JPS60122327A - Investigating method of load-dependent oscillation of rotary machine - Google Patents

Investigating method of load-dependent oscillation of rotary machine

Info

Publication number
JPS60122327A
JPS60122327A JP58230027A JP23002783A JPS60122327A JP S60122327 A JPS60122327 A JP S60122327A JP 58230027 A JP58230027 A JP 58230027A JP 23002783 A JP23002783 A JP 23002783A JP S60122327 A JPS60122327 A JP S60122327A
Authority
JP
Japan
Prior art keywords
load
vibration
oscillation
excitation
rotary machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58230027A
Other languages
Japanese (ja)
Other versions
JPH0365857B2 (en
Inventor
Hiroshi Kamiyoshi
博 神吉
Hiroshi Matsubayashi
松林 博
Takanobu Oda
隆信 小田
Tetsuya Yamamoto
哲也 山本
Takashi Ichimura
市村 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58230027A priority Critical patent/JPS60122327A/en
Publication of JPS60122327A publication Critical patent/JPS60122327A/en
Publication of JPH0365857B2 publication Critical patent/JPH0365857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To measure the natural oscillation frequency and attenuation factor safe tolerance of a rotary machine by varying a load condition stepwise while holding the rotating speed of the rotary machine, and calculating an attenuation factor for permissible excitation count value from oscillation response data in every load state. CONSTITUTION:When this excitation test is conducted, the oscillation frequency is varied gradually within a target range and oscillation response is measured. Data on it are collected and analyzed to calculate an attenuation factor or permissible oscillation coefficient K as mentioned below. Then while the rotating speed of the rotary machine is held constant, the load is increased to, for example, 1/4, 2/4, 3/4, and 4/4 and stationary operation is performed for a specific time in every load state; and the oscillation frequency is varied gradually within the target range to measure the oscillation response. Data on it are collected and analyzed to calculate an attenuation factor xsi or permissible oscillation coefficient K. Thus, the natural oscillation frequency and attenuation factor safe tolerance of the rotary machine are calculated.

Description

【発明の詳細な説明】 本発明は蒸気タービン、ガスタービン、発電機、コンプ
レッサ、ブロア、ポンプ等の回転機械の負荷依存振動調
査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for investigating load-dependent vibrations of rotating machines such as steam turbines, gas turbines, generators, compressors, blowers, and pumps.

蒸気タービンやコンプレッサ等の回転機械に発生する負
荷依存の低周波振動は、非常に複雑な現象であり、未だ
十分解明されるに至っていない。この現象は負荷に依存
して回転軸系の低次固有振動数成分が発生するもので、
蒸気タービンやコンプレッサの内部の流れに基因すると
考えられている。ところが、この種の振動は負荷運転中
でないとその特性が表われないため、現象の調査は発生
した振動を計測して分析するという方法のみしか使えな
かった。従って、この種の振動の発生した場合しかデー
タが得られず、撮動を発生し々い機械についてはどの程
度余裕があるのか、どれ位、厳しい状態にあるのかを知
る方法がなかった。
Load-dependent low-frequency vibrations that occur in rotating machines such as steam turbines and compressors are extremely complex phenomena that have not yet been fully understood. This phenomenon occurs when low-order natural frequency components of the rotating shaft system occur depending on the load.
It is thought to be caused by the internal flow of steam turbines and compressors. However, since the characteristics of this type of vibration do not appear unless the machine is under load, the only way to investigate the phenomenon was to measure and analyze the vibration that occurs. Therefore, data can only be obtained when this type of vibration occurs, and there is no way to know how much leeway there is or how severe the situation is for machines that tend to be photographed.

この種の振動に対する安定余裕を知るには回転軸系の低
次モードの減衰比がどの程度かを知ることが必要かつ十
分である。これには、運転中にデータを取る必要があり
、これには外部から何れかの外乱を与えてその応答によ
り減衰化をめる必要がある。ところが、従来はこれに対
する安全かつ有効な方法がなかった。
In order to know the stability margin against this type of vibration, it is necessary and sufficient to know what the damping ratio of the lower-order mode of the rotating shaft system is. To do this, it is necessary to collect data during operation, and to do so, it is necessary to apply some kind of disturbance from the outside and to attenuate the response. However, until now there has been no safe and effective method for this.

