JPS6012111B2 - Manufacturing method for coated springs - Google Patents

Manufacturing method for coated springs

Info

Publication number
JPS6012111B2
JPS6012111B2 JP5691481A JP5691481A JPS6012111B2 JP S6012111 B2 JPS6012111 B2 JP S6012111B2 JP 5691481 A JP5691481 A JP 5691481A JP 5691481 A JP5691481 A JP 5691481A JP S6012111 B2 JPS6012111 B2 JP S6012111B2
Authority
JP
Japan
Prior art keywords
spring
coating
manufacturing
springs
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5691481A
Other languages
Japanese (ja)
Other versions
JPS57171470A (en
Inventor
義弘 尾家
易之 谷口
弘忠 加藤
康彦 三吉
隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5691481A priority Critical patent/JPS6012111B2/en
Publication of JPS57171470A publication Critical patent/JPS57171470A/en
Publication of JPS6012111B2 publication Critical patent/JPS6012111B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 本発明は耐食性特に腐食疲労特性のすぐれた被覆ばねの
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a coated spring with excellent corrosion resistance, particularly corrosion fatigue properties.

近年、北米、カナダなど寒冷地の冬期道路凍結防止の目
的で散布される岩塩等による自動車の腐食損傷が大きな
社会問題になってきている。
In recent years, corrosion damage to automobiles caused by rock salt, which is sprayed to prevent roads from freezing in winter in cold regions such as North America and Canada, has become a major social problem.

自動車のばねは車軸と車体との間のクッションの役目を
果し、構造上重要な部品であるが、走行時にくり返し応
力を受けておりその表面に腐食によるビットが生じるな
らば応力集中を生じて疲労破壊する危険性がある。この
現象は腐食疲労と呼ばれ、腐食とくり返し応力の2つの
作用が関係している。
Automobile springs serve as a cushion between the axle and the vehicle body, and are structurally important components. However, they are subjected to repeated stress during driving, and if bits form on their surfaces due to corrosion, stress concentration can occur. There is a risk of fatigue failure. This phenomenon is called corrosion fatigue, and involves two effects: corrosion and repeated stress.

ばねの腐食疲労特性向上の目的で現在表面に露着塗装フ
タル酸樹脂による塗装などが施こされているが、耐食性
は充分でない。
In order to improve the corrosion fatigue properties of springs, the surface of the springs is currently coated with phthalic acid resin, but the corrosion resistance is not sufficient.

しかも走行中に路上の小石などが飛来してきずを受ける
という、いわゆるチツピングに対する抵抗性も不充分で
ある。チッピングによって塗膜にきずを受ければその部
分で腐食が誘発される。自動車の安全性向上に対する社
会的要求は年々強まっており、腐食疲労特性のすぐれた
ばねの製造技術を開発する必要性が自動車用を中心に非
常に大きくなっている。
Furthermore, the vehicle has insufficient resistance to so-called chipping, which is damage caused by flying pebbles on the road while driving. If the paint film is damaged by chipping, corrosion will be induced in that area. Social demands for improving the safety of automobiles are increasing year by year, and the need to develop manufacturing technology for springs with excellent corrosion fatigue properties has become extremely important, especially for automobiles.

ところでばねは、コイルばねでは丸鋼や線村、重ね板ぱ
ねでは平鋼から作られるが熱間又は冷間で成形した後そ
の材質を調整する目的で焼入れ一塊戻しの熱処理が行わ
れる。本発明者はこの熱処理に着目し、その工程を利用
して耐食性、耐チッピング性のすぐれた塗覆菱を表面に
施すことによって腐食疲労特性のすぐれたばねを製造す
る方法を見し、出した。
By the way, springs are made from round steel or wire strips for coil springs, and from flat steel for stacked plate springs, but after hot or cold forming, the springs are heat-treated by quenching to adjust the material quality. The present inventor has focused on this heat treatment, and has developed a method for manufacturing springs with excellent corrosion fatigue characteristics by applying coating diamonds with excellent corrosion resistance and chipping resistance to the surface using this process.

