JPS6012380A - Automobile - Google Patents

Automobile

Info

Publication number
JPS6012380A
JPS6012380A JP12063283A JP12063283A JPS6012380A JP S6012380 A JPS6012380 A JP S6012380A JP 12063283 A JP12063283 A JP 12063283A JP 12063283 A JP12063283 A JP 12063283A JP S6012380 A JPS6012380 A JP S6012380A
Authority
JP
Japan
Prior art keywords
lift
aileron
slat
speed
automobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12063283A
Other languages
Japanese (ja)
Inventor
Junji Takahashi
淳二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12063283A priority Critical patent/JPS6012380A/en
Publication of JPS6012380A publication Critical patent/JPS6012380A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/02Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable a fixed lift to always act in no relation to a car speed, by using a control means which controls a variable lift means through the detected result from a car speed detecting means. CONSTITUTION:Positions of a slat 4' and an aileron 5'' are maintained in a low speed running condition so as to receive a lift in a maximum limit. A slat and an aileron are actuated in their positions 4 and 5 in an intermediate speed running condition so as to decrease the lift to a certain level. The aileron is controlled in its position 5' in a high speed running condition so as to further decrease the lift. A function as acting in the above is continuously controlled to be executed at every time a control device 20 controls each driving part 22 and 29 by a car speed detected result through a sensor 18. The applied lift also increases as a car speed increases, but lift adjusting devices 21 and 28 control an angle of the slat and the aileron in the direction of decreasing the lift, thus operating so as to continually receive a fixed lift.

Description

【発明の詳細な説明】 本発明は車体の受ける揚力を利用した自動車に関する。[Detailed description of the invention] The present invention relates to an automobile that utilizes the lift force exerted by the vehicle body.

自動車の低熱費化を促進するためには自動車の軽量化、
及び空力特性の向上が大きな要因となる。
In order to promote lower heating costs of automobiles, it is necessary to reduce the weight of automobiles,
and improved aerodynamic characteristics are major factors.

そこで、最近に於ては軽量化を図る一環として最も重要
な要素となる材料の見直しが行われている。これはエン
ジン等を含めた自動車全体の重量を軽減しころが9抵抗
を減少させようとするもので使用する桐料金新素材に置
換していくものである。例えば内装品にプラスチック製
のものを多く使用したり、成るいは構造部材(フレーム
、パネル等)を合成樹脂化するいわば非金属化の促進で
ある。
Therefore, in recent years, materials, which are the most important element, have been reviewed as part of efforts to reduce weight. This is intended to reduce the weight of the entire automobile, including the engine, etc., and reduce the resistance of the rollers, and is intended to be replaced with a new material made of paulownia. For example, we are promoting the use of non-metallic materials, such as increasing the use of plastic for interior parts and using synthetic resin for structural members (frames, panels, etc.).

また、空力特性の向上を図る一環としてはボディ表面の
平坦化が行われ、例えばボディ表面に存在する段差、成
るいはエツジ形状を極力減らすことにより空気抵抗を減
少させるもので、いわゆるフラッシュサーフェイスボデ
ィ及び流線形ボディがこれに当たる。
In addition, as part of efforts to improve aerodynamic characteristics, the body surface is flattened. For example, air resistance is reduced by minimizing steps or edges on the body surface, so-called flush surface bodies. and streamlined bodies.

しかしながら、これらは技術的な側面、成るいはコスト
的な側面等で特に軽量化は今−歩の観があり今後に期待
されている。
However, due to technical aspects, cost aspects, etc., weight reduction in particular seems to be a step forward, and is expected to continue in the future.

本発明の目的は斯かる実情から全く新たな発想に基づき
、逆に空気抵抗を利用することにより車体の軽量化、更
には低熱費化を図った高性能な画期的自動車を提供する
ものである。
In light of these circumstances, the purpose of the present invention is to provide an innovative, high-performance automobile that utilizes air resistance to reduce the weight of the vehicle body and further reduce heating costs. be.