本発明は回転機械の負荷依存低周波振動の特性を解明で
き、運転中のこの種の振動に対する安定余裕を知ること
ができる回転機械の負荷依存振動調査方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for investigating load-dependent vibrations of rotating machines that can elucidate the characteristics of load-dependent low-frequency vibrations of rotating machines and determine the stability margin for this type of vibration during operation.

以下本発明について図面を参照して説明するが、はじめ
に本発明方法を実施するのに使用する装置について説明
する。
The present invention will be explained below with reference to the drawings, but first the apparatus used to carry out the method of the present invention will be explained.

この装置は、回転機械の軸受部分よシ回転軸の中心に向
って加振力を与えることが可能な加振器と、この加振器
の出力を制御する制御器と、上記回転軸に設けられ上記
加振器からの振動応答信号を検出する振動検出器と、上
記回転機械の回転数を一定として負荷条件を段階的に制
御可能な負荷制御器と、上記制御器からの基準信号およ
び加振力信号、上記振動検出器から振動応答信号を入力
し、加振力に応答する成分を取出す機能と、これらのデ
ータから減衰比又は許容励振係数をめる振動解析装置と
からなっている。
This device includes a vibrator that can apply an excitation force from the bearing part of a rotating machine toward the center of the rotating shaft, a controller that controls the output of this vibrator, and a controller that is installed on the rotating shaft. a vibration detector that detects a vibration response signal from the vibrator, a load controller that can control load conditions step by step while keeping the rotational speed of the rotary machine constant, and a reference signal and an excitation signal from the controller. It consists of a function that inputs a vibration force signal and a vibration response signal from the vibration detector and extracts a component that responds to the excitation force, and a vibration analysis device that calculates a damping ratio or allowable excitation coefficient from these data.

第1図はこの具体例を示すもので、図中1は図示しない
負荷に直結された試験の対象となる供試ロータ、2は供
試ロータを支える軸受、3は例えば慣性型加振器4を軸
受2に固定する治具、4は反力支持装置不用の直付型の
加振器で、任意の振動数の加振力を軸受台に与える慣性
型加振器である。5は加振器4によっていくらの大きさ
や振動数の加振力が軸受2に加えられたかを測定する加
振力検出器、6は供試ロータ1の振動を測定するための
振動検出器であシ、非接触変位計、接触式振動速度計、
加速度計など種々の形式のものが使われる。7は試験に
必要な振動の波を発生させる発振器で、通常は任意の振
動数の正弦波を発生するものである。8は加振エネルギ
を供給するエネルギ源で、加振器4が油圧式の場合は油
圧源、加振器が電磁式の場合は、電力増幅器である。9
は加振器から発生する力の大きさなどを制御する装置、
10は力ロ振している振動数を正確に与えるだめの信号
で正弦波、矩形波、パルス波などである。11は加振力
を示す信号で加振力検出器5の出力そのまま又は成度調
整された信号である。12は供試ロータ1や軸受2等の
振動を示す振動検出器6からの信号である。13は基準
信号10゜加振力信号11.振動応答信号12を入カレ
、加振力に対応する成分を取出す機能と、これらのデー
タから伝達関数、モーダル特性(固有振動数、減衰比な
ど)解析する振動解析装置例えば機械インピーダンス測
定装置である。
Figure 1 shows a specific example of this, where 1 is a test rotor that is directly connected to a load (not shown) and is the subject of the test, 2 is a bearing that supports the test rotor, and 3 is an inertial vibrator 4, for example. The jig 4 for fixing the bearing 2 to the bearing 2 is a directly mounted type vibrator that does not require a reaction force support device, and is an inertial type vibrator that applies an excitation force of an arbitrary frequency to the bearing stand. 5 is an excitation force detector for measuring the magnitude and frequency of excitation force applied to the bearing 2 by the vibrator 4; 6 is a vibration detector for measuring the vibration of the test rotor 1; Reeds, non-contact displacement meter, contact vibration velocity meter,
Various types of accelerometers are used. Reference numeral 7 denotes an oscillator that generates vibration waves necessary for testing, and usually generates a sine wave of an arbitrary frequency. Reference numeral 8 denotes an energy source for supplying excitation energy, which is a hydraulic source when the exciter 4 is hydraulic, and a power amplifier when the exciter is electromagnetic. 9
is a device that controls the magnitude of the force generated from a vibrator,
10 is a signal that accurately gives the frequency of vibration, such as a sine wave, a rectangular wave, or a pulse wave. Reference numeral 11 denotes a signal indicating the excitation force, which is either the output of the excitation force detector 5 as it is or a signal whose amplitude has been adjusted. 12 is a signal from the vibration detector 6 indicating vibrations of the test rotor 1, bearing 2, etc. 13 is a reference signal 10° and excitation force signal 11. A vibration analysis device that inputs the vibration response signal 12 and extracts a component corresponding to the excitation force, and analyzes a transfer function and modal characteristics (natural frequency, damping ratio, etc.) from these data; for example, a mechanical impedance measurement device. .