すなわち本発明は上記知見に基づいてなされたものであ
ってその要旨とするところは、鋼材を透常の方法でばね
に成形し蟻入れた後、スケールを除去しそのまま直ちに
あるには化成処理皮膜を形成せしめた後、プラスチック
塗装用粉末を10〜500ムの厚さに粉末塗装して12
0〜550qCの温度で加熱して硬化させることを特徴
とする被覆ばねの製造法にある。
That is, the present invention has been made based on the above knowledge, and the gist thereof is that after forming a steel material into a spring using a transparent method and inserting ants into it, the scale is removed and the chemical conversion coating is immediately applied. After forming, powder coating with plastic coating powder is applied to a thickness of 10 to 500 mm.
A method for manufacturing a covered spring characterized by curing by heating at a temperature of 0 to 550 qC.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

先ず熱硬化性プラスチック塗腰には耐食性チツピング性
にすぐれたものが多く、これを表面に被覆すればばねの
腐食疲労特性が著しく向上する。
First of all, many thermosetting plastic coatings have excellent corrosion resistance and chipping properties, and if the surface is coated with this, the corrosion fatigue characteristics of the spring will be significantly improved.

しかしながら通常の焼入れ焼戻し処理を施した後のばね
に熱硬化性プラスチックを焼付けるための再加熱を行う
と先の熱処理により折角得られたばねの強度がかかる再
加熱により減殺されるという不都合が生ずる。そこで焼
入れのみを行ったばねの表面にプラスチック塗装用粉末
を塗装し、しかる後焼戻しを行なうと同時にそのための
加熱を利用して前記プラスチックを硬化させることによ
り、ばねの強度を損なうことはなく、耐チッピング性な
どにすぐれたプラスチック被覆を同時に形成せしめるこ
とができる。
However, if a spring is subjected to normal quenching and tempering treatment and then reheated to bake the thermosetting plastic, there is a problem in that the strength of the spring, which has been painstakingly obtained through the previous heat treatment, is diminished by the reheating. Therefore, by applying plastic coating powder to the surface of the spring that has only been quenched, and then tempering it, at the same time using the heat for that purpose to harden the plastic, the strength of the spring will not be compromised and it will resist chipping. It is possible to simultaneously form a plastic coating with excellent properties.

この場合焼戻し温度は素材の成分およびばねに付‐与す
べき機械的性質によって決定され一般に焼戻し温度を高
めるに従って強度は低下し伸びは向上する。
In this case, the tempering temperature is determined by the ingredients of the material and the mechanical properties to be imparted to the spring, and generally, as the tempering temperature is raised, the strength decreases and the elongation increases.

一方プラスチックの硬化温度はその種類によって異なり
硬化剤の種類、添加量によっても影響される。従って塗
装すべきプラスチックの種類はばねの焼戻し温度に応じ
て選定されるべきである。
On the other hand, the curing temperature of plastics varies depending on the type of plastic, and is also influenced by the type and amount of curing agent added. Therefore, the type of plastic to be coated should be selected depending on the tempering temperature of the spring.

さらにこれらについて具体的に説明すると、先ず本発明
にいうばねとはコイルばね、重ね板ばね、トーションバ
ーのいずれの懸架ばねも対象となるものである。成形法
は熱間または冷問いずれでもよい。
To explain these in more detail, first of all, the spring referred to in the present invention includes any suspension spring such as a coil spring, a stacked leaf spring, or a torsion bar. The molding method may be either hot or cold.

