JPS60119445A - Chemiluminescence analyzer - Google Patents

Chemiluminescence analyzer

Info

Publication number
JPS60119445A
JPS60119445A JP22645883A JP22645883A JPS60119445A JP S60119445 A JPS60119445 A JP S60119445A JP 22645883 A JP22645883 A JP 22645883A JP 22645883 A JP22645883 A JP 22645883A JP S60119445 A JPS60119445 A JP S60119445A
Authority
JP
Japan
Prior art keywords
ozone
nitrogen monoxide
introduction tube
introducing
chemiluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22645883A
Other languages
Japanese (ja)
Other versions
JPH0452892B2 (en
Inventor
Wataru Tsuruta
鶴田 捗
Takao Shitaya
隆雄 下谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP22645883A priority Critical patent/JPS60119445A/en
Publication of JPS60119445A publication Critical patent/JPS60119445A/en
Publication of JPH0452892B2 publication Critical patent/JPH0452892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/766Chemiluminescence; Bioluminescence of gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To mix and contact thoroughly ozone and nitrogen monoxide and to improve linearity by introducing a gaseous sample and ozone through a double pipe to obtain a laminar flow in a chemiluminescence analysis of nitrogen monoxide. CONSTITUTION:Introducing pipes 2-3 having double tube structure are provided to the chemiluminescence reactor chamber 1, and the gases containing respectively ozone and nitrogen monoxide are introduced from the pipes 2 and 3 respectively. Thus, the laminar flow is formed, and nitrogen monoxide and ozone are allowed to contact and mixed thoroughly at a space from a top end part 3' of the pipe 3 to a glass window 6, and brought into chemical reaction with each other. By detecting luminescence during a transformation of nitrogen dioxide from electron excitation state to a ground state by a semiconductor photosensor 4, the concn. of nitrogen monoxide is measured. Since nitrogen monoxide and ozone are mixed and allowed to contact thoroughly, the ozone concn. can be decreased, and the interference of carbon dioxide can be lowered.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、例えば自動車の排気ガスや煙道排ガスなどに
含まれる一酸化窒素の濃度を化学発光式分析法により分
析する化学発光分析計に関し、特に−酸化窒素とオゾン
が反応1〜、電子励起された状態の二酸化窒素が基底状
態に移る際の発光を測定する化学発光式分析計に関する
ものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention is a chemiluminescence spectrometer that analyzes the concentration of nitrogen monoxide contained in, for example, automobile exhaust gas or flue gas by chemiluminescence analysis. In particular, the present invention relates to a chemiluminescent analyzer that measures luminescence when nitrogen oxide and ozone undergo a reaction 1 to electronically excited nitrogen dioxide transitions to the ground state.

(ロ)従来技術 例えば自動車の排気ガスや煙道排ガスなどに含まれる一
酸化窒素濃度の測定には、赤外線吸収法を利用するもの
や化学発光法によるものが使用されている。
(b) Prior Art To measure the concentration of nitrogen monoxide contained in, for example, automobile exhaust gas or flue gas, infrared absorption methods and chemiluminescence methods are used.

化学発光法による分析計は、−酸化窒素に対しすぐれた
選択特性を有し、大きな関心を集めている。この分析計
は、その化学発光反応室において一酸化窒素(No)と
オゾン(03)とが反応しく NO十03→N02+0
2)、この時に生じる電子励起された状態の二酸化窒素
(No□町が基底状態に移る際(No2”→NO2+h
ν)に生じる発光(hν)強度を測定し、−酸化窒素の
量を測定するものである。
Analyzers based on chemiluminescence have excellent selectivity for -nitrogen oxides and have attracted great interest. This analyzer reacts with nitric oxide (No) and ozone (03) in its chemiluminescence reaction chamber.NO103→N02+0
2) When the electronically excited state of nitrogen dioxide (No
The intensity of the emitted light (hv) generated at ν) is measured, and the amount of -nitrogen oxide is measured.