なお、上記加振器4は回転機械の軸受部分よシ回転軸の
中心に向って加振力を与えることが可能であって、正弦
波、パルス波で加振できるものであればなんでもよい。
The vibrator 4 may be any device as long as it is capable of applying an excitation force toward the center of the rotating shaft from the bearing portion of the rotating machine and can be vibrated with a sine wave or a pulse wave.

上記加振器4の加振条件は、■着目周波数範囲で掃引力
ロ振する■共振周波数で加振後中断する■パルス的に間
欠加振する■ランダム加振するのいずれでもよい。
The vibration condition of the vibrator 4 may be any of the following: (1) sweeping force vibration in the frequency range of interest, (2) discontinuing vibration after vibration at a resonant frequency, (2) intermittent vibration in a pulsed manner, and (4) random vibration.

次に上記機械インピーダンス測定装置について、第3図
を参照して説明する。第2図において、2ノは被検体(
第1図の供試ロータ1に相当)、22は加振器(第1図
の4に相当)、23は電力増幅器、24は発振器、25
は被検体21に付設され加振力Fを計測するカダーノ、
26は被検体21の各部の応答加速度を計測する複数の
加速度計、27は多チヤンネルアンプ、5− 28は力信号と加速度信号から加振周波数成分を抽出す
る多チヤンネルベクトルフィルタ、29はアナログ/デ
ジタル変換器、30は加振周波数を計数するためのパル
スカウンタ、31は集録されたデータから機械インピー
ダンスを計算するデジタル計算機で、データ集録プログ
ラム32.較正計算プログラム33.インピーダンス計
算プログラム34から構成されている。
Next, the mechanical impedance measuring device described above will be explained with reference to FIG. In Figure 2, 2 is the subject (
22 is an exciter (corresponds to 4 in FIG. 1), 23 is a power amplifier, 24 is an oscillator, 25
is a cadano attached to the test object 21 to measure the excitation force F;
26 is a plurality of accelerometers that measure the response acceleration of each part of the object 21, 27 is a multi-channel amplifier, 5-28 is a multi-channel vector filter that extracts excitation frequency components from the force signal and acceleration signal, and 29 is an analog/ A digital converter, 30 is a pulse counter for counting the excitation frequency, 31 is a digital computer that calculates mechanical impedance from the acquired data, and a data acquisition program 32. Calibration calculation program 33. It consists of an impedance calculation program 34.

35は計算された機械インピーダンスをグラフ出力する
ゾロツタ、36はプリンタ、37はデータ保存用の外部
記憶装置、38はレンジ信号である。
Reference numeral 35 represents a graph outputter that outputs the calculated mechanical impedance, 36 represents a printer, 37 represents an external storage device for storing data, and 38 represents a range signal.

