張を生じさせ、粒子間空隙を埋
めて融着させて後、こねを急冷17て成形体にするので
ある。
In-mold molding used here involves filling a mold with walls with many small holes with foamable resin particles or pre-foamed particles.
Small holes are inserted from the outside of the mold wall and heated with a fluid such as water vapor to cause foaming expansion, fill the interparticle gaps and fuse, and then the dough is rapidly cooled 17 to form a molded product.

更にこの際、前記イ)による非結晶性樹脂の採用は、従
来の結晶性樹脂に比べて、ビカット軟化点が50〜60
℃以−ヒ低い値を示すことから、型内成形で常用される
120℃以下の水蒸気での加熱発泡成形を充分に可能に
し、発泡温度を樹脂の分解温度より大巾に下桁る温度に
設定することができるのである。
Furthermore, in this case, the use of the amorphous resin according to (a) above has a Vicat softening point of 50 to 60% compared to conventional crystalline resins.
Since it shows a value lower than ℃, it is fully possible to heat foam molding with water vapor of 120℃ or less, which is commonly used in in-mold molding, and the foaming temperature can be set to a temperature far below the decomposition temperature of the resin. It can be set.

又、懸濁重合法で得られる細粒樹脂をそのまま発泡剤を
含浸させて発泡性樹脂にする場合は、例えば押出造粒法
などでさもなくば受けるであろう加熱溶融や機械的剪断
を不要のものにする点で、そこから生じる樹脂の変質・
熱分解を完全に除外熱安定剤類の冷加をも不要とするの
で、樹脂の持つ本質的な特性(例えばガス・々リヤ性、
難燃性等)をそのま1活用することにもつながるのであ
る。
In addition, when fine-grained resin obtained by suspension polymerization is directly impregnated with a foaming agent to make a foamable resin, there is no need for heat melting or mechanical shearing that would otherwise be required in extrusion granulation, for example. The deterioration of the resin caused by
It completely eliminates thermal decomposition and eliminates the need for cooling heat stabilizers, so it eliminates the essential properties of resins (e.g. gas and gas resistance,
This will also lead to making full use of its flame retardant properties (such as flame retardancy).

以上本発明の発泡体は、−ト記イ)口)ノ・)で要約さ
れる特質を巧みに応用した製法によって、初めて完成し
た新規な発泡体であるが、その製法は上記特性の応用の
仕方で様々に変化するので、目標とする発泡体に応じて
適宜選ぶことが出来る。
As described above, the foam of the present invention is a novel foam that was completed for the first time by a manufacturing method that skillfully applied the characteristics summarized in (a), (a), and (). Since it varies depending on the method, it can be selected appropriately depending on the target foam.

次に本発明の発泡体について述べる。Next, the foam of the present invention will be described.

第6図は、本発明の発泡体の断面拡大要図で、その構造
を分り易くするために、割り裂いたときの断面を電子顕
微鏡写真で示している。
FIG. 6 is an enlarged cross-sectional view of the foam of the present invention, and in order to make the structure easier to understand, the cross-section when split is shown as an electron micrograph.

第6図が示す通り本発明の発泡体は、実質非晶質である
塩化ビニリデン系樹脂を基材樹脂として 13− できた多胞質体粒子の多数個の集合体であって、該粒子
は相隣れる粒子の外表面を密に接して融着し、一体をな
す発泡成形体が形成されている構造となっている。この
構造は正に、上記詳述した本発明の発泡体を完成させた
型内成形法の特徴を正確に表現したものになっている。
As shown in FIG. 6, the foam of the present invention is an aggregate of a large number of porous particles made of substantially amorphous vinylidene chloride resin as a base resin. It has a structure in which the outer surfaces of adjacent particles are closely contacted and fused to form an integrated foam molded body. This structure accurately expresses the characteristics of the in-mold molding method that completed the foam of the present invention as detailed above.

第7.8,9.図は、本発明の発泡体が示す有益な特質
の代表例で、第7図は発泡体密囲と5%圧縮するときに
必要な圧縮応力との関係例図、第8図は本発明の発泡体
が示す断熱性能の持続性を示す例図、第9図は本発明の
基材樹脂が示す難燃性能(酸素指数)の例図である。
Section 7.8, 9. The figures are representative examples of the beneficial properties exhibited by the foam of the present invention; Figure 7 is an example of the relationship between the foam enclosure and the compressive stress required for 5% compression; An example diagram showing the sustainability of the heat insulation performance exhibited by the foam, and FIG. 9 is an example diagram showing the flame retardant performance (oxygen index) exhibited by the base resin of the present invention.

これ等はいずれも、塩化ビニリデン系樹脂の特質を、熱
分解或は変質させることなく発揮させるように工夫した
本発明の発泡体の製法上の特質が、ここに示され、本発
明の発泡体を産業界に有益なものにしているのである。
All of these demonstrate the characteristics of the manufacturing method of the foam of the present invention, which is devised to exhibit the characteristics of vinylidene chloride-based resin without thermal decomposition or alteration, and the foam of the present invention This makes it useful to industry.

即ち、第7図は広い密度範囲の発泡体として本発明の発
泡体を提供できる事実を示し、用途によって異なる様々
な発泡体の圧縮強度の要求に応じ 14− られる可能性を示している。又この優れた密度当りの圧
縮強度の特性は、本発明の発泡体が多胞質の粒子の集合
体であることによって達成された特性でもある。
That is, FIG. 7 shows the fact that the foam of the present invention can be provided as a foam with a wide range of densities, and shows the possibility of meeting the compressive strength requirements of various foams depending on the application. This excellent compressive strength per density property is also achieved because the foam of the present invention is an aggregate of porous particles.

第8図は、本発明の発泡体を断熱用板体として用いたと
きの有益性を示す1例で、比較のために断熱性能が優れ
ているとされるポリスチレン押出発泡板のそれを併せて
載せであるが、本発明の断熱板は優れた断熱特性が長期
に亘って保持できるものであることを示している。この
断熱性能は、発泡体の密度、発泡体を構成する気泡の径
、或は発泡体内に保持されているガス体の種類等によっ
て、その絶対値的水準を変えることが出来るが、本発明
者等の実験によると、24℃に於ける熱伝導率で0.0
18[KcaIt/mhr℃]のものまで得られること
が確認され−ている。
Figure 8 shows an example of the benefits of using the foam of the present invention as a heat insulating board. This indicates that the heat insulating board of the present invention can maintain excellent heat insulating properties over a long period of time. The absolute level of this heat insulation performance can be changed depending on the density of the foam, the diameter of the cells constituting the foam, the type of gas retained within the foam, etc., but the inventor of the present invention According to experiments by et al., the thermal conductivity at 24℃ was 0.0.
It has been confirmed that up to 18 [KcaIt/mhr°C] can be obtained.