本発明は以上の目的を達成すべく自動車の外形の一部又
は全部を翼形(揚力発生形状)に形成するとともに、こ
の翼形の揚力係数を可変する揚力可変手段と、自動車の
速度を検出する車速検出手段と、この車速検出手段から
の検出結果により前記揚力可変手段を制御する制御手段
とを備え、翼形の受ける揚力を利用しつつ車体の軽量化
を図ったことを特徴とする。
In order to achieve the above objects, the present invention forms part or all of the outer shape of an automobile into an airfoil shape (a shape that generates lift), and also includes lift variable means for changing the lift coefficient of this airfoil, and detecting the speed of the automobile. The present invention is characterized by comprising a vehicle speed detecting means for detecting a vehicle speed, and a control means for controlling the lift variable means based on the detection result from the vehicle speed detecting means, thereby reducing the weight of the vehicle body while utilizing the lift force received by the airfoil.

先ず、本発明に係る自動車の原理について説明する。First, the principle of the automobile according to the present invention will be explained.

最近の自動車、特に高速走行を目的としたウィングカー
にはボディ側面に翼を設けている。この翼は→参通常の
翼とは正反対(上面下面が反対となる)に付設するもの
で高速走行中負の揚力を発生させる。そして、この負の
揚力を利用してボディを路面に押しつけて高速安定性、
操縦性、更に駆動力の伝達同上を図っている。
Modern cars, especially wing cars designed for high-speed driving, have wings attached to the sides of their bodies. This wing is attached to the opposite side of the normal wing (the upper and lower surfaces are opposite) and generates negative lift during high-speed running. Using this negative lift force, the body is pressed against the road surface to achieve high-speed stability.
The aim is to improve maneuverability and drive power transmission.

したがって、このようなウィングカーをはじめ、最近の
自動車開発に於て揚力を減少させようとすることは」二
連する高速安定性、操縦性等の向」二を図る上で必要で
ある。
Therefore, efforts to reduce lift in recent automobile developments, including wing cars, are necessary in order to improve high-speed stability, maneuverability, etc.

ところで、車速に着目した場合、揚力が問題となるのは
高速走行時のみである。自動車の種類、形状等によって
一概には言えないが少なくとも通常市街地の中を法定速
度で走行している状態では問題とならない。
By the way, when focusing on vehicle speed, lift becomes a problem only when driving at high speeds. Although it cannot be generalized depending on the type and shape of the vehicle, it does not pose a problem at least when driving at the legal speed in normal urban areas.

そこで、本発明は揚力がほとんど問題とならない中・低
速走行時には逆にこの揚力を利用しようとするものであ
る。
Therefore, the present invention attempts to utilize this lift force on the contrary when driving at medium and low speeds, where lift force is hardly a problem.

さて、一般に自動車が水平な道路を定速走行している状
態で、その自動車が受ける走行抵抗は次のようになる。
Now, generally speaking, when a car is running at a constant speed on a horizontal road, the running resistance that the car receives is as follows.

(走行抵抗)=にろが9抵抗)+(突気抵抗ル・・・・
・・(1)一(wす)+()・ρ・ψ・5−CD)・・
・・・(11)W:自動車の重量 μ:路面の摩擦係数 ρ:空気密度 V二車速 S:自動車の正面投影面積 cD:自動車の形状等によって決寸ろ 抵抗係数 走行抵抗は走行中に受ける抵抗で、この値が太きければ
燃費も大きくなる。なお、上記(11)式において車速
(V)を変数としてグラフ化すると第9図のようになる
。同図から明らかなように、ころがり抵抗は車速(V)
に関係なく一定(厳密には高速時増大する場合があるが
説明上一定であると想定する)であるが、空気抵抗は車
速の二乗、即ち(Vアに比例して大きくなる。
(Running resistance) = Niroga 9 resistance) + (Push resistance...
... (1) 1 (ws) + ()・ρ・ψ・5−CD)・・
... (11) W: Weight of the car μ: Coefficient of friction of the road surface ρ: Air density V Vehicle speed S: Front projected area of the car cD: Coefficient of resistance determined by the shape of the car, etc. Running resistance is experienced while driving In terms of resistance, the higher the value, the higher the fuel consumption. If the vehicle speed (V) is used as a variable in the above equation (11), it will be graphed as shown in FIG. 9. As is clear from the figure, the rolling resistance is the vehicle speed (V)
(Strictly speaking, it may increase at high speeds, but it is assumed to be constant for the sake of explanation) regardless of the vehicle speed, but air resistance increases in proportion to the square of the vehicle speed, that is, (Va).