このような装置において、発振器34からの正弦波電圧
は電力増幅器33を経て加振器22に入シ、加振器22
は被検体21を励振するが、発振器24は時間とともに
周波数が変化する自動掃引正弦波発振器であるので、任
意の周波数範囲で掃引加振される。
In such a device, the sine wave voltage from the oscillator 34 enters the exciter 22 via the power amplifier 33, and
excites the subject 21, but since the oscillator 24 is an automatic sweeping sine wave oscillator whose frequency changes over time, it is swept and excited in an arbitrary frequency range.

カグージ25は加振器22により被検体21に加えられ
る力を計測し、加速度計26は被検6一 体2ノの各部の応答加速度を計測し、カゲージ25と加
速度計26はそれぞれ計測されたカと加速度に比例した
電圧を発生し、この電圧信号は多チヤンネルアン7°2
7により増幅される。
The cage 25 measures the force applied to the subject 21 by the vibrator 22, the accelerometer 26 measures the response acceleration of each part of the subject 6, and the cage 25 and the accelerometer 26 each measure the force applied to the subject 21. and generates a voltage proportional to the acceleration, and this voltage signal is multi-channel Anne 7°2
7.

カゲージ25と加速度計26によシ計測された信号には
、被検体21の非線型特性や雑音のため、加振周波数以
外の成分も含まれているので、本装置では、多チヤンネ
ルベクトルフィルタ28によシ計測した電圧信号から加
振周波数成分を抽出するようになされている。
The signals measured by the vehicle gauge 25 and the accelerometer 26 also contain components other than the excitation frequency due to the nonlinear characteristics of the subject 21 and noise. The excitation frequency component is extracted from the measured voltage signal.

多チヤンネルベクトルフィルタ28がう出方された力信
号と加速度信号の加振周波数成分はアナログ/デジタル
変換器29によシデジタル化され、デジタル計算機31
に入力する。
The excitation frequency components of the force signal and acceleration signal output by the multi-channel vector filter 28 are digitized by an analog/digital converter 29 and then sent to a digital computer 31.
Enter.

その際、発振器24の出力はパルスカウンタ3θに入力
して加振周波数が計測され、との加振周波数の計測値が
デジタル計算機3ノに入力する。
At this time, the output of the oscillator 24 is input to the pulse counter 3θ to measure the excitation frequency, and the measured value of the excitation frequency is input to the digital computer 3.

デジタル計算機31では、まず、データ集録プログラム
32によシアナログ/デジタル変換器29からの力およ
び加速度デジタル信号とパルスカウンタ3oからの加振
周波数の計測値を集録し、次に、較正計算プログラム3
3にょシミ正値を物理量に変換し、さらに、インピーダ
ンス計算ゾロダラム34にょシ加速度Aを積分して速度
Vに変換し、カFを速度■で割算することによシ機械イ
ンピーダンス2をめるようになされている。すなわち、 Z=F/V (割算) ただし、A;加速度 (複素数) ■:速度 (複素数) ω:加振周波数 (実数) 2:機械インピーダンス (複素数) なる計算を行なって機械インピーダンスをめるものであ
る。
In the digital computer 31, first, the data acquisition program 32 acquires the force and acceleration digital signals from the analog/digital converter 29 and the measurement value of the excitation frequency from the pulse counter 3o, and then the calibration calculation program 3
3. Convert the positive value to a physical quantity, and then integrate the acceleration A to convert it to the velocity V, and calculate the mechanical impedance 2 by dividing the force F by the velocity ■. It is done like this. In other words, Z=F/V (division) where A: Acceleration (complex number) ■: Velocity (complex number) ω: Excitation frequency (real number) 2: Mechanical impedance (complex number) Calculate the mechanical impedance by performing the following calculation. It is something.