この分析計に使用される化学発光反応室の代表的な従来
例を第1図により説明すると、lは外部からの光の入射
を遮断するだめのステンレス製の化学発光反応室であり
、2はオゾンを化学発光反応室1に導入させる・ぐイブ
であり、3は測定しようとする一酸化窒素を包含するガ
スを同様に化学発光反応室1に導入させる・ぐイブであ
る。そして、これらのパイプ2と3の端部は、これらの
・ぐイブから排出されるオゾンと一酸化窒素とが接触、
混合するように内仙1に曲げられている。6はガラス窓
で、化学発光反応室1に対し・やツキン7を介し、不図
示のねじなどの固定部材により固定されている。このガ
ラス窓6と対向する位置に、光電子増倍管4が設けられ
ており、オゾン導入用パイプ2から排出されるオゾンの
流線5′と一酸化窒素導入用・ぐイブ3から排出される
一酸化窒素の流線5とが接触することにより発生される
9、000〜30.0OOXのス被りトルを持つ近赤外
線を検出する。
A typical conventional example of a chemiluminescence reaction chamber used in this analyzer is explained with reference to Fig. 1. 1 is a chemiluminescence reaction chamber made of stainless steel that blocks the incidence of light from the outside, and 2 is a chemiluminescence reaction chamber made of stainless steel that blocks the incidence of light from the outside. A switch 3 is used to introduce ozone into the chemiluminescence reaction chamber 1, and a switch 3 is used to similarly introduce a gas containing nitrogen monoxide to be measured into the chemiluminescence reaction chamber 1. At the ends of these pipes 2 and 3, ozone and nitrogen monoxide discharged from these pipes come into contact,
It is bent into the inner sacrum 1 to mix. Reference numeral 6 denotes a glass window, which is fixed to the chemiluminescence reaction chamber 1 via a bolt 7 by a fixing member such as a screw (not shown). A photomultiplier tube 4 is provided at a position facing this glass window 6, and a streamline 5' of ozone discharged from the ozone introduction pipe 2 and a stream line 5' of ozone discharged from the nitrogen monoxide introduction pipe 3 are disposed. Near-infrared rays having a sheath of 9,000 to 30.0 OOX generated by contact with the streamline 5 of nitric oxide are detected.

この構成による化学発光反応室1においては、オゾンと
一酸化窒素との流線5と5′とが交差するプ1パ タイプのものであるから、両者の接触確率活十分となり
、化学発光分析法の特徴とするりニアリティが悪くなる
ということが実験上確認された。さらに具体的にいうと
、化学発光反応室内を常圧状態に保ち発光させた場合、
−酸化窒素がO〜500ppmの濃度領域においてはり
ニアリテイは得られるが、、5ooppm以上の濃度領
域においてはりニアリテイは劣化してしまう。
In the chemiluminescence reaction chamber 1 with this configuration, the streamlines 5 and 5' of ozone and nitrogen monoxide intersect, so the probability of contact between the two is sufficiently high, and the chemiluminescence analysis method can be used. It has been experimentally confirmed that the characteristic Rinarity deteriorates. More specifically, when the chemiluminescence reaction chamber is kept at normal pressure and emitted light,
- Although stiffness can be obtained in the nitrogen oxide concentration range of 0 to 500 ppm, the stiffness deteriorates in the concentration range of 5 oppm or more.

このような欠点に対処するだめ、従来はオゾンと一酸化
窒素との化学発光度1芯室への流速を落とすと共に化学
発光反応室の容積を大又は長くし、受光面積の一層大き
な光電子増倍管を用いていたが、これによると分析計自
体の容積が大となり、装置のコン・ぐクト化の時代の要
請に逆行するものとなり、まだ光電子増倍管が持つ寿命
が本来的に短かいので、これを取り換える必要があり、
メンテナンスに費用が嵩むという欠点があった。
In order to deal with these drawbacks, conventional methods have been to reduce the flow rate of ozone and nitrogen monoxide into the chemiluminescent single-core chamber, increase or lengthen the volume of the chemiluminescent reaction chamber, and increase photoelectron multiplication with a larger light-receiving area. A photomultiplier tube was used, but this increased the volume of the analyzer itself, going against the demands of the era of compact equipment, and the lifespan of photomultiplier tubes was still short. So this needs to be replaced,
The drawback was that maintenance costs were high.