したがって、低速走行のときはころがり抵抗の方が太き
いが、ある車速以上になると今度は空気抵抗の方が大き
くなる。両者の抵抗が同一になる車速は通常60〜80
km/Hであり、この値より速い場合はを気抵抗を、他
方この値より遅い場合はころがり抵抗を軽減させるよう
にすればよい。
Therefore, when the vehicle is running at low speeds, rolling resistance is greater, but once the vehicle speed exceeds a certain level, air resistance becomes greater. The vehicle speed at which both resistances are the same is usually 60 to 80.
km/H, and if the speed is faster than this value, the air resistance may be reduced, and if the speed is slower than this value, the rolling resistance may be reduced.

ところで、今、飛行機の飛行原理について考えてみる。By the way, let's think about the principles of airplane flight.

通常の翼の揚力係数は10程度であるが、飛行機のそれ
は高揚力装置によって3.0〜35、更にはこれ以上に
大きくされろ。
The lift coefficient of a normal wing is about 10, but the lift coefficient of an airplane can be increased to 3.0 to 35, or even higher, by high-lift devices.

飛行機の離陸性能を計算するときに用いる馬力(P)の
4算式は P−−((W−−ρψ5CL)μv+1ρV3SCD〕
・・・・・・・・・・・・・・価)522 CL:揚力係数 となる。
The four formulas for horsepower (P) used when calculating the takeoff performance of an airplane are P--((W--ρψ5CL)μv+1ρV3SCD)
・・・・・・・・・・・・・・・Value) 522 CL: Lift coefficient.

そして、上記011)式の両辺iV/75で割ると、D
=(W−工・ρ−V2・5−CL)μ十−・ρ・ψ・S
ゆCD・・・・・・・OV)2 となる。
Then, dividing both sides of the above equation 011) by iV/75, D
= (W-work・ρ-V2・5-CL)μ10-・ρ・ψ・S
Yu CD......OV)2.

ここで、(lV)式において、自動車の場合には翼がな
いので揚力の項(−工・ρ・v2・S @CL)は零と
なり、結局、前記した自動車の走行抵抗の式(11)は
飛行機の離陸時の馬力の4算式から導くことができろ。
Here, in the equation (lV), since there are no wings in the case of an automobile, the lift term (-k・ρ・v2・S @CL) becomes zero, and as a result, the above-mentioned equation (11) of the running resistance of the automobile can be derived from the four formulas for horsepower at takeoff of an airplane.

このように、飛行機の離陸時に於て、離陸するまでは通
常の自動車と同様に路面をタイヤで走行するものである
から、翼形の揚力を最大限に利用すれば低燃費な自動車
をつくることができろ。
In this way, when an airplane takes off, it runs on tires on the road like a normal car until it takes off, so it is possible to create a car with low fuel consumption by maximizing the lift of the airfoil. Be able to do it.

なお、車速によって、揚力が異なるので車速を検出し、
これにより揚力係数を制御すれば車速に関係なく常に一
定の揚力を作用させることができる。
In addition, since the lift force differs depending on the vehicle speed, the vehicle speed is detected,
By controlling the lift coefficient, a constant lift can be applied regardless of the vehicle speed.

以下には本発明を更に具体化した好適な実施例を挙げ図
面を参照して詳述する。
Below, preferred embodiments that further embody the present invention will be described in detail with reference to the drawings.

第1図は本発明を具現化する自動車の外観斜視図、第2
図は同自動車の正面図、第3図は同自動車の翼形部の断
面形状を明示する側面図である。
Fig. 1 is an external perspective view of an automobile embodying the present invention;
The figure is a front view of the same vehicle, and FIG. 3 is a side view clearly showing the cross-sectional shape of the airfoil portion of the same vehicle.