第9図は、本発明の発泡体の作成にあえて難燃剤等を用
いなくても、難燃性を有した発泡体を提供できるという
利点を示唆している。これは正に基材樹脂そのものの持
つ特性が有効に利用できる1つの利点である。
FIG. 9 suggests the advantage that a flame-retardant foam can be provided without intentionally using a flame retardant or the like in producing the foam of the present invention. This is one advantage in that the properties of the base resin itself can be effectively utilized.

更に、本発明の発泡体の製法上から来る今ひとつの利点
の1つは、厚みや寸法、断面の面積、及び発泡体の形状
を自由に設定出来る利点で、本発明者等の実験によると
、金型が有効に作成できる範囲、例えば寸法で約3閣以
−ヒ、断面積で9箇2以上の発泡体を、自由に製造する
ことができ、実験の範囲に於ても肉厚100+Ml、巾
900mm長さ1800mのブロックが容易に成形され
ており、型の設計に応じて自由な寸法及び形状のものが
作れる可能性を示している。
Furthermore, one of the advantages of the foam production method of the present invention is that the thickness, dimensions, cross-sectional area, and shape of the foam can be freely set. According to experiments conducted by the present inventors, Foams can be freely manufactured within the range that can be effectively created by molds, for example, foams with dimensions of about 3 mm and cross-sectional areas of 9 or more, and even within the range of experiments, the wall thickness is 100+Ml, A block with a width of 900 mm and a length of 1800 m was easily molded, demonstrating the possibility of making blocks of any size and shape depending on the design of the mold.

本発明でいう塩化ビニリデン系樹脂とは、塩化ビニリデ
ンとこれと共重合可能なコモノマー成分の1種又は2種
以−ヒとの共重合体樹脂の総称で、上記共重合可能なコ
モノマー成分には、例えば、塩化ビニル、臭化ビニル、
酢酸ビニル、アクリロニトリル、メタアクリロニトリル
、スチレン、クロロスチレン、アクリル酸メチル、アク
リル酸エチル、メタアクリル酸メチル、メタアクリル酸
エチル、アクリル酸ブチル、アクリル酸、メタクリル酸
等を挙げることが出来、これ等は公知である。
The vinylidene chloride resin used in the present invention is a general term for copolymer resins of vinylidene chloride and one or more comonomer components copolymerizable with vinylidene chloride. , for example, vinyl chloride, vinyl bromide,
Examples include vinyl acetate, acrylonitrile, methacrylonitrile, styrene, chlorostyrene, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl acrylate, acrylic acid, methacrylic acid, etc. It is publicly known.

又一般に塩化ビニリデン系と云う呼称は、塩化ビーニリ
デン成分が50重′N4以上存在するものを指すのが常
識的で、その根拠は主体をな−tl’M化ビニリデン成
分の特質が、共重合体樹脂そのものの特質に対し支配的
であるからだとされている。かかる意味に於て、本発明
の発泡体に用いうる塩化ビニリデン系樹脂も、塩化ビニ
リデン成分が50%以上の多成分素側にあるときは、発
泡体が断熱性能・難燃性等の特質効果を有効に発揮する
側の領域にあり、望捷しい樹脂であることには変りはな
い。しかしながら本発明の発泡体の場合、塩化ビニリデ
ン成分が存在するか否かの相違、具体的には塩化ビニリ
デン成分がlO重量置部望捷しくは30重量置部上)程
変存在するだけで、これを含まない樹脂に比較して難燃
性、断熱性能が著るしく付与されて改善される事実から
、本発明でいう塩化ビニリデン系樹脂の総称は一般常識
を上回る範囲にまで及んで定められる。
In general, it is common sense that the name vinylidene chloride type refers to a product in which the vinylidene chloride component is present at 50% N4 or more, and the basis for this is that the main character of the vinylidene chloride component is This is said to be because it is dominant over the characteristics of the resin itself. In this sense, when the vinylidene chloride resin that can be used in the foam of the present invention is on the multi-component side with a vinylidene chloride component of 50% or more, the foam has special effects such as heat insulation performance and flame retardancy. There is no doubt that it is a desirable resin, as it is in the area where it can effectively demonstrate its properties. However, in the case of the foam of the present invention, the presence or absence of the vinylidene chloride component, specifically the presence of the vinylidene chloride component (preferably 10 parts by weight, preferably 30 parts by weight)); Due to the fact that flame retardancy and heat insulation performance are markedly improved compared to resins that do not contain this, the generic term for vinylidene chloride resin in the present invention is defined to extend beyond common sense. .

尚本発明でいう塩化ビニリデン系樹脂は実質非 17− 品性のものである。この非晶質という用語は通常の結晶
質に対する反語で、例えばその樹脂の結晶融解温度を計
るD S C(Differential Scann
ingCalorjmetry 、示差熱量計)法で測
定した場合、結晶融解又は結晶形成が示す温度のピーク
値を示さない樹脂と定義することが出来る。
Note that the vinylidene chloride resin referred to in the present invention has substantially non-17-grade properties. The term "amorphous" is the opposite of the usual crystalline state, and for example, DSC (Differential Scan
It can be defined as a resin that does not exhibit a peak temperature value indicating crystal melting or crystal formation when measured by a differential calorimetry method.

しかしながら本発明でいう非晶性樹脂に、例えば発泡粒
子間融着をコントロールするため等の他の目的のために
少量の結晶性成分を含鳴させるとか、或は添加剤を配合
させたものは、本発明の6非晶性樹脂の特質を発泡体完
成に利用する旨の技術思想を変更するものでなければ本
発明の実質非晶性樹脂に包含されるものである。
However, the amorphous resin referred to in the present invention may contain a small amount of crystalline component or contain additives for other purposes such as controlling fusion between foamed particles. , are included in the substantially amorphous resin of the present invention as long as they do not change the technical idea of utilizing the characteristics of the six amorphous resins of the present invention to complete the foam.

上記非晶性塩化ビニリデン系樹脂の製法は、例えば特願
昭57−101318号に示されており、公知の塊状重
合法、乳化重合法、懸濁重合法により製造することがで
きるが、熱分解の回避、発泡粒子に好適な粒子サイズの
得やすさという観点からは、懸濁法の採用が望捷しいこ
とは前述した通りである。又、非結晶性の塩化ビニリデ
ン樹脂を得 18− るには、共重合モノマーの成分比を増加“していくと結
晶性から非結晶性に転移するのであるが、コモノマー成
分が測幅のとき転移するかについてはコモノマーの種類
によって異なるので、通常はコモノマー成分を5〜10
重量係以置部高い場合で30重量置部上とすればよい。
The method for producing the amorphous vinylidene chloride resin is shown in Japanese Patent Application No. 57-101318, for example, and can be produced by known bulk polymerization, emulsion polymerization, or suspension polymerization. As mentioned above, it is desirable to employ the suspension method from the viewpoint of avoiding the above problems and making it easier to obtain a suitable particle size for expanded particles. In addition, in order to obtain amorphous vinylidene chloride resin, increasing the component ratio of the comonomer causes a transition from crystalline to amorphous, but when the comonomer component is The extent to which the transition occurs depends on the type of comonomer, so usually the comonomer component is 5 to 10
If the weight rack is high, it may be 30 points above the weight rack.