この場合のばね鋼材の化学組成はJISG4801(1
967)に規定されたSUP3〜11を基本とするが、
CO.3〜2.0%、Sio.05〜3.5%、Mno
.1〜2.0%を含有するもの及びそれらに更にCu,
Cr,Ni,AI,Nb,V,Mo,Bの1種または2
種以上を単独または複合で0.01%以上3%以下添加
したものでもよい。燐入れ条件は通常のばね製造条件に
準じ800〜900qoに加熱後油冷または水袷とする
The chemical composition of the spring steel in this case is JIS G4801 (1
967) is based on SUP 3 to 11 specified in
C.O. 3-2.0%, Sio. 05-3.5%, Mno
.. Those containing 1 to 2.0% and those containing Cu,
One or two of Cr, Ni, AI, Nb, V, Mo, B
One or more species may be added singly or in combination in an amount of 0.01% or more and 3% or less. The phosphorization conditions are similar to the usual spring manufacturing conditions, such as heating to 800 to 900 qo and then cooling in oil or water.

被覆前のばね表面はスケール除去を行なうが除去の方法
はグリッドブラスト、ショットブラストなど機械的方法
または通常の鞍洗でよい。ブラスト加工はばね表面に圧
縮応力を与え、疲労強度を向上させる作用も及ぼす。
The surface of the spring before coating is scaled, and the removal method may be mechanical methods such as grid blasting or shot blasting, or ordinary saddle washing. Blasting imparts compressive stress to the spring surface, which also has the effect of improving fatigue strength.

スケール除去後の表面にそのまま粉末塗装を施してもよ
いが、化成処理皮膜を形成せしめた後に塗装するならば
塗膜の密着性及び耐食性が一段と向上する。化成処理と
してはクロム酸水溶液又は有機物添加クロム酸水溶液を
用いる通常のクロメート処理やリン酸、リン酸亜鉛、リ
ン酸鉄、リン酸カルシウム等を主成分とする水溶液を用
いる通常のリン酸塩処理が適当である。プラスチック塗
装用粉末とはプラスチックに硬化剤、流水調整剤、フィ
ラー、顔料などを混合し微粉末としたものである。
Powder coating may be applied directly to the surface after scale removal, but if the coating is applied after forming a chemical conversion coating, the adhesion and corrosion resistance of the coating will be further improved. As the chemical conversion treatment, ordinary chromate treatment using a chromic acid aqueous solution or an organic substance-added chromic acid aqueous solution, and ordinary phosphate treatment using an aqueous solution containing phosphoric acid, zinc phosphate, iron phosphate, calcium phosphate, etc. as main components are suitable. be. Powder for plastic coating is a fine powder made by mixing plastic with a hardening agent, water flow control agent, filler, pigment, etc.

プラスチックとしては腐食疲労に対する抵抗性を考慮す
ればェポキシ樹脂、ポリ塩化ビニル、ポリエチレン、ポ
リプロピレン、ポリアミド、塩素化ポリェーテル、ふっ
素樹脂等が挙げられる。
Examples of plastics include epoxy resins, polyvinyl chloride, polyethylene, polypropylene, polyamides, chlorinated polyethers, fluororesins, etc. in consideration of resistance to corrosion fatigue.

硬化剤はプラスチックの種類に応じて通常用いられる化
合物を選択すればよいが、例えばェポキシ樹脂用の硬化
剤としてはメタフェニレンジアミン、ジアミノジフェニ
ルメタンなどの芳香族ポリアミン、ボリカルポン酸及び
無水フタル酸などの酸無水物、ポリカルボン酸ヒドラジ
ド、ジシアンジアミドなどのポリアミド等やそれらを変
性した化合物が挙げられる。塗装厚さの下限を10#と
定めたのは10山未満の塗腰はピンホールが多〈耐食性
が不充分なためである。
The curing agent may be selected from commonly used compounds depending on the type of plastic. For example, curing agents for epoxy resins include aromatic polyamines such as metaphenylene diamine and diaminodiphenylmethane, acids such as polycarboxylic acid and phthalic anhydride, etc. Examples include anhydrides, polycarboxylic acid hydrazides, polyamides such as dicyandiamide, and compounds modified therewith. The lower limit of the coating thickness was set at 10# because a coating thickness of less than 10 peaks has many pinholes (corrosion resistance is insufficient).