先ず、第1図乃至第3図を参照して本発明に係る自動車
の全体的構成について説明する。図中符号1で示された
自動車は中間部に翼形部2全備える。この翼形部2は第
3図の如く断面形状の外郭を翼形に形成し揚力発生形状
とする。また、翼形部2は更に中間の固定部3、固定部
3の前側に上下方向へ回動可能に取付けたスラット(補
助翼)4、固定部3の後側に上下方向回動可能に取付け
たエルロン(調整翼)5から構成する。
First, the overall structure of an automobile according to the present invention will be explained with reference to FIGS. 1 to 3. The automobile designated by the reference numeral 1 in the figure has an airfoil section 2 entirely in the middle portion. As shown in FIG. 3, this airfoil portion 2 has an airfoil-shaped outer contour in cross-section, and is shaped to generate lift. In addition, the airfoil section 2 further includes an intermediate fixed part 3, a slat (aileron) 4 attached to the front side of the fixed part 3 so as to be rotatable in the vertical direction, and a slat (auxiliary wing) 4 attached to the rear side of the fixed part 3 so as to be rotatable in the vertical direction. It consists of ailerons (adjustment wings) 5.

一方、翼形部2の両11)]端には左右一対の車体部6
及びγを設り゛る。そして、この車体部6及び7の下部
には夫々前輪8及び9、それに後輪10゜11を備え四
輪自動車として構成する。この車体部6及び7の前上部
にはフロントガラス12及び13にて夫々キャビン14
及び15を配設し、他方、後上部には垂直翼16及び1
7を配設する。
On the other hand, a pair of left and right car body parts 6 are provided at both ends of the airfoil 2.
and γ are set. The lower portions of the vehicle body parts 6 and 7 are provided with front wheels 8 and 9, respectively, and rear wheels 10.degree. 11, forming a four-wheel vehicle. At the front upper part of the vehicle body parts 6 and 7, a cabin 14 is provided with windshields 12 and 13, respectively.
and 15 are arranged, and on the other hand, vertical wings 16 and 1 are arranged on the rear upper part.
Place 7.

なお、一方のキャビン14又は15は運転室としての機
能をもたせるとともに、車体部6及び7内には操舵手段
、電気的又は機械的方法による駆動手段等の通常の自動
車に要求される装置類及び機構を備えている。また、図
中符号18は一方の垂直翼1γの頂部に設けた対気速度
センサ(ピトー管等)である。
Note that one of the cabins 14 or 15 has the function of a driver's cabin, and inside the vehicle body parts 6 and 7 there are devices required for a normal automobile such as a steering means, an electric or mechanical driving means, etc. Equipped with a mechanism. Further, reference numeral 18 in the figure is an airspeed sensor (pitot tube or the like) provided at the top of one vertical wing 1γ.

次に、第4図乃至第6図を参照して、揚力調整システム
について説明する。なお、第4図は揚力調整システムの
構成図、第5図は前部の揚力調整部を示す側面構成図、
第6図は後部の揚力調整部を示す側面構成図である。ま
た、各図に於て第1図と同一部分には同一符号を付しそ
の構成を明確にした。
Next, the lift adjustment system will be explained with reference to FIGS. 4 to 6. In addition, FIG. 4 is a configuration diagram of the lift adjustment system, and FIG. 5 is a side configuration diagram showing the front lift adjustment section.
FIG. 6 is a side view of the rear lift adjustment section. In addition, in each figure, the same parts as in FIG. 1 are given the same reference numerals to clarify the structure.

先ず、前記対気速度センサ18は検知した対気圧力を車
速に比例した電気的検出信号として出力するコンバータ
18aを含む。対気速度センサ18はケーブル19にて
制御装置20と接続する。この制御装置20はマイクロ
コンピュータ等を含み、主に前記検出信号に対応した所
要の制御信号を生成し出力する。
First, the airspeed sensor 18 includes a converter 18a that outputs the detected air pressure as an electrical detection signal proportional to the vehicle speed. Airspeed sensor 18 is connected to controller 20 by cable 19 . This control device 20 includes a microcomputer and the like, and mainly generates and outputs a required control signal corresponding to the detection signal.