そして又、得ようとする発泡体の目標を高発泡側にして
、それでいて剛性や耐熱性に富むものにおくときは、塩
化ビニリデンと共重合可能なコモノマーにメタアクリル
酸メチルを選び、その成分量を30〜90重量’fb駄
士になるように共重合した樹脂を用いることが望ましい
Furthermore, if the goal of the foam to be obtained is to achieve a high foaming level while also having high rigidity and heat resistance, methyl methacrylate should be selected as a comonomer that can be copolymerized with vinylidene chloride, and its component amount It is desirable to use a resin copolymerized to give a weight of 30 to 90 fb.

更に、架橋成分として、例えばポリエチレングリコール
の両末端がアクリル酸でエステル化されたものやグリシ
ジルメタアクリレート及びメタアクリル酸をモノマーの
一部として含ませることによって得られる架橋された非
晶性塩化ビニリデン樹脂粒子を用いる場合は、型内成形
性がよく、得られる発泡体は独立気泡に富み、圧縮強度
と熱伝導率が改良されたものとなる。
Furthermore, as a crosslinking component, for example, polyethylene glycol esterified at both ends with acrylic acid, or a crosslinked amorphous vinylidene chloride resin obtained by incorporating glycidyl methacrylate and methacrylic acid as part of the monomer. When particles are used, moldability in the mold is good, and the resulting foam is rich in closed cells and has improved compressive strength and thermal conductivity.

樹脂粒子の大きさは、発泡剤の含浸速度、発泡性樹脂粒
子の発泡能の持続性、採用する型内寸法形状、型内加熱
効率等の関係から選ぶことが必要で、普通平均径で0.
01m以上〜5m以下のものが採用できるが、上記関係
の全体の/?ランスを図る上では、平均径で0.1 w
n〜i、Ownの値の範囲の、できるだけ径の揃った粒
子を選ぶことが望ましい。
The size of the resin particles needs to be selected based on the impregnation rate of the blowing agent, the sustainability of the foaming ability of the expandable resin particles, the internal dimensions and shape of the mold to be adopted, the heating efficiency in the mold, etc., and the average diameter is usually 0. ..
01m or more to 5m or less can be adopted, but /? When planning a lance, the average diameter is 0.1 w.
It is desirable to select particles with as uniform a diameter as possible within the value range of n to i, Own.

更に、得られた実質非晶性樹脂から型内スチーム発泡成
形に適した樹脂を選択したいとする観点からは、その樹
脂の持つビカット軟化点を一つの指標とすることがすす
められる。このものは一般に約120℃以下の値を示す
ものであるが、中でも60〜100℃の値の範囲のもの
を選ぶときは、成形体内部の粒子の融着が密で、表面平
滑性に優れた成形体が得られるので望ましい。
Furthermore, from the viewpoint of selecting a resin suitable for in-mold steam foaming from the obtained substantially amorphous resins, it is recommended to use the Vicat softening point of the resin as an index. Generally, this material exhibits a temperature of about 120°C or less, but when selecting one with a value in the range of 60 to 100°C, the particles inside the molded body are tightly fused and have excellent surface smoothness. This method is desirable because a molded article with a high quality can be obtained.

本発明の発泡体作成に用いることの出来る発泡剤は、使
用樹脂の軟化温度よりも低い沸点を持つ揮発性有機発泡
剤で、具体的には例えば、プロ・ぞン、ブタン、ペンタ
ン、ヘキサン等の脂肪族炭化水素類、塩化メチル、塩化
メチレン、塩化エチル等の塩素化炭化水素、トリクロロ
モノフルオルメタン、シクロロジフルオルメタン、モノ
クロロジフルオルメタン、トリクロロトリフルオルエタ
ン、ジクロロテトラフルオルエタン等のフロンガス、ジ
メチルエーテル、メチルエチルエーテル等のエーテル類
等が挙げられ、これ等の内から選ばれる。
The blowing agent that can be used to create the foam of the present invention is a volatile organic blowing agent that has a boiling point lower than the softening temperature of the resin used, and specifically, for example, prozone, butane, pentane, hexane, etc. aliphatic hydrocarbons, chlorinated hydrocarbons such as methyl chloride, methylene chloride, ethyl chloride, trichloromonofluoromethane, cyclodifluoromethane, monochlorodifluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane and ethers such as dimethyl ether and methyl ethyl ether, and are selected from these.

これ等発泡剤の選択は、樹脂への相容性、発泡温度に於
ける蒸気圧、発泡剤沸点等の関係から厳選することが望
ましく、1種類の発泡剤で上記目標の条件が満されない
ときは、2種類以上の発泡剤を混合して樹脂の発泡に適
した発泡剤を作シ出すことが望ましい。
It is desirable to select these blowing agents carefully based on the relationship between compatibility with the resin, vapor pressure at foaming temperature, blowing agent boiling point, etc. When the above target conditions are not satisfied with one type of blowing agent, It is desirable to create a foaming agent suitable for foaming resin by mixing two or more types of foaming agents.

2種以上の発泡剤を混合して発泡に適した発泡剤を作り
出すときの典型的な一例として第10図を挙げることが
出来る。
FIG. 10 is a typical example of mixing two or more types of foaming agents to create a foaming agent suitable for foaming.

第1θ図は、発泡剤にフロン11(トリクロロ例示で、
横軸には両発泡剤の混合(重量)比、縦軸にはその発泡
剤を用いたときの、発泡性樹脂粒 21− 子の最大発泡倍率が示されている。
Figure 1θ shows Freon 11 (as an example of trichloro) as a foaming agent.
The horizontal axis shows the mixing (weight) ratio of both blowing agents, and the vertical axis shows the maximum expansion ratio of the expandable resin particles when the blowing agents are used.

第10図によると発泡剤は(フロン11/フロン12)
の重量比で(20/80)〜(70/30)の範囲のも
のでなければ、良好な発泡体が得られないという一例が
示されている。即ち発泡剤の選択は、十分に注意しない
と、最適組成をついぞ見落してしまう可能性を示してい
る。かかる意味に於ては本発明の発泡体の完成には、こ
うした発泡剤の選択も重要な役割があったことが考えら
れる。
According to Figure 10, the blowing agent is (Freon 11/Freon 12)
An example is shown in which a good foam cannot be obtained unless the weight ratio is in the range of (20/80) to (70/30). In other words, when selecting a blowing agent, there is a possibility that the optimum composition may be overlooked unless sufficient care is taken. In this sense, it is thought that the selection of the blowing agent also played an important role in the completion of the foam of the present invention.