一方、半導体光センサが出現しているが、このセンサは
長寿命であり、かつ装置の小型化の要請に対応できるが
、受光面積が小さいため、リニアリティが一層悪くなり
、実用上使用に耐えないものであった。
On the other hand, semiconductor optical sensors have appeared, but although these sensors have a long lifespan and can meet the demands for miniaturization of devices, their light receiving area is small, resulting in even worse linearity, making them unsuitable for practical use. It was something.

(ハ) 目 的 本発明は、前記した従来技術の有する欠点を解消するも
ので、半導体光センサの持つ欠点を除き、その長所を生
かした全く新規な化学発光反応室を備える化学発光式分
析計を提供することを目的とする。
(C) Purpose The present invention eliminates the drawbacks of the prior art described above, and provides a chemiluminescence analyzer equipped with a completely new chemiluminescence reaction chamber that eliminates the drawbacks of semiconductor optical sensors and takes advantage of its advantages. The purpose is to provide

に)構成 本発明は、化学発光反応室に一酸化窒素を含むガスを導
入するパイプと、これを包囲するオゾン導入管とによ9
2重管構造を形成し、オゾンの流れにより一酸化窒素を
含むガスの流れを層流となし、オゾンと一酸化窒素との
混合、接触を理想的なものとなし、かつオゾン導入管内
で完全な発光を行なわせ、これを確実にオゾン導入管排
出端に直角対面する半導体光センサにより検出すること
(5) ができる。
B) Structure The present invention uses a pipe for introducing a gas containing nitrogen monoxide into a chemiluminescence reaction chamber, and an ozone introduction pipe surrounding the pipe.
A double pipe structure is formed, and the flow of gas containing nitric oxide is made into a laminar flow by the flow of ozone, making ideal mixing and contact between ozone and nitric oxide, and ensuring complete flow within the ozone introduction pipe. This can be reliably detected by a semiconductor optical sensor facing perpendicularly to the discharge end of the ozone introduction tube (5).

(ホ)実施例 第2図により、本発明の化学発光式分析計の実施例を説
明する。
(E) Embodiment An embodiment of the chemiluminescent analyzer of the present invention will be explained with reference to FIG.

同図において、lはステンレス製の化学発光反応室であ
り、1′は化学発光反応室ノ内において発光反応を終了
した二酸化窒素と酸素とが排出される排出部である。2
はオゾン導入用パイプで、化学発光反応室1の壁面1a
の中央部において直角状に曲げられて化学発光反応室1
内に挿入され、ガラス窓60近くまで伸びている。3は
測定しようとする一酸化窒素を含むガスを導入する・ぐ
イブで、オゾン導入用・ぐイア″2の孔設部2′からオ
ゾン導入用・ぐイブ2内に挿入され、2重管部を形成す
る。−酸化窒素を包含するガスの導入用・ぐイア°3の
内径aは例えば0.5調であシ、ツクイア°3を内包し
ガラス窓6の近くに達するオゾン導入用ノeイゾ2の内
径すは例えば4欄となっている。6はガラス窓で、化学
発光反応室lのフランジ5に対しパツキン7を介し、不
図示のねじなどの固定部材に(6) より固定される。4は例えば10咽角の半導体光センサ
で、オゾン導入用・!イ′7′″2の先端部2〃に対向
する位置に配置される。オゾン導入用ノeイブ2の先端
部2〃からガラス窓6の内面に至る距離Cは例えば5胴
であり、ガラス窓6の内面から一酸化3′ 窒素を含むガスを導入する・やイブ03の先端部イに至
る距離dは例えば40陥である。tlは・ぐイブ3から
排出される一酸化窒素を含むガスの流れを示し、その外
側に位置するt2はノやイブ2から排出されるオゾンの
流れを示す。
In the figure, 1 is a chemiluminescence reaction chamber made of stainless steel, and 1' is an exhaust part from which nitrogen dioxide and oxygen that have completed the luminescence reaction in the chemiluminescence reaction chamber are discharged. 2
is a pipe for introducing ozone, and is a wall surface 1a of the chemiluminescence reaction chamber 1.
The chemiluminescence reaction chamber 1 is bent at a right angle in the center of the
It is inserted into the interior and extends close to the glass window 60. 3 is a gib for introducing the gas containing nitrogen monoxide to be measured, and it is inserted into the ozone introducing gib 2 from the hole 2' of the ozone introducing gir 2, and is inserted into the ozone introducing gib 2. The inner diameter a of the tube for introducing gas containing nitrogen oxide is, for example, 0.5. The inner diameter of eIzo 2 is, for example, column 4. 6 is a glass window, which is fixed to the flange 5 of the chemiluminescence reaction chamber 1 via a gasket 7 to a fixing member such as a screw (not shown) (6). 4 is, for example, a semiconductor optical sensor with a diameter of 10 degrees, and is arranged at a position opposite to the tip 2 of the ozone introduction lens 2. The distance C from the tip 2 of the ozone introducing tube 2 to the inner surface of the glass window 6 is, for example, 5 cylinders, and the distance C from the tip 2 of the ozone introduction tube 2 to the inner surface of the glass window 6 is, for example, 5 mm. The distance d to the tip A is, for example, 40 degrees. tl indicates the flow of gas containing nitrogen monoxide discharged from the tube 3, and t2 located outside of it indicates the flow of ozone discharged from the tube 2.