次に本発明方法について説明するが、本発明方法は、回
転機械の軸受部分より回転軸の中心に向って加振力を与
えることが可能なものにおいて、上記回転機械の回転数
を一定として負荷条件を段階的に変化させ、この各負荷
状態毎の振動応答データから上記回転機械の減衰比又は
許容励振係数をめることに特徴を有する。
Next, the method of the present invention will be explained. The method of the present invention applies a load to a rotating machine in which an excitation force can be applied from the bearing part of the rotating machine toward the center of the rotating shaft. The present invention is characterized in that the conditions are changed stepwise and the damping ratio or permissible excitation coefficient of the rotating machine is determined from the vibration response data for each load state.

以下本発明方法について説明する。回転機械を第3図の
ように定常回転数(一定)にて運転し、無負荷状態を所
定時間保持し、この状態で無負荷時加振テストを行う。
The method of the present invention will be explained below. The rotating machine is operated at a steady rotation speed (constant) as shown in Fig. 3, and the no-load state is maintained for a predetermined period of time, and a no-load vibration test is performed in this state.

この加振テストは振動数を着目範囲で徐々に変化させ、
振動応答を計測する。このデータを集録するとともにデ
ータを解析し、後述するように減衰比ξ又は許容励振係
数Kを算出する。
This vibration test gradually changes the vibration frequency within the range of interest,
Measure the vibration response. This data is acquired and analyzed to calculate the damping ratio ξ or the allowable excitation coefficient K as described later.

次に回転機械の回転数を一定とし、かつ負荷を例えば1
/4 、2/4 、3/4 、4/4へと上昇させて、
各負荷状態毎に所定時間定常運転をしておき、振動数を
着目範囲で徐々に変化させ、振動応答を計測する。この
データを集録するとともに、このデータを解析し、後述
するように減衰比ξ又は許容励振係数Kを算出する。
Next, the rotation speed of the rotating machine is kept constant, and the load is set to 1, for example.
Increase it to /4, 2/4, 3/4, 4/4,
Steady operation is performed for a predetermined period of time for each load condition, and the vibration frequency is gradually changed within the range of interest to measure the vibration response. This data is acquired and analyzed to calculate the damping ratio ξ or the allowable excitation coefficient K as described later.

上記減衰比のめ方として例えば周波数応答曲線(ボード
線図やナイキスト線図)からめ9− る方法(ハーフパワー法)又は後述する自由減衰法があ
る。前者の方法は振動応答曲線の共振部分に着目し、そ
のモード成分の最大振幅を示す固有振動数ωと最大振幅
の約70%を示す回転数ω1 、ω2を読取る。これを
第4図のボード線図、第5図のナイキスト線図からめる
As a method of calculating the above-mentioned damping ratio, there are, for example, a method (half power method) based on a frequency response curve (Bode diagram or Nyquist diagram) or a free damping method described later. The former method focuses on the resonance part of the vibration response curve, and reads the natural frequency ω indicating the maximum amplitude of the mode component and the rotational frequencies ω1 and ω2 indicating about 70% of the maximum amplitude. This can be seen from the Bode diagram in FIG. 4 and the Nyquist diagram in FIG.

そして次の式から減衰比ξをめる この減衰比ξと許容励振係数にの間には次のような関係
がある。
The damping ratio ξ is calculated from the following equation. The following relationship exists between the damping ratio ξ and the allowable excitation coefficient.

K=2mω2ξ ここでm:モーダルマスで6る。K=2mω2ξ Here, m: 6 in modal mass.

以上の式から各負荷状態毎に許容励振係数Kをめ、これ
を作図したのが第6図である。第6図から例えば次のよ
うなことがいえる。
The allowable excitation coefficient K was determined for each load state from the above formula and is plotted in FIG. 6. For example, the following can be said from FIG.

減衰比 ξ〈〇 一完全に不安定 0〈ξ(0,01−不安定に近い 0.01<:ξ<0.02 −安定であるが余裕が小さ
い 10− 0.02(ξ(0,04−普通程度安定0.02 ξ)
0.04−十分安定 このようにして外部よ多制御可能な加振力によシ必要最
小限のレベルの振動を起こさせ、これによって実機の安
定性に関する貴重なデータが得られる。なお、上記力ロ
振力は実運転に何ら害を与えるものではない。
Damping ratio ξ〈〇 - Completely unstable 0〈ξ(0,01- Almost unstable 0.01<:ξ<0.02 - Stable but with small margin 10- 0.02(ξ(0, 04-Normal stability 0.02 ξ)
0.04 - Sufficiently Stable In this way, an externally controllable excitation force causes a minimum necessary level of vibration, thereby providing valuable data regarding the stability of the actual machine. Note that the above-mentioned force and vibration force do not cause any harm to actual operation.