又第10図に示す如きフロン系の混合発泡剤を用いたと
きは、樹脂のもつガスノ々リヤ性とあいまって、発泡性
樹脂粒子の発泡能の保持性が太きく、更に発泡体になっ
た後の成形体が示す断熱性能が優れていることが利点と
して挙げられる。この現象は気泡内に保持されているフ
ロンガスそのものの断熱効果の影響と考えられる。
Furthermore, when a fluorocarbon-based mixed foaming agent as shown in Figure 10 is used, the retention of the foaming ability of the foamable resin particles is greater due to the gas-swelling properties of the resin, resulting in a more foamed product. An advantage is that the later molded product has excellent heat insulation performance. This phenomenon is thought to be due to the heat insulating effect of the fluorocarbon gas itself held within the bubbles.

発泡剤を樹脂中に含有させる方法としては樹脂粒子に例
えばオートクレーブ中で必要なら加熱加圧下で発泡剤を
気体状で或は液体状で含浸さす気相又は液相含浸法、樹
脂粒子を水中に懸濁し発泡 22− 剤を含浸する水中懸濁含浸法等がある。又重合を発泡剤
の存在下に行って発泡性重合体粒子を直接得ることも出
来る。
Methods for incorporating the blowing agent into the resin include a gas phase or liquid phase impregnation method in which resin particles are impregnated with the blowing agent in gaseous or liquid form under heating and pressure if necessary in an autoclave, and resin particles are impregnated in water. There is an in-water suspension impregnation method in which a foaming agent is suspended and impregnated. It is also possible to carry out the polymerization in the presence of a blowing agent to directly obtain expandable polymer particles.

上記本発明に用いる発泡剤は、樹脂粒子100重量部に
対し、通常1〜40重量部の範囲で用いることが出来、
目標とする発泡体の密度に応じてその使用量を調節する
。使用する発泡剤が同一のとき発泡体が示す断熱性能は
、密度が低い程、気泡径が小さい程、独立気泡率が高い
程、優れた断熱性能を示すことが知られているが、例え
ば第10図に示す如き適切な混合発泡剤を用いるときは
、気泡径で約0.01mm〜1flの範囲の、良く揃っ
た気泡径の独立気泡率に富んだ成形体を自由に得ること
が出来る。
The blowing agent used in the present invention can be generally used in an amount of 1 to 40 parts by weight based on 100 parts by weight of the resin particles.
Adjust the amount used depending on the target density of the foam. It is known that the lower the density, the smaller the cell diameter, and the higher the closed cell ratio, the better the insulation performance of the foam when the same blowing agent is used. When a suitable mixed blowing agent as shown in Figure 10 is used, it is possible to freely obtain a molded article with a well-uniformed cell diameter and a high closed cell ratio in the range of about 0.01 mm to 1 fl.

本明細書で用いた評価方法は次の通りである。The evaluation method used in this specification is as follows.

0発泡体密度: JISK6767に基づく。0 foam density: Based on JISK6767.

0発泡倍率:基材樹脂密度を発泡体密度で除したもの。0 foaming ratio: Base resin density divided by foam density.

0独立気泡率: A8TMD2856に基づく。0 closed cell ratio: Based on A8TMD2856.

0熱伝導率: ASTMC518に基づく。0 thermal conductivity: Based on ASTM C518.

05%圧縮強度: ASTMD 1621に基づき圧縮
歪量を5%とする。
05% compressive strength: Based on ASTM D 1621, the amount of compressive strain is 5%.

0燃焼試験: JISA9511に準じ、試験片は水平
に保持する。
0 combustion test: According to JISA9511, the test piece is held horizontally.

0ビ力ツト軟化点: ASTMD 1525に基づく。Zero-force softening point: Based on ASTM D 1525.

0酸素指数: A8TMD2863に基づく。0 Oxygen Index: Based on A8TMD2863.

実施例−1 懸濁重合法で得られる平均粒子径が0.25mの塩化ビ
ニリデンとメチルメタアクリレートの重量組成比が60
/40である共重合体樹脂粒子を実験に供した。
Example-1 The weight composition ratio of vinylidene chloride with an average particle diameter of 0.25 m obtained by suspension polymerization method and methyl methacrylate is 60
/40 copolymer resin particles were used in the experiment.

の電子顕微鏡写真を第1図(A)に示すが、表面が平滑
であることが観察される。
An electron micrograph of the sample is shown in FIG. 1(A), and it is observed that the surface is smooth.

まず本樹脂粒子をオートクレーブに入れ、密閉したのち
オートクレーブ内を真空に引き脱気する。
First, the resin particles are placed in an autoclave, and after the autoclave is sealed, the inside of the autoclave is evacuated and degassed.

次いでフロン11とフロン12等重量からなる液状混合
発泡剤を試料粒子が液面下に位置する程度まで導入する
。そして70℃にて約4時間放置した後20℃まで冷却
し常圧に戻してから中の粒子を取り出す。発泡剤を含浸
する前と後の重量測定から計算すると、粒子には発泡剤
が22部(樹脂100部に対して。以下同じ)含浸され
ていた。
Next, a liquid mixed blowing agent consisting of an equal weight of Freon 11 and Freon 12 is introduced to the extent that the sample particles are located below the liquid surface. After being left at 70°C for about 4 hours, the mixture was cooled to 20°C, returned to normal pressure, and the particles inside were taken out. Calculating from weight measurements before and after impregnation with the blowing agent, the particles were impregnated with 22 parts (based on 100 parts of resin; the same applies hereinafter) of the blowing agent.

この発泡剤含浸粒子を室内に解放状態で放置し、重量変
化を追跡することにより発泡剤の保持性を評価した結果
を第3図に示す。比較のため同一放置条件下でのブタン
ガスを11部含浸した直径l調の発泡性ポリスチレンビ
ーズの結果も示す。同図より明らかな通り、塩化ビニリ
デン系樹脂粒子は極めて優れた発泡剤保持性(絶対値及
び保持率)を示していることが分る。
The foaming agent-impregnated particles were left open in a room and the retention of the foaming agent was evaluated by tracking the change in weight. The results are shown in FIG. For comparison, the results of expandable polystyrene beads with a diameter of 1 impregnated with 11 parts of butane gas under the same storage conditions are also shown. As is clear from the figure, it can be seen that the vinylidene chloride resin particles exhibit extremely excellent blowing agent retention (absolute value and retention rate).

発泡剤含浸直後の上記粒子を粒子間相互の軽い融着を#
1ぐした後蒸気発泡機内に入れ加熱発泡し1段階の一次
発泡を20秒間、第2段階の二次発泡をaθ秒間、そし
て三次発泡を 20秒間行った時の粒子の累積発泡倍率
を第4図に示す。同図より明らかな通り、一度発泡した
予備発泡粒子で 25− も更に次の力強い発泡能を維持していることが分る。
Immediately after impregnation with a blowing agent, the above particles are slightly fused together
After cooling, the particles were heated and foamed in a steam foaming machine, and the first stage of primary foaming was performed for 20 seconds, the second stage of secondary foaming was performed for aθ seconds, and the third stage was performed for 20 seconds. As shown in the figure. As is clear from the figure, it can be seen that even the pre-expanded particles 25-, which have been foamed once, maintain the next strong foaming ability.