一方、翼形部2の固定部3にはその前部に揚力調整装置
21を配設し、前i己スラット4を可動せしめる。この
揚力調整装置21は第5図のように、モータを含む駆動
部22、これの駆動軸23に軸止したクランクアーム2
4、この先端に枢着し前方へ延出した駆動ロッド25に
て構成し、このロッド25はスラット4の後上部に枢着
する。また、スラット3の後下部はリンク26にて固定
部3の前下部に揺動自在に連結する。以って、駆動軸2
30回転によりスラット4を実線の位置又は仮想線で示
すスラット4′の位置の範囲で連続的に上下動すべく構
成する。なお、駆動部22はケーブル27を介して前記
制御装置20に接続する。
On the other hand, a lift adjusting device 21 is disposed at the front of the fixed part 3 of the airfoil 2, and the front slat 4 is movable. As shown in FIG. 5, this lift adjustment device 21 includes a drive section 22 including a motor, and a crank arm 2 which is fixed to a drive shaft 23 of the drive section 22.
4. It is composed of a driving rod 25 which is pivotally attached to the tip and extends forward, and this rod 25 is pivotally attached to the rear upper part of the slat 4. Further, the rear lower part of the slat 3 is swingably connected to the front lower part of the fixed part 3 by a link 26. Therefore, drive shaft 2
The slat 4 is configured to move up and down continuously within the range of the position shown by the solid line or the position of the slat 4' shown by the imaginary line by 30 rotations. Note that the drive unit 22 is connected to the control device 20 via a cable 27.

他方、固定部3の後部には揚力調整装置28を配設し、
前記エルロン5を可動せしめる。この揚力調整装置28
は第6図のように、モータを含む駆動部29、これの駆
動軸30に軸止したクランクアーム31、この画先端に
枢着し後方へ延出した駆動ロッド32.33にて構成し
、この各ロツ)”32.33Uエルロン5の後上下部に
各枢着スる。′=1.た、エルロン5の前部中央は固定
部3の後部端中夫に上下方向へ回動自在に枢着する。以
って、駆動軸300回転により実線で示すエルロン5を
仮想線で示す上方に位置するエルロン5′から下方に位
置するエルロン5“の範囲で連続的に上下動すべく構成
する。なお、駆動部29はケーブル34f:介して前記
制御装置20に接続する。
On the other hand, a lift adjustment device 28 is arranged at the rear of the fixed part 3,
The aileron 5 is moved. This lift adjustment device 28
As shown in FIG. 6, it is composed of a drive section 29 including a motor, a crank arm 31 fixed to a drive shaft 30 thereof, and drive rods 32 and 33 pivotally attached to the tip of this image and extending rearward, Each of these 32.33U aileron 5 is pivoted at the top and bottom of the back.' = 1.The front center of the aileron 5 is rotatable vertically at the rear end of the fixed part 3. Therefore, by 300 rotations of the drive shaft, the aileron 5 shown by the solid line is configured to move up and down continuously in the range from the aileron 5' located above to the aileron 5'' located below shown in the phantom line. . Note that the drive unit 29 is connected to the control device 20 via a cable 34f.

次に、斯かる構成を有する揚力調整システムの機能につ
いて説明する。
Next, the function of the lift adjustment system having such a configuration will be explained.

今、自動車1が停止している状態から所定の定常速度ま
で加速した状態を想定する。
Now, assume that the vehicle 1 is accelerated from a stopped state to a predetermined steady speed.

停止している状態に於ては対気速度センサ18は車速が
零の状態を検出し、この検出結果により制御装置20は
スラット4′及びエルロン5″の位置(双方とも下方)
にセットする。
When the vehicle is stopped, the airspeed sensor 18 detects that the vehicle speed is zero, and based on this detection result, the control device 20 adjusts the position of the slat 4' and aileron 5'' (both downward).
Set to .