以上述べた実施例によれば負荷依存低周波振動の特性を
解明でき、運転中のこの種の振動に対する安定余裕を知
ることができる。
According to the embodiments described above, the characteristics of load-dependent low-frequency vibrations can be clarified, and the stability margin against this type of vibration during operation can be known.

次に本発明の第2の実施例について説明するが、第3図
と同様に回転機械を負荷毎に定常回転数で運転しておき
、各負荷状態で加振テストを行う。このテストを行う装
置としては第1図と同一のものを使うが、振動調査方法
は異なる。
Next, a second embodiment of the present invention will be described. Similar to FIG. 3, a rotating machine is operated at a steady rotation speed for each load, and an excitation test is performed under each load state. The same equipment as in Figure 1 is used for this test, but the vibration investigation method is different.

すなわち、力ロ振振動数を着目する点に合わせて第8図
のように一定加振振動数で共振させた状態にしておき、
加振力を急に切る。この状態の振動応答データを記録し
ておき、このデータに着目振動数のフィルターをかけて
自由減衰を測定し、第8図の応答波形よシ振幅A1+A
2+A3 、・・・Anを順次読取シ、次式から対数減
衰率δをめる。
In other words, as shown in Figure 8, the force and vibration frequencies are set to resonate at a constant excitation frequency according to the point of interest.
Cut off the excitation force suddenly. Record the vibration response data in this state, apply a filter to the frequency of interest to this data, measure the free attenuation, and use the response waveform shown in Figure 8 to obtain the amplitude A1+A.
2+A3, . . . An are read sequentially, and the logarithmic attenuation rate δ is calculated from the following equation.

ただしtnは自然対数、nは山数である。However, tn is a natural logarithm, and n is the number of peaks.

このようにしてめた対数減衰率δと山数の関係を示した
のが第9図である。第10図は減衰比と負荷の関係を示
しだものであシ、減衰比ξと対数減衰率δとの間に次の
式が成立する。
FIG. 9 shows the relationship between the logarithmic attenuation rate δ determined in this way and the number of peaks. FIG. 10 shows the relationship between the damping ratio and the load, and the following equation holds between the damping ratio ξ and the logarithmic damping ratio δ.

δ ξ =□ 2π この実施例の場合も前述の実施例と同様な効果が得られ
る。
δ ξ =□ 2π This embodiment also provides the same effect as the previous embodiment.

なお、上記実施例では加振器として慣性型のものを使用
したが、これに限らず回転機械の軸受部分よシ回転軸の
中心方向に向って加振力を与えることが可能で、正弦波
、パルス波等で加振できるものであれば、反力型(供試
体に直接加振器を取付け、との加振器の反対側に力計を
介して反力支持装置に支持したもの)、第11図(a)
 、 (b)に示す非接触電磁加振器のいずれでもよい
。この電磁加振器は電磁石40によ)回転軸41を直接
加振できるようになっている。従って、供試体例えばロ
ータによシ有効に加振力を伝えることができ、との加振
力を電磁石40の付根に取付けられた加振力検出器42
によって測定できる。また第11図(b)に示すように
2個の電磁石40を直角に取付け、両電磁石に働く加振
力の位相角を±90°に調整することによシ、この種の
振動が出やすい前まわ多方向(回転方向と同じ方向にふ
れまわさせる)とかその逆方向に加振することがヤき、
よシ的確な試験結果を得ることができる。
Although an inertial type vibrator was used as the vibrator in the above embodiment, the vibrator is not limited to this, and it is possible to apply a vibrating force from the bearing part of a rotating machine toward the center of the rotating shaft. , if it can be excited by a pulse wave, etc., it is a reaction force type (a vibrator is attached directly to the specimen, and it is supported by a reaction force support device via a force meter on the opposite side of the vibrator). , Figure 11(a)
, (b) may be used. This electromagnetic vibrator is capable of directly vibrating a rotating shaft 41 using an electromagnet 40. Therefore, the excitation force can be effectively transmitted to the test object, for example, the rotor, and the excitation force can be transmitted to the excitation force detector 42 attached to the base of the electromagnet 40.
It can be measured by Furthermore, as shown in Fig. 11(b), this type of vibration can be easily generated by installing two electromagnets 40 at right angles and adjusting the phase angle of the excitation force acting on both electromagnets to ±90°. It is possible to rotate forward in multiple directions (swing in the same direction as the rotation direction) or to excite in the opposite direction.
More accurate test results can be obtained.