次に上記発泡性粒子を発泡剤含浸後2週間室内に開放状
態で放置しだ後OKg/crn2のスチームで3+秒間
加熱発泡し、発泡倍率30倍の予備発泡粒子とし、つい
でこれを室内に放置し経時を追って同一スチームで30
秒間加熱再発泡した場合の二次膨張能力を追跡した。二
次発泡倍率を予備発泡倍率で除した二次膨張率でもって
結果を第5図に示す。比較のため前出の発泡性ポリスチ
レンピーズの結果についても同図に示す。同図より明ら
かな通り、本発明に係る予備発泡粒子は、二次膨張性が
優れているとされているポリスチレン発泡粒子に比較し
ても、高い二次膨張能力を有していることが分る。
Next, after impregnating the expandable particles with a foaming agent, the particles were left open indoors for 2 weeks, and then heated and foamed for 3+ seconds with steam at OKg/crn2 to obtain pre-expanded particles with an expansion ratio of 30 times, and then left indoors. 30 times with the same steam over time.
The secondary expansion ability was tracked when the foam was heated and re-foamed for seconds. The results are shown in FIG. 5 as the secondary expansion ratio obtained by dividing the secondary expansion ratio by the preliminary expansion ratio. For comparison, the results for the aforementioned expandable polystyrene beads are also shown in the same figure. As is clear from the figure, it is clear that the pre-expanded particles according to the present invention have a higher secondary expansion ability than polystyrene foam particles, which are said to have excellent secondary expansion ability. Ru.

次にこの発泡倍率30倍の予備発泡粒子を1日室内で熟
成した後発泡性ポリスチレン用型内スチーム成型機にて
成形し、厚さ25鵡、3ooI+1++1四方、密度3
0に、/mSの発泡平板成形体を得だ。
Next, these pre-expanded particles with an expansion ratio of 30 times were aged indoors for one day, and then molded using an in-mold steam molding machine for expandable polystyrene.
A foamed flat plate molded product with a temperature of 0.0/mS was obtained.

本成形体は表面が平滑で金型を忠実に再現して 26 
− おり、金型表面につけだ巾3配深さ3箇長さ10閤の矩
形の窪みも兄事に再現していた。
This molded product has a smooth surface and faithfully reproduces the mold. 26
- The rectangular indentation on the surface of the mold, with a width of 3, depth of 3, and length of 10, was also faithfully reproduced.

この発泡成形体を手で割り裂いたときの割れ断面の拡大
図を第6図に示す。同図より多胞質に発泡した粒子の多
数個が、相隣れる粒子相互を密に接して融着し、発泡体
の断面を形成していることの寸法の発泡平板成形体を得
た。これらの5幅圧縮強度を測定した結果を第7図に示
す。同図より、発泡体の密度を例えば不法のような方法
で適宜調節することにより、所望の圧縮強度を持った発
泡成形体を得られることが分る。
FIG. 6 shows an enlarged view of the cracked cross section when this foamed molded product is broken by hand. As shown in the figure, a foamed flat plate molded article having dimensions such that a large number of porous foamed particles closely contacted and fused adjacent particles to form a cross section of a foamed body was obtained. The results of measuring the compressive strength of these five widths are shown in FIG. From the same figure, it can be seen that a foamed molded article having a desired compressive strength can be obtained by appropriately adjusting the density of the foamed article, for example, by an illegal method.

父上記密度50 K17m”の平板の熱伝導率の経時変
化を追跡した結果を第8図に示す。比較のため熱伝導率
が優れているとされるポリスチレン押出発泡板のそれも
示す。同図より明らかな通シ、本発明の発泡体はポリス
チレンのそれと比較して遥かに低い熱伝導率を示し、然
も発泡ガスの保持性がよいので低い熱伝導率をそのまま
維持しているととが分る。
Figure 8 shows the results of tracing the thermal conductivity of a flat plate with a density of 50K17m'' over time.For comparison, that of an extruded polystyrene foam board, which is said to have excellent thermal conductivity, is also shown. More clearly, the foam of the present invention exhibits a much lower thermal conductivity than that of polystyrene, and it maintains its low thermal conductivity because it retains foaming gas well. I understand.

又これら上記の発泡体について、燃焼試験を行ったが、
いずれも自消性を示した。
In addition, combustion tests were conducted on these foams, but
All showed self-extinguishing properties.

次に本実施例に於いて、樹脂粒子の平均粒径が約0.2
5+mn、0.4mm、0.9mmのものについて前出
の同一条件下で発泡剤の含浸を行い、ついでOKg/c
m2のスチームで加熱発泡し、この時の最高到達発泡倍
率をめ、これを粒子径に対しプロットした結果を第2図
に示す。本図より明らかな通り、本発明の発泡体に係る
樹脂粒子は小粒径のものが発泡剤の含浸が早く、且つそ
の保持性も良いので高度に発泡していることが示されて
いる。
Next, in this example, the average particle diameter of the resin particles was approximately 0.2
5+mn, 0.4mm, and 0.9mm were impregnated with a foaming agent under the same conditions as above, and then OKg/c
Figure 2 shows the results of heating and foaming with 2 m2 of steam, determining the maximum foaming ratio at this time, and plotting this against the particle diameter. As is clear from this figure, resin particles related to the foam of the present invention are highly foamed because smaller particle diameters are more quickly impregnated with the foaming agent and have better retention properties.

又、本実施例に於いて、粒子に含浸する混合発泡剤フロ
ン11/フロン12の組成比を25/75゜40/60
.50150.60/40.TO/30と変え前と同様
にして平均粒径0.25v0++の粒子に発泡剤の含浸
を行いそれをOKg/1yn2のスチームで加熱発泡し
た。この時の最高到達発泡倍率の結果と発泡剤組成の関
係を第10図に示す。本図より本発明の発泡体を得るだ
めの発泡剤組成の選択は注意して行わないとついぞ好適
な組成を見逃がしてしまうことにもなり兼ねないことが
分る。
In addition, in this example, the composition ratio of the mixed blowing agent Freon 11/Freon 12 impregnated into the particles was set to 25/75° and 40/60.
.. 50150.60/40. Particles having an average particle size of 0.25v0++ were impregnated with a foaming agent in the same manner as before, except for using TO/30, and then heated and foamed with steam of OKg/1yn2. The relationship between the maximum foaming ratio and the foaming agent composition is shown in FIG. 10. From this figure, it can be seen that if the selection of the blowing agent composition for obtaining the foam of the present invention is not done carefully, a suitable composition may be overlooked.