そして、徐々に加速し、低速走行状態に於ては的下方)
を維持することにより最大限の揚力を受けるようにする
。やがて速度を増加し中速走行状態に於てはスラット4
及びエルロン5の位置(双方とも略水平)に可動せしめ
、ある程度揚力を弱める。そして更に、速度を増加し高
速走行状態に於てはエルロン5の位置(エルロンのみ比
較的上方)K可動せしめ、更に揚力を弱める。なお、以
上の機能はセンサ18によろ車速検出結果により制御装
置20が各駆動部22及び29を制御することにより実
行し、その制御は好ましくは連続的に行われる。
Then, it gradually accelerates and falls below the target when driving at low speed)
To receive the maximum lift force by maintaining Eventually, the speed increases and in the medium speed running state, the slat 4
and aileron 5 (both substantially horizontal) to weaken the lift to some extent. Furthermore, when the speed is increased and the vehicle is running at high speed, the position of the aileron 5 (only the aileron is relatively upward) is moved to further weaken the lift force. Note that the above functions are executed by the control device 20 controlling the respective drive units 22 and 29 based on the result of vehicle speed detection by the sensor 18, and the control is preferably performed continuously.

よって、車速が大きくなれば受ける揚力も大きくなるが
揚力調整装置21及び28は揚力を弱める方向ヘスラッ
ト及びエルロンの角度を調整し、常に一定の揚力を受け
るように動作する。
Therefore, as the vehicle speed increases, the lift force received also increases, but the lift force adjustment devices 21 and 28 adjust the angles of the heslats and aileron in the direction of weakening the lift force, and operate so that a constant lift force is always received.

第7図及び第8図は本発明に係る変更実施例を示し、第
7図は変更実施例に係る自動車の正面図、第8図は同自
動車の側面図である。
7 and 8 show a modified embodiment of the present invention, FIG. 7 being a front view of the automobile according to the modified embodiment, and FIG. 8 being a side view of the same automobile.

変更実施例と第1図に示した実施例(第1実施例)の異
なる点は第1実施例は車体の一部である中間部のみを翼
形部2として構成するが、変更実施例は自動車全体を翼
形部70として構成したもので、その機能は第1実施例
と同様である。なお、符号71は可動のスラット、72
は可動のエルロン、73.74は前輪、γ5,16は後
輪、77は車体前部略全幅に設けたキャビンである。
The difference between the modified embodiment and the embodiment shown in FIG. The entire automobile is configured as an airfoil section 70, and its function is similar to that of the first embodiment. Note that 71 is a movable slat, and 72 is a movable slat.
is a movable aileron, 73 and 74 are front wheels, γ5 and 16 are rear wheels, and 77 is a cabin provided almost the entire width at the front of the vehicle body.

以上の変更実施例をはじめ、要は自動車の外郭の一部又
は全部を翼形に形成すればよく、その他側部の形状、更
には細部の構成に於て、要旨を逸脱しない任意変更実施
は本発明範囲に許容されるものである。
In addition to the above-mentioned modification examples, it is sufficient to form part or all of the outer shell of the automobile into an airfoil shape, and any other changes may be made in the shape of the side parts and even the detailed structure without departing from the gist. It is permissible within the scope of the present invention.

さて、このように構成した自動車に於て、重量軽減効果
をどの程度得ることができるが、−例を挙げて以下に述
べろ。
Now, how much of the weight reduction effect can be obtained in an automobile constructed in this manner will be described below by giving an example.