上限については500〃を超えると下地との密着性が低
下し、ばねとして使用中に塗膜が剥離する恐れがあるの
で500rとした。
The upper limit was set at 500r because if it exceeds 500r, the adhesion to the base will decrease and there is a risk that the coating will peel off during use as a spring.

粉末塗装の方法は流動浸糟法、スプレー法、静弦スプレ
ー法のいずれでもよい。
The powder coating method may be a fluidized immersion method, a spray method, or a static spray method.

塗装に先立ってばねを予熟することが望ましいが予熱江
程は省略してもよい。
Although it is desirable to preheat the spring prior to painting, the preheating process may be omitted.

さらに本発明においては前述の通り粉末塗装後に加熱す
ることによって焼戻しと塗料の硬化とを同時に行わせる
ことに最大の特徴を有するものである。
Furthermore, as mentioned above, the greatest feature of the present invention is that tempering and curing of the paint are performed simultaneously by heating after powder coating.

本発明者らの知見によると両者を別々に行わせることは
多くの場合不可能であるばかりでなくエネルギー損失が
大きいという欠点を有する。
According to the findings of the present inventors, it is not only impossible in many cases to perform both separately, but also has the drawback of large energy loss.

すなわち焼戻し後、粉末塗装し硬化熱処理を実施する場
合は、前述の通り競戻し‘こよって調整した機械的性質
が硬化熱処理によって変化してしまうことが多い。逆に
硬化後に焼戻しを実施する場合は焼戻いこよる加熱によ
って塗膜の劣化を生ずることが多い。一般に塗膜の硬化
温度は最高使用温度に比べて50〜25000程度高い
から硬化と焼戻しを同時に行わせることは可能であって
も硬化後の塗膜を高い温度にさらすことはできない。
That is, when powder coating is performed after tempering and hardening heat treatment is performed, the mechanical properties adjusted by competitive backing as described above often change due to the hardening heat treatment. On the other hand, when tempering is performed after curing, the coating film often deteriorates due to the heating that occurs during tempering. Generally, the curing temperature of a coating film is about 50 to 25,000 times higher than the maximum service temperature, so even if it is possible to perform curing and tempering simultaneously, it is not possible to expose the cured coating film to high temperatures.

粉末塗装後の加熱温度はばねの組成及びばねに付与すべ
き機械的性質によって決定されるが、120oo禾満で
は強度が高くなり過ぎて実用ばねとして使用できないの
で下限を120qoとした。
The heating temperature after powder coating is determined by the composition of the spring and the mechanical properties to be imparted to the spring, but the lower limit was set at 120 qo because the strength would be too high to be used as a practical spring.

上限については55000を超えるならば逆に強度が低
すぎて実用ばねとして使用できないので55ぴ0と定め
た。塗装に用いるプラスチックはその硬化温度が燈戻し
温度に一致するよう選べばよいが、例えばェポキシ樹脂
の硬化温度は120〜280℃、ポリエチレンのそれは
270〜390℃、ふつ素樹脂のそれは400〜550
q○である。
The upper limit was set at 55 pi0 because if it exceeds 55,000, the strength is too low to be used as a practical spring. The plastic used for painting should be selected so that its curing temperature matches the lighting temperature; for example, the curing temperature of epoxy resin is 120 to 280°C, that of polyethylene is 270 to 390°C, and that of fluororesin is 400 to 550°C.
It is q○.

塗装後のばねは通常の方法で組立て組込み、セツチング
が行われる。
After painting, the spring is assembled and installed in the usual manner.

以上詳述したごとく本発明は耐食性特に腐食疲労特性の
すぐれた被覆ばねの製造法である。
As described in detail above, the present invention is a method for manufacturing a coated spring with excellent corrosion resistance, particularly corrosion fatigue properties.