比較例 塩化ビニリデン80重量幅、塩化ビニル20重置部から
なる平均粒子径0.15+mnの塩化ビニリデン樹脂を
実験に供した。本樹脂はDSCで融解時160℃にピー
クを示す結晶性を呈した。又ビカット軟化点は131℃
であった。又、本樹脂粒子の電子顕微鏡による拡大写真
を第1図(B)に示す。粒子表面及び内部が多孔質状に
なっていることが分る。
Comparative Example A vinylidene chloride resin having an average particle diameter of 0.15+mn and consisting of 80 parts by weight of vinyl chloride and 20 parts of vinyl chloride was subjected to an experiment. This resin exhibited crystallinity showing a peak at 160° C. when melted by DSC. Also, the Vicat softening point is 131℃
Met. Moreover, an enlarged photograph of the resin particles taken by an electron microscope is shown in FIG. 1(B). It can be seen that the particle surface and interior are porous.

本粒子に対し、実施例−1と全く同様にして、フロン1
1/フロン12の混合発泡剤を組成比を種々変えて含浸
した。含浸前と後の重量測定から粒子には最高約8部の
発泡剤が含浸されていた。
This particle was treated with Freon 1 in exactly the same manner as in Example-1.
A mixed blowing agent of 1/12 Freon was impregnated with various composition ratios. Weight measurements before and after impregnation indicated that the particles were impregnated with up to about 8 parts blowing agent.

この発泡剤含有粒子をスチーム圧を0から1.5Kf1
m”まで変えて色々発泡を試みたが全く発泡しなかった
。更にシリコン油を用い、温度を120−29 = ℃から170℃まで変えて加熱シリコン油中にこの樹脂
粒子を入れたが、泡が発生するのみで樹脂粒は全く発泡
しなかった。
The blowing agent-containing particles are heated at a steam pressure of 0 to 1.5Kf1.
I tried foaming variously by changing the temperature to 120-29°C to 170°C using silicone oil, but no foaming occurred. was generated, and the resin particles were not foamed at all.

実施例−2 塩化ビニリデ置部0重量係、メチル重量子クリレートフ
ロ重量係からなる平均粒径約0.25mmの共重合体粒
子を実施例−1と同様にして、フロン11/フロン12
1/1の混合発泡剤で発泡を試みた。
Example 2 Copolymer particles having an average particle diameter of about 0.25 mm consisting of vinylide chloride placement part 0 weight part and methyl weight acrylate part weight part 0 weight part were prepared in the same manner as in Example 1 to obtain Freon 11/Freon 12.
Foaming was attempted using a 1/1 mixed foaming agent.

基材樹脂はDSCでは全くピークを示さない非晶性でビ
カット軟化点は89℃であった。含浸発泡剤量は27部
で、これを室内に2週間放置後OKg/cm2のスチー
ムで60秒間加熱することにより46倍の予備発泡粒子
を得だ。これを1日間熟成後、実施例−1と同様にして
、型内スチーム発泡成形により発泡倍率73倍の平板発
泡成形体を得だ。この成形体の断面は、多胞質粒子の多
数個が相隣れる粒子相互を密に接して融着することによ
って形成されているものであった。本発泡成形体は表面
平滑で、そのまま例えば、断熱材用板体栽 30− は緩衝材として使用出来るものであった。
The base resin was amorphous, showing no peaks at all in DSC, and had a Vicat softening point of 89°C. The amount of impregnated foaming agent was 27 parts, and after being left indoors for 2 weeks, it was heated with OKg/cm2 steam for 60 seconds to obtain pre-expanded particles 46 times larger. After aging this for one day, a flat foam molded product with an expansion ratio of 73 times was obtained by in-mold steam foam molding in the same manner as in Example-1. The cross section of this molded body was formed by a large number of multivesicular particles that were in close contact with each other and fused together. This foamed molded product had a smooth surface and could be used as it is, for example, as a cushioning material for insulation materials.

実施例−3 塩化ビニリデ置部0重量係、メチルアクリレート40重
置部からなる平均粒子径0.15mmの塩化ビニリデン
樹脂粒子に実施例−1と同様な方法でフロン11/フロ
ン121/1の混合発泡剤を含浸した。基材樹脂粒子は
DSCでは全くピークを示さない非結晶性でビカット軟
化点は52℃であった。
Example 3 Vinylidene chloride resin particles with an average particle diameter of 0.15 mm, consisting of 0 parts by weight of vinyl chloride and 40 parts by weight of methyl acrylate, were mixed with Freon 11/Freon 121/1 in the same manner as in Example 1. Impregnated with blowing agent. The base resin particles were amorphous, showing no peaks at all in DSC, and had a Vicat softening point of 52°C.

含浸発泡剤量は24部で、この発泡性粒子を室内に開放
で2週間放置した後、平坦部が水平に保持された一金型
にみかけの容積で10%となるよう水平に均一に充填し
、65℃に温調されたスチームと空気の混合気体で加熱
、発泡、成形したところ、密度66 Kg/m”の多胞
質粒子の多数個が相隣れる粒子相互を密に接して融着す
ることによって断面を形成している平板発泡成形体を得
た。
The amount of impregnated foaming agent was 24 parts, and after leaving the foamable particles open in a room for 2 weeks, they were uniformly filled horizontally into a mold with the flat part held horizontally so that the apparent volume was 10%. When heated, foamed, and molded using a mixture of steam and air controlled at 65°C, a large number of porous particles with a density of 66 kg/m" were fused with adjacent particles in close contact with each other. A flat foamed molded article having a cross section formed by coating was obtained.

実施例−4 [化ビニリデン60部、メチルメタアクリレート40部
、それに架橋構造を与えるためにグリシジルメタアクリ
レート3部とメタアクリル酸0.3部の割合からなる平
均粒子径0.25mmの塩化ビニリデン樹脂粒子を実験
に供l〜だ。実施例−1と同様にしてフロン11とフロ
ン12からなる混合発泡剤の組成比を変え彫:適組成比
をめたところフロン11/フロン12が7/3で最高発
泡倍率を示した。この時の発泡剤の含浸量は23部であ
った。
Example 4 [Vinylidene chloride resin with an average particle diameter of 0.25 mm, consisting of 60 parts of vinylidene chloride, 40 parts of methyl methacrylate, and 3 parts of glycidyl methacrylate and 0.3 parts of methacrylic acid to give it a crosslinked structure. The particles are used for experiments. In the same manner as in Example 1, the composition ratio of the mixed foaming agent consisting of Freon 11 and Freon 12 was varied to find an appropriate composition ratio, and Freon 11/Freon 12 showed the highest foaming ratio of 7/3. The amount of foaming agent impregnated at this time was 23 parts.