この構成において、・やイブ2から排出されるオゾン3
の流れt2はパイプ3から排出される一酸化窒素を含む
ガスの流れtlの外側を流れ、これにより流れ1.に理
想的な層流を形成させる。この流れtlとt2、即ちガ
ス中に含まれる一酸化窒素とオゾンとが・やイブ3の先
端部3′からガラス窓に至るまでに十分に接触、混合さ
れ、化学反応が100係行なわれ、ガラス窓6の内面に
ぶつかった後に反射され、排気部1′から排出されて行
く。
In this configuration, ozone 3 emitted from ・Ya Eve 2
Stream t2 flows outside the nitric oxide-containing gas stream tl exiting pipe 3, thereby causing stream 1. to form an ideal laminar flow. These flows tl and t2, that is, the nitrogen monoxide and ozone contained in the gas, are sufficiently contacted and mixed from the tip 3' of the tube 3 to the glass window, and a chemical reaction takes place, After colliding with the inner surface of the glass window 6, it is reflected and exhausted from the exhaust section 1'.

前記した化学反応が行なわれる反応領域はオゾン排出用
・ぐイブ3の内径内に限定されているため、例えば10
wn角程度0小型の半導体光センサ4に対し十分に受光
され得る小さな発光光源に絞られた形の光源となり、従
ってこれを小型の半導体光センサ4により完全に検出す
ることができる。
Since the reaction area in which the chemical reaction described above takes place is limited to the inner diameter of the ozone exhaust gib 3, for example,
The light source is narrowed down to a small light emitting light source that can sufficiently receive light for the small semiconductor optical sensor 4 having a wn angle of about 0, and can therefore be completely detected by the small semiconductor optical sensor 4.

以上説明したように、2重管構造をなし、これにより一
酸化窒素とオゾンとの混合接触が理想的に行なわれるた
め、オゾン濃度を低下することができ、換言すると大流
量のオゾンを流すことができ、その結果、励起状態にあ
るNo2′がCO2と衝突して生じるクエンチング効果
を除去でき、測定結果に対する二酸化炭素の干渉を従来
のものに比し半分にすることができる。
As explained above, the double-pipe structure allows for ideal mixing and contact between nitric oxide and ozone, making it possible to lower the ozone concentration, in other words, allowing a large flow of ozone to flow. As a result, the quenching effect caused by the collision of excited No2' with CO2 can be removed, and the interference of carbon dioxide with measurement results can be halved compared to the conventional method.

本発明者等の実験によると、オゾンが毎分1.75リツ
トルの流量で、−酸化窒素を含むガスが毎分300 c
cの流量の場合に、リニアリティが最も優れていること
が判明した。そして、この時の分析結果に対する二酸化
炭素の干渉は、10 Vot、%の二酸化炭素に対し1
8φであり、従来のそれが7チ〜8チであったものに比
し遥かに低く、測定積上無視しうるものであった。
According to experiments conducted by the present inventors, ozone has a flow rate of 1.75 liters per minute, and - gas containing nitrogen oxide has a flow rate of 300 c/min.
It was found that the linearity was the best when the flow rate was c. The interference of carbon dioxide on the analysis results at this time is 10 Vot, 1 for % carbon dioxide.
The diameter was 8φ, which was much lower than the conventional diameter of 7 to 8 inches, and could be ignored in terms of measurement.