次に実施例により本発明の効果を更に具体的に説明する
。本発明の実施例 成形したばねについて表に示したように焼入れ、スケ−
ル除去、化成処理、プラスチック塗装用粉末を粉末塗装
、加熱処理して被覆ばねを製造した。
Next, the effects of the present invention will be explained in more detail with reference to Examples. Examples of the molded springs of the present invention are hardened and scaled as shown in the table.
A coated spring was manufactured by removing the rubber, chemical conversion treatment, powder coating with plastic coating powder, and heat treatment.

得られたばねをばね疲労試験機にかけ、5%NaCI水
溶液を30分に1回ずつスプレ−しながら腐食疲労試験
を行なった。別にグラベロメーターを用いた耐チッピン
グ性試験と5%NaCI水溶液に浸漬後の塗膜密着性試
験も実施してある。
The obtained spring was placed in a spring fatigue testing machine, and a corrosion fatigue test was conducted while spraying a 5% NaCI aqueous solution once every 30 minutes. Separately, a chipping resistance test using a gravelometer and a coating film adhesion test after immersion in a 5% NaCI aqueous solution were also conducted.

試験結果も合わせて表に示した。表中1,4,5,8は
比較の方法、他は本発明の方法である。
The test results are also shown in the table. In the table, 1, 4, 5, and 8 are comparative methods, and the others are methods of the present invention.

塗装厚が本発明の範囲外である霊蓮 ト 入 。Reiren whose coating thickness is outside the scope of the present invention to Enter .

yづ ふ 導 馨 選 篭 り 霊 零 馨 篭 船 喪 S 塗 d 1,4の方法で作った被覆ばねは腐食疲労特性が良好で
ない。
Coated springs made by methods 1 and 4 do not have good corrosion fatigue properties.

加熱温度が本発明の範囲外である5,8の方法で作った
被覆ばねは強度が不適当であって実用‘まねとして使用
できない。
Covered springs made by methods 5 and 8 in which the heating temperature is outside the range of the present invention have inadequate strength and cannot be used as practical imitations.

それに対し本発明の方法で製造した被覆ばねは腐食疲労
特性が良好で、かつ耐チッピング性もすぐれている。
In contrast, the coated spring manufactured by the method of the present invention has good corrosion fatigue properties and excellent chipping resistance.

化成処理は塗膜密着性向上に有効である。Chemical conversion treatment is effective in improving paint film adhesion.

以上詳述したごとく本発明は、ばねの焼戻し工程とプラ
スチック粉末被覆塗料の熱硬化過程を同時に行わせるこ
とによって耐食性とくに耐腐食疲労特性のすぐれた被覆
ばねの製造法を提供するものであってその実用的価値は
誠に大きい。
As detailed above, the present invention provides a method for manufacturing a coated spring with excellent corrosion resistance, particularly corrosion fatigue resistance, by simultaneously performing the spring tempering process and the thermosetting process of the plastic powder coating coating. The practical value is truly great.

Claims (1)

【特許請求の範囲】 1 鋼材を通常の方法でばねに成形し、焼入れた後スケ
ールを除去し、表面にプラスチツク塗装用粉末を10〜
500μの厚さに粉末塗装して120〜550℃の温度
で加熱することを特徴とする、被覆ばねの製造法。 2 鋼材を通常の方法でばねに成形し、焼入れた後スケ
ールを除去し表面に化成処理皮膜を形成せしめた後プラ
スチツク塗装用粉末を10〜500μの厚さに粉末塗装
して120〜550℃の温度で加熱することを特徴とす
る、被覆ばねの製造法。
[Claims] 1 Steel material is formed into a spring using a normal method, scale is removed after quenching, and the surface is coated with plastic coating powder for 10 to 10 minutes.
A method for manufacturing a covered spring, characterized by powder coating to a thickness of 500μ and heating at a temperature of 120 to 550°C. 2. Form steel into a spring using the usual method, quench it, remove scale, form a chemical conversion film on the surface, apply powder for plastic coating to a thickness of 10 to 500μ, and heat at 120 to 550℃. A method for manufacturing a covered spring, which is characterized by heating at a temperature.
JP5691481A 1981-04-17 1981-04-17 Manufacturing method for coated springs Expired JPS6012111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5691481A JPS6012111B2 (en) 1981-04-17 1981-04-17 Manufacturing method for coated springs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5691481A JPS6012111B2 (en) 1981-04-17 1981-04-17 Manufacturing method for coated springs