含浸後粒子を室内に開放状態で2週間放置しだ後0.3
Ky/cm”のスチームで30秒加熱発泡したところ密
度62 Ky/m3の予備発泡粒子を得た。1日間室内
解放状態で熟成した後、実施例−1と同様にスチーム型
内成型したところ密度4 o Kg/m&の表面平滑な
成形発泡体を得だ。このものの5%圧縮強度を測定した
ところ2.8Ky/cm”あった。第7図より密度4 
o Kg/maの架橋要素を持たない場合の5%圧縮強
度は1 、7 Kg/crn”と推定されるから、架橋
を付与することにより圧縮強度が大巾に向上しているこ
とが分る。
0.3 after leaving the impregnated particles in an open room indoors for 2 weeks.
Ky/cm'' steam was used to heat and foam the particles for 30 seconds to obtain pre-expanded particles with a density of 62 Ky/m3.After aging in an open room for one day, molding was performed in a steam mold in the same manner as in Example-1. A molded foam with a smooth surface of 4.0 kg/m was obtained.The 5% compressive strength of this was measured to be 2.8 Ky/cm". From Figure 7, density 4
The 5% compressive strength without a crosslinking element of Kg/ma is estimated to be 1.7 Kg/crn, so it can be seen that the compressive strength is greatly improved by adding crosslinking. .

以上詳述して明らかにした通り、本発明は先述の構成を
持つことにより、塩化ビニリデン系樹脂の持つ特質(即
ち例えば、難燃性、ガス・々リヤ性、機械強度等)を活
かした発泡体を、そのままで、例えば断熱材用板体、緩
衝用容器、浮き材等として使用できる形状寸法で提供す
るものである。この型内発泡成形体は金型の設計に応じ
て、複雑な表面形状のものから各種寸法の平板まで、自
由な形状寸法のものとして、寸法精度良く、且つ平滑な
表面状態の成形体として供給でき、反撥性、圧縮強度等
の機械的特性にも優れたものであるから、産業界に果す
役割の大きい発泡体である。ことにこれを断熱材として
用いるときは、断熱性能に優れ、且つキの性能の持続性
にも優れ、難燃性を有する点で特に有益で、産業界に新
しい発泡体素材を提供するという画期的な発明である。
As explained in detail above and clarified, the present invention has the above-mentioned configuration, and thereby enables foaming that takes advantage of the characteristics of vinylidene chloride resin (i.e., flame retardancy, gas resistance, mechanical strength, etc.). The body is provided in a shape and size that allows it to be used as it is, for example, as a plate for heat insulation, a buffer container, a floating material, etc. This in-mold foam molded product can be supplied in any shape and size, from complex surface shapes to flat plates of various dimensions, with good dimensional accuracy and smooth surface conditions, depending on the design of the mold. It is a foam that plays a major role in industry because it has excellent mechanical properties such as resilience and compressive strength. In particular, when used as a heat insulating material, it is particularly useful in that it has excellent heat insulating performance, excellent long-lasting performance, and is flame retardant, with the aim of providing a new foam material to industry. This is a revolutionary invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明に係る非結晶性塩化ビニリデン系樹脂
粒子の電子顕微鏡写真を示す。第1図Bは結晶性塩化ビ
ニリデン系樹脂粒子の電子顕微鏡写真を示す。第2図は
本発明に係る非晶性塩化ビニ+Jデン系樹脂粒子径と最
高発泡倍率の関係を示 33− す図である。第3図は本発明に係る発泡性非晶性塩化ビ
ニリデン系樹脂粒子及び比較のだめ発泡性ポリスチレン
粒子の発泡剤の保持性を示す図である。第4図は本発明
に係る発泡性非晶性塩化ビニリデン系樹脂粒子を3段階
に亘って発泡したときの累積発泡倍率を示す図である。 第5図は本発明に係る非晶性塩化ビニIJデン系樹脂予
備発泡粒子及び比較のためポリスチレン予備発泡粒子の
二次膨張率の経時変化を示す図である。第6図は本発明
の発泡体の破断面の電子顕微鏡写真を示す。第7図は本
発明の発泡体の発泡体密度と5%圧縮強度の関係を示す
図である。第8図は本発明の塩化ビニリデン樹脂発泡成
形板と比較のためポリスチレン押出発泡板の熱伝導率の
経時変化を示す図である。第9図は塩化ビニリデンとメ
チルメタアクリレートの共重合樹脂に於ける樹脂中の塩
化ビニリデン含有量と酸素指数の関係を示す図である。 第10図H70ン11とフロン12の発泡剤組成比と最
大発泡倍率を示す図である。 = 34 = 651図 (A) 第2図 樹脂1’f[+徨(mm) 第3図 時 間 (日) 第4図 才 す 才 第6図 1mm 第7図 IQ 20 50 +00 登泡体密度(kg/m3) 手続補正書く自発) 昭和59年 3月23日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58潤乳’Fll)Jm 233602号2、発明
の名称 塩化ヒニリデン系樹脂型内発泡成形体 3、補正をする者 4、補正の対象 明細書の1発明の詳細な説明」の欄 5、補正の内容 (1)明細書第23頁第12行「約0.01m膿」を[
約0.005mmJと訂正する。 以上 手続補正書(方式) %式% 1、事件の表示 昭和58年特許願第233602号2
、発明の名称 塩化ビニリデン系樹脂型内発泡成形体 3、補正をする者 事件との関係特許出願人 大阪府大阪市北区堂島浜1丁目2番6号昭和59年 3
月 7日(発送日59.3. 27)6、補正の内容 (11明細書第34頁第10行1発泡体の破断面」を1
発泡体の発泡粒子構造破断面」と訂正する。 以上 手続補正書(自発) 昭和59年11月 1日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和58年特許願第233602号 2、発明の名称 塩化ビニリデン系樹脂型自発シ包成形体3、補正をする
者 事件との関係 特許出願人 大阪府大阪市北区堂島浜1丁目2番6号(003) 旭
化成工業株式会社 代表取締役社長 宮 崎 輝 4、補正の対象 明細書の「発明の詳細な説明Jの欄 5、補正の内容 (11明細書第8頁第7〜8行「とじ(第1図A)、B
)を示す、」を「とじて第1図A) 、B)を示す。」
と訂正する。 (2) 同第8頁第14行「表面に割目」を「表面にす
きまや割目」と訂正する。 (3)同第18頁第4行「示差熱量計」を「差動走査熱
量分析」と訂正する。 (4) 同第18頁第14〜15行[例えば特願昭57
−101318号に示されており、]を削除する。 (5) 同第19頁第13〜14行「例えばポリエチレ
ングリコール」を「例えばジビニルベンゼンやポリエチ
レングリコール」と訂正する。 (6)同第20頁第4行「径で0.01鶴」を[径(数
平均)で0.01璽lJと訂正する。 以上 2−
FIG. 1A shows an electron micrograph of amorphous vinylidene chloride resin particles according to the present invention. FIG. 1B shows an electron micrograph of crystalline vinylidene chloride resin particles. FIG. 2 is a diagram showing the relationship between the particle size of the amorphous vinyl chloride + J-density resin and the maximum expansion ratio according to the present invention. FIG. 3 is a diagram showing the foaming agent retention properties of the expandable amorphous vinylidene chloride resin particles according to the present invention and the comparative expandable polystyrene particles. FIG. 4 is a diagram showing the cumulative expansion ratio when the expandable amorphous vinylidene chloride resin particles according to the present invention are expanded in three stages. FIG. 5 is a graph showing changes over time in the secondary expansion coefficient of amorphous vinyl chloride IJ resin pre-expanded particles according to the present invention and polystyrene pre-expanded particles for comparison. FIG. 6 shows an electron micrograph of the fractured surface of the foam of the present invention. FIG. 7 is a diagram showing the relationship between foam density and 5% compressive strength of the foam of the present invention. FIG. 8 is a diagram showing changes over time in thermal conductivity of a polystyrene extruded foam board for comparison with the vinylidene chloride resin foam molded board of the present invention. FIG. 9 is a diagram showing the relationship between the vinylidene chloride content in the resin and the oxygen index in a copolymer resin of vinylidene chloride and methyl methacrylate. FIG. 10 is a diagram showing the foaming agent composition ratio and maximum foaming ratio of H70-N 11 and Freon 12. = 34 = 651 Figure (A) Figure 2 Resin 1'f[+(mm) Figure 3 Time (days) Figure 4 Thickness Figure 6 1mm Figure 7 IQ 20 50 +00 Foam density (kg/m3) Spontaneous writing of procedural amendments) March 23, 1980 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of the case 1981 Junyuu'Fll) Jm 233602 No. 2, Name of the invention Hynylidene chloride resin mold Internally foamed molded product 3, Person making the amendment 4, Detailed explanation of the invention in the specification subject to amendment 5, Contents of the amendment (1) Page 23 of the specification, line 12 “Approximately 0.01 m pus” of[
Correct it to approximately 0.005 mmJ. Written amendment to the above procedure (method) % formula % 1. Indication of case Patent Application No. 233602 of 1988 2
, Name of the invention Vinylidene chloride resin in-mold foam molded product 3, Person making the amendment Relationship to the case Patent applicant 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture 1988 3
March 7th (Delivery date 59.3.27) 6. Contents of amendment (11 Specification, page 34, line 10, 1 fractured surface of foam)
"Fracture surface of foam particle structure of foam" is corrected. Written amendment to the above procedure (spontaneous) November 1, 1980 Manabu Shiga, Commissioner of the Patent Office1, Indication of the case, Patent Application No. 233602 of 1982, Name of the invention, Vinylidene chloride resin-type spontaneously encased molded article 3 , Relationship with the case of the person making the amendment Patent applicant Teru Miyazaki 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka (003) President and CEO of Asahi Kasei Industries, Ltd. 4, ``Details of the invention'' in the specification to be amended Column 5 of Explanation J, contents of amendment (11 Specification, page 8, lines 7-8 "Binding (Fig. 1 A), B
) to show Figure 1 A) and B).
I am corrected. (2) On page 8, line 14, ``Cracks on the surface'' is corrected to ``Gaps and cracks on the surface.'' (3) On page 18, line 4, "differential calorimeter" is corrected to "differential scanning calorimetry." (4) Page 18, lines 14-15 [e.g.
-101318, and delete ]. (5) "For example, polyethylene glycol" on page 19, lines 13-14 is corrected to "for example, divinylbenzene and polyethylene glycol." (6) On page 20, line 4, "0.01 crane in diameter" is corrected to 0.01 crane in diameter (number average). Above 2-