以上述べた本発明によれば負荷状態を変えた場合回転機
械の固有振動数、減衰比安定性余裕をめることができる
回転機械の負荷依存振動調査方法を提供できる。
According to the present invention described above, it is possible to provide a method for investigating load-dependent vibrations of a rotating machine, which can provide a margin for the stability of the natural frequency and damping ratio of the rotating machine when the load condition is changed.

13−13-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明方法を実施するため
の一例を示す部分正面図および概略構成図、第2図は第
1図の振動解析装置の一例を示す概略構成図、第3図は
本発明の一実施例を説明するためのフローチャート、第
4図および第5図は減衰比をめるためのボード線図pよ
びナイキスト線図、第6図は同実施例を説明するための
負荷と減衰比、許容励振係数の関係を示す図、第7図は
本発明方法の他の実施例を説明するだめのフローチャー
ト、第8図〜第1O図はそれぞれ同実施例の方法を説明
するだめの時間と振動波形の関係を示す図、山数と対数
減衰率との関係を示す図および負荷と減衰比との関係を
示す図、第11図(a) 、 (b)は非接触電磁加振
器の一例を示す断面図および概略構成図である。 1・・・供試ロータ、2・・・軸受、4・・・加振器、
5・・・加振力検出器、6・・・振動検出器、7・・・
発振器、9・・・制御装置、13・・・振動解析装置。 14− g 荻托鷺]幀訃
1(a) and 1(b) are a partial front view and a schematic configuration diagram showing an example of implementing the method of the present invention, FIG. 2 is a schematic configuration diagram showing an example of the vibration analysis apparatus of FIG. 1, and FIG. Figure 3 is a flowchart for explaining one embodiment of the present invention, Figures 4 and 5 are Bode plots p and Nyquist diagrams for determining the damping ratio, and Figure 6 is for explaining the embodiment. Figure 7 is a flowchart for explaining another embodiment of the method of the present invention, and Figures 8 to 10 each illustrate the method of the same embodiment. Figures 11(a) and 11(b) are non-explanatory diagrams showing the relationship between time and vibration waveform, diagrams showing the relationship between the number of peaks and logarithmic damping ratio, and diagrams showing the relationship between load and damping ratio. FIG. 1 is a cross-sectional view and a schematic configuration diagram showing an example of a contact electromagnetic vibrator. 1... Test rotor, 2... Bearing, 4... Vibrator,
5... Excitation force detector, 6... Vibration detector, 7...
Oscillator, 9...control device, 13...vibration analysis device. 14-g Ogimasagi] story

Claims (1)

【特許請求の範囲】[Claims] 回転機械の軸受部分よシ回転軸の中心に向って加振力を
与えることが可能なものにおいて、上記回転機械の回転
数を一定として負荷条件を段階的に変化させ、この各負
荷状態毎の振動応答データから上記回転機械の減衰比又
は許容励振係数をめる回転機械の負荷依存振動調査方法
In a rotating machine that can apply an excitation force toward the center of the rotating shaft from the bearing part, the load conditions are changed step by step while the rotational speed of the rotating machine is kept constant, and the Load-dependent vibration investigation method for rotating machines that determines the damping ratio or allowable excitation coefficient of the rotating machines from vibration response data 0
JP58230027A 1983-12-06 1983-12-06 Investigating method of load-dependent oscillation of rotary machine Granted JPS60122327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230027A JPS60122327A (en) 1983-12-06 1983-12-06 Investigating method of load-dependent oscillation of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230027A JPS60122327A (en) 1983-12-06 1983-12-06 Investigating method of load-dependent oscillation of rotary machine