(モデル車の諸元) 全長:4m 全 幅: 15m 全 高:13m 重 ft:900にり 抵抗係数二035 揚力係数:3゜5 ころが9摩擦係数=003 空気密度:0.125 (1)時速40km/H(V=1.1.1m/s)のと
き、揚力L40−1・ρ@、V2@ S 11 CL=
162Kg 、162Kg (M蓋好減)、7酊「=18% (2) 時速50km/H(V=13.9m/s)のと
き揚力L5G−253K9 .253に9 (fi m niJ減)、9ooK、=28%(3)時
速60 km/)i (V= 16.7 m/s )の
とき揚力ko ” 364 Kg 、364Kg (重量軽減)、9ooK、=40% なお、以上の算出は揚力係数を一定にした場合について
のものであるが、実際は本発明に従って揚力係数は可変
制御され車速に関係なく一定又は所要の重量軽減が行わ
れることになる。
(Specifications of the model car) Overall length: 4m Overall width: 15m Overall height: 13m Weight ft: 900 Resistance coefficient 2035 Lift coefficient: 3°5 Roller 9 Friction coefficient = 003 Air density: 0.125 (1 ) At 40km/h (V=1.1.1m/s), lift force L40-1・ρ@, V2@S 11 CL=
162Kg, 162Kg (M lid increase/decrease), 7㎊=18% (2) Lift force at 50 km/h (V=13.9 m/s) L5G-253K9 .253 to 9 (fi m niJ decrease), 9ooK , = 28% (3) When 60 km/h / However, in reality, according to the present invention, the lift coefficient is variably controlled so that a constant or required weight reduction is performed regardless of the vehicle speed.

以上の説明から明らかなように、本発明に係る自動車は
従来有害と考えられていた車体に作用する揚力(空気抵
抗)を走行時に於て逆に有益なものとして利用するため
、車体の軽量化、更には低熱費化を効果的に達成するこ
とができ、画期的な高性能自動車として提供することが
できろ。
As is clear from the above description, the vehicle according to the present invention utilizes the lift force (air resistance) that acts on the vehicle body, which was conventionally considered harmful, to be beneficial during driving, thereby reducing the weight of the vehicle body. Furthermore, it would be possible to effectively achieve lower heating costs and provide an epoch-making high-performance automobile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を具現化する自動車の外観斜視図、第2
図は同自動車の正面図、第3図は同自動車の翼形部の断
面形状を明示する側面図、第4図は揚力調整システムの
構成図、第5図は前部の(易力調整部を示す側面構成図
、第6図は後部の揚力調整部を示す側面構成図、第7図
は本発明の変更実施例に係る自動車の正面図、第8図は
同自動車の側面図、第9図は車速対走行抵抗特性図であ
る。 尚図面中、2.γ0は翼形部、4はスラット、5はエル
ロン、18は対気速度センサ、20は制御装置、21.
28は揚力調整装置である。 特許出願人 本田技研工業株式会社 代理人弁理士 下 1) 容−即 問 弁理士 大 橋 邦 意 向 弁理士 /」・ 山 有 第2図 第3図 第7図 第8図 1.3 °lb
Fig. 1 is an external perspective view of an automobile embodying the present invention;
Figure 3 is a front view of the vehicle, Figure 3 is a side view showing the cross-sectional shape of the airfoil of the vehicle, Figure 4 is a configuration diagram of the lift adjustment system, and Figure 5 is the front (lift adjustment unit). FIG. 6 is a side configuration diagram showing a rear lift adjustment section, FIG. 7 is a front view of an automobile according to a modified embodiment of the present invention, FIG. 8 is a side view of the same automobile, and FIG. The figure is a characteristic diagram of vehicle speed vs. running resistance. In the drawing, 2.γ0 is an airfoil, 4 is a slat, 5 is an aileron, 18 is an airspeed sensor, 20 is a control device, and 21.
28 is a lift adjustment device. Patent Applicant Honda Motor Co., Ltd. Representative Patent Attorney 2 1) Yong-Immediate Question Patent Attorney Kuni Ohashi Intention Patent Attorney /” Yu Yama Figure 2 Figure 3 Figure 7 Figure 8 Figure 8 1.3 °lb

Claims (1)