Publications (2)

Publication Number Publication Date
JPS57171470A JPS57171470A (en) 1982-10-22
JPS6012111B2 true JPS6012111B2 (en) 1985-03-29

Family

ID=13040732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5691481A Expired JPS6012111B2 (en) 1981-04-17 1981-04-17 Manufacturing method for coated springs

Country Status (1)

Country Link
JP (1) JPS6012111B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158543A1 (en) * 2010-06-14 2011-12-22 中央発條株式会社 Powder coating method
WO2014013827A1 (en) * 2012-07-17 2014-01-23 中央発條株式会社 Spring member
WO2017138621A1 (en) * 2016-02-10 2017-08-17 日本発條株式会社 Method and device for manufacturing coil spring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3535389A1 (en) * 1985-10-03 1987-04-09 Wacker Chemie Gmbh METHOD FOR PRODUCING BINDERS FOR PAINTS AND PLASTER
JP2019152254A (en) * 2018-03-01 2019-09-12 中央発條株式会社 Method for manufacturing spring for suspension device
JP7143884B2 (en) * 2018-06-14 2022-09-29 新東工業株式会社 Strain-generating body, manufacturing method of strain-generating body, and physical quantity measurement sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158543A1 (en) * 2010-06-14 2011-12-22 中央発條株式会社 Powder coating method
JP2012000530A (en) * 2010-06-14 2012-01-05 Chuo Spring Co Ltd Powder coating method
WO2014013827A1 (en) * 2012-07-17 2014-01-23 中央発條株式会社 Spring member
JP2014018727A (en) * 2012-07-17 2014-02-03 Chuo Spring Co Ltd Spring member
WO2017138621A1 (en) * 2016-02-10 2017-08-17 日本発條株式会社 Method and device for manufacturing coil spring

Also Published As

Publication number Publication date
JPS57171470A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
JP4723390B2 (en) High durability spring and its coating method
JP4907054B2 (en) High durability spring and its coating method
CA1084787A (en) Rubber-metal composite structures having improved resistance to corrosion
JP5773653B2 (en) Co-curing method for autodeposition coatings
CN108884894B (en) High-durability spring and coating method thereof
CN106947373A (en) The SiO of surface-modified nano containing acrylate polymer2The cation electrodeposition coating of microballoon
JPS6012111B2 (en) Manufacturing method for coated springs
WO2011158543A1 (en) Powder coating method
RU2768453C1 (en) Method for improving corrosion resistance of metal substrate
US2008028A (en) Method of forming hard rubber coatings
JPS5962369A (en) Corrosion preventive method of steel material
WO2005069877A2 (en) Process for applying a multi-layer coating to ferrous substrates
DE19541461A1 (en) Process for forming a coating film
JPS5929154A (en) Steel material coated with double layer epoxy and steel product
JPH06506154A (en) Aluminum wheel clear coat with UV additives to inhibit filiform corrosion
JP4309017B2 (en) Coating method
JPS58193323A (en) Preparation of high strength spring
JP6718301B2 (en) Method for applying a cationic electrodeposition coating composition to an article to be coated having a zirconium conversion coating treatment
CN106367693A (en) High-strength anti-skid scaffold board
JPS633023B2 (en)
CN117480219A (en) System and method for coating a multilayer coated metal substrate
CN108866524A (en) The method of automobile absorber spring preservative treatment
JPH0315504B2 (en)
JPS62272098A (en) Surface treatment of heat exchanger made of aluminum
JP2000271529A (en) Method for forming laminated paint film having chipping- proof property