Publications (2)

Publication Number Publication Date
JPS60122327A true JPS60122327A (en) 1985-06-29
JPH0365857B2 JPH0365857B2 (en) 1991-10-15

Family

ID=16901419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230027A Granted JPS60122327A (en) 1983-12-06 1983-12-06 Investigating method of load-dependent oscillation of rotary machine

Country Status (1)

Country Link
JP (1) JPS60122327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147521A (en) * 1984-08-13 1986-03-08 Toyota Motor Corp Apparatus for measuring attenuation ratio
WO1992020126A1 (en) * 1991-04-26 1992-11-12 Fanuc Ltd Device for sensing abnormality in bearing of blower for gas laser
JP2020204555A (en) * 2019-06-18 2020-12-24 日立Geニュークリア・エナジー株式会社 Abnormality diagnostic method of rotating machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147521A (en) * 1984-08-13 1986-03-08 Toyota Motor Corp Apparatus for measuring attenuation ratio
JPH0357416B2 (en) * 1984-08-13 1991-09-02 Toyota Motor Co Ltd
WO1992020126A1 (en) * 1991-04-26 1992-11-12 Fanuc Ltd Device for sensing abnormality in bearing of blower for gas laser
US5285457A (en) * 1991-04-26 1994-02-08 Fanuc Ltd. Apparatus for detecting an abnormal bearing condition of a blower utilized for gas laser equipment
JP2020204555A (en) * 2019-06-18 2020-12-24 日立Geニュークリア・エナジー株式会社 Abnormality diagnostic method of rotating machine

Also Published As

Publication number Publication date
JPH0365857B2 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
CN106017758B (en) A kind of synchronous online testing device of motor static torque and test method
JP3398582B2 (en) Vibration analysis method and analyzer for disk device housing
US4078434A (en) Method and apparatus for determining the parameters of natural vibration of a system
KR100905397B1 (en) Dynamic balancing apparatus and methods using periodic angular motion
CN108519181A (en) A kind of modeling of platform stage body mass unbalance torque and test method
JPS60122327A (en) Investigating method of load-dependent oscillation of rotary machine
RU2427801C2 (en) Method of predicting variable component of output signal of electromechanical angular velocity sensor (avs) during manufacture of gyromotor thereof based on characteristics of angular vibrations excited by gyromotor, and installation for realising said method
RU2673950C1 (en) Method for determining forms of vibrations of rotating wheels of turbomachines
US4608867A (en) Method for the dynamic balancing of rotating machines in assembled condition
JP3036237B2 (en) Transmission test equipment
Robert et al. Applications
US6560553B1 (en) Method of estimating an eccentric position of an acceleration sensor and acceleration generating apparatus with an eccentricity adjuster
Tao A Practical One Shot Method to Balance Single-Plane Rotor
JPH0365858B2 (en)
JP2004117088A (en) Method for measuring bearing characteristic and bearing
US6647790B2 (en) Fixed-bandwidth correlation window method and system for a self-balancing rotatable apparatus
Yatsun et al. Experimental study into rotational-oscillatory vibrations of a vibration machine platform excited by the ball auto-balancer
JPH0477244B2 (en)
Rouse et al. Vibration studies of Monticello dam
Smith Changing the effective mass to control resonance problems
Ibraheem et al. Experimental Investigation for Single Plan Balancing Impellers between Bearings Using Frequency Response Function
JPH11311582A (en) Excitation power measuring device of vibrator
SU1817200A1 (en) Device for speeding up life test of electric motor
RU1775630C (en) Method and device for dynamically graduating dynamometer
JPH0815100A (en) Vibration diagnosing device with exciting function