【特許請求の範囲】[Claims] 自動車の外郭の一部又は全部を翼形(揚力発生形状)V
C形成するとともに、この翼形の揚力係数を可変する揚
力可変手段と、自動車の速度を検出する車速検出手段と
、この車速検出手段からの検出結果により前記揚力可変
手段を制御する制御手段を具備することを特徴とする自
動車。
Part or all of the outer shell of the car is shaped like an airfoil (lift generating shape) V
C, and includes a lift varying means for varying the lift coefficient of the airfoil, a vehicle speed detecting means for detecting the speed of the vehicle, and a control means for controlling the lift varying means based on the detection result from the vehicle speed detecting means. An automobile characterized by:
JP12063283A 1983-07-01 1983-07-01 Automobile Pending JPS6012380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12063283A JPS6012380A (en) 1983-07-01 1983-07-01 Automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12063283A JPS6012380A (en) 1983-07-01 1983-07-01 Automobile

Publications (1)

Publication Number Publication Date
JPS6012380A true JPS6012380A (en) 1985-01-22

Family

ID=14791024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12063283A Pending JPS6012380A (en) 1983-07-01 1983-07-01 Automobile

Country Status (1)

Country Link
JP (1) JPS6012380A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153366A (en) * 1987-11-06 1989-06-15 Heung Jong Park Travelling controller for automobile
WO2001002235A1 (en) 1999-06-29 2001-01-11 Stanislav Begounov Method for controlling the aerodynamic vertical force of a vehicle and implementing device therefor
EP1216914A2 (en) * 2000-12-19 2002-06-26 FERRARI S.p.A. Vehicle with movable spoilers
US11993320B2 (en) 2021-02-18 2024-05-28 Honda Motor Co., Ltd. Spoiler structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153366A (en) * 1987-11-06 1989-06-15 Heung Jong Park Travelling controller for automobile
WO2001002235A1 (en) 1999-06-29 2001-01-11 Stanislav Begounov Method for controlling the aerodynamic vertical force of a vehicle and implementing device therefor
EP1216914A2 (en) * 2000-12-19 2002-06-26 FERRARI S.p.A. Vehicle with movable spoilers
EP1216914A3 (en) * 2000-12-19 2002-09-11 FERRARI S.p.A. Vehicle with movable spoilers
US6575522B2 (en) 2000-12-19 2003-06-10 Ferrari S.P.A. Vehicle with movable spoilers
US11993320B2 (en) 2021-02-18 2024-05-28 Honda Motor Co., Ltd. Spoiler structure

Similar Documents

Publication Publication Date Title
US8740285B2 (en) Vehicle airfoils for safety, efficiency, and performance
US10730570B2 (en) Enhanced vehicle efficiency using airfoil to raise rear wheels above road surface
US4722499A (en) Auxiliary wing tips for an aircraft
CN201400060Y (en) Tandem double channel vertical landing land and air vehicle
CN206704328U (en) A kind of automatically controlled multiple-piece empennage of FSE equation motorcycle races
CN109421828B (en) Active hybrid spoiler for motor vehicle
CN205381319U (en) Tail wing structure that automatically controlled formula of FSE equation motorcycle race is adjustable
US5061007A (en) Torsionally adjustable vehicle wing for uneven application of negative lift to the wheels
CN107757733A (en) A kind of adjustable automobiles four-wheel vertical load device
US11858304B2 (en) Multi-modal vehicle
US3951222A (en) Lightweight automobile
CN109606485B (en) Electric control adjustable tail wing system of formula car and control method thereof
US3675582A (en) Mass transportation system
CN112440636A (en) Air-land dual-purpose vehicle
CN113682387A (en) Telescopic fin device of angle of attack self-adaptation doublestage of intelligence
WO1995011159A1 (en) Aircraft flight control system
JPS6012380A (en) Automobile
JP5585180B2 (en) Moving body
CN109334791A (en) DRS connection transmission mechanism
JP4037462B2 (en) Device for improving the maneuverability of a vehicle for road driving and vehicle equipped with the device
KR100192820B1 (en) A variable-angle spoiler of an automobile
CN209080031U (en) DRS connection transmission mechanism
US4249628A (en) System of control for surface effect vehicle
US6322024B1 (en) Lift multiplying device for aircraft
KR100222085B1 (en) Flying car