Claims (1)

【特許請求の範囲】[Claims] 実質非晶性である塩化ビニリデン系樹脂でできた多胞質
発泡粒子の多数個が、相隣れる粒子相互を密に接して融
着し、発泡体を形成していることを特徴とする塩化ビニ
リデン系樹脂型内発泡成形体。
A chloride product characterized by a large number of polyvesicular foamed particles made of substantially amorphous vinylidene chloride resin, which are in close contact with each other and fused together to form a foam. Vinylidene resin in-mold foam molding.
JP58233602A 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body Granted JPS60125649A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58233602A JPS60125649A (en) 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body
US06/678,416 US4550003A (en) 1983-12-13 1984-12-05 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
GB08431163A GB2151231B (en) 1983-12-13 1984-12-11 Vinylidene chloride copolymer expandable particles & in-mold foam molding by use thereof
FR8418995A FR2556354B1 (en) 1983-12-13 1984-12-12 EXPANDABLE VINYLIDENE CHLORIDE RESIN EXPANDABLE PARTICLES, FOAMED PARTICLES, FOAM MOLDED PRODUCT AND PROCESSES FOR THEIR PREPARATION
DE3445323A DE3445323C1 (en) 1983-12-13 1984-12-12 Foamable vinylidene chloride polymer particles, foamed particles obtained therefrom and foamed moldings in the mold, and process for their preparation
US06/747,036 US4613626A (en) 1983-12-13 1985-06-20 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
US06/860,479 US4785024A (en) 1983-12-13 1986-05-07 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
US07/224,004 US4868055A (en) 1983-12-13 1988-07-25 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233602A JPS60125649A (en) 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body

Publications (2)

Publication Number Publication Date
JPS60125649A true JPS60125649A (en) 1985-07-04
JPS6333782B2 JPS6333782B2 (en) 1988-07-06

Family

ID=16957622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233602A Granted JPS60125649A (en) 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body

Country Status (1)

Country Link
JP (1) JPS60125649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142099A (en) * 2015-02-04 2016-08-08 株式会社金星 Movable fence for regulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142099A (en) * 2015-02-04 2016-08-08 株式会社金星 Movable fence for regulation

Also Published As

Publication number Publication date
JPS6333782B2 (en) 1988-07-06

Similar Documents

Publication Publication Date Title
US4785024A (en) Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
JP5014653B2 (en) Expandable styrene resin particles and method for producing styrene resin foam molded article
WO2015107847A1 (en) Propylene-based resin foam particle and foam particle molded body
JPS62104845A (en) Foamable polyvinyl (vinylidene) aromatic particles, production thereof and molded product produced from said particles
KR910008773B1 (en) Expandable vinyliden chloride composition
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
KR19990067641A (en) Polyethylene-based prefoamed particles and production method thereof
JP3653393B2 (en) Expandable rubber-modified styrenic resin composition
JP4535667B2 (en) Polystyrene resin extruded foam plate and method for producing the same
US5898039A (en) Foaming method
JP7405516B2 (en) Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
JPS60125649A (en) Vinylidene chloride group resin type internal foaming body
JP2002194130A (en) Expandable polystyrene resin particle and method of manufacturing the same
JP4217229B2 (en) Polystyrene resin extruded foam
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JPS60127333A (en) Expandable vinylidene chloride resin particles
JP2018119109A (en) Foamable polystyrene resin particle
JP2018090749A (en) Urethane-based thermoplastic elastomer foamed bead formed body
JP2024007832A (en) Method for producing foamable styrenic resin particle
JP2001089594A (en) Thermoplastic foamable polyurethane resin composition
JP2023144509A (en) Expandable polystyrenic resin particle, pre-expanded particle of the same, and expanded molding
JP2012172015A (en) Foamable resin particle and foaming mold object
JPH02284933A (en) Production of foamed styrene resin board
JPH0431447A (en) Flame-retarding resin foam particle of excellent heat insulation property