(へ)効果 以上説明したように本発明によると、−酸化窒素を含む
ガスの導入・ぐイブの外側にオゾン導入・ぐイブを設け
て2重管構造とし、化学発光反応室のガラス窓の近くに
オゾン導入7′?イブを延伸させ、このオゾン導入・ぐ
イブの前方直角面に半導体光センサを配置する構成とし
だから、−酸化窒素を含むガスの流れがその外側を流れ
るオゾンの流れにより層流に形成され、化学発光反応室
のガラス面に至るまでの間にオゾンと一酸化窒素との混
合、接触が完全に行なわれ、その際発生される発光量を
半導体光センサにより検出することができ、従来のもの
では得られなかった5 00 ppm以上の領域におい
てもリニアリティを得ることができると共に、また両者
の接触反応が理想的に行なわれることによジオシン濃度
が低下でき、従って二酸化炭素の干渉を従来のものより
も低下させることができる。
(f) Effects As explained above, according to the present invention, - introduction of gas containing nitrogen oxide, introduction of ozone to the outside of the tube, provision of the tube to create a double tube structure, and the use of the glass window of the chemiluminescence reaction chamber. Ozone introduced nearby 7'? The structure is such that the ozone introduction tube is extended, and a semiconductor optical sensor is placed on the front right angle surface of the tube. Ozone and nitrogen monoxide are completely mixed and contacted before reaching the glass surface of the luminescence reaction chamber, and the amount of luminescence generated at this time can be detected by a semiconductor optical sensor, which is different from conventional ones. It is possible to obtain linearity even in the region of 500 ppm or more, which could not be achieved, and the diosine concentration can be lowered by ideally carrying out the contact reaction between the two, thus reducing the interference of carbon dioxide compared to the conventional method. can also be lowered.

(9)(9)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化学発光式分析計の断面図、第2図は本
発明の化学発光式分析計の実施例の断面図を示す。 図中、lは化学発光反応室、2はオゾン導入用の・ぐイ
ブ、3は一酸化窒素を含むがス導入用・ぐイブ、4は半
導体光センサ、5はフランク、6はガラス窓、7はパツ
キン、tlは一酸化窒素を含むガスの流れ、t2はオゾ
ンの流れを示す。 (10)
FIG. 1 is a sectional view of a conventional chemiluminescent analyzer, and FIG. 2 is a sectional view of an embodiment of the chemiluminescent analyzer of the present invention. In the figure, l is a chemiluminescence reaction chamber, 2 is a tube for introducing ozone, 3 is a tube for introducing gas containing nitrogen monoxide, 4 is a semiconductor optical sensor, 5 is a flank, 6 is a glass window, 7 indicates packing, tl indicates the flow of gas containing nitrogen monoxide, and t2 indicates the flow of ozone. (10)

Claims (2)

【特許請求の範囲】[Claims] (1)化学発光反応室の一方の側面から挿通された一酸
化窒素を含むガスを導入するガス導入管と、この導入管
の外側に挿通されたオゾン導入管と、化学発光反応室の
他方の側面に設けられたガラス窓の外側でそのオゾン導
入管に対面配設された半導体光センサとを備え、このオ
ゾン導入管金離れるオゾンの流れにより一酸化窒素を含
むガスの流れを層流となし、オゾン導入管内で発光を行
なわせる化学発光式分析計。
(1) A gas introduction tube for introducing gas containing nitrogen monoxide inserted from one side of the chemiluminescence reaction chamber, an ozone introduction tube inserted outside this introduction tube, and an ozone introduction tube inserted from the other side of the chemiluminescence reaction chamber. Equipped with a semiconductor optical sensor placed facing the ozone introduction tube outside the glass window provided on the side, the flow of ozone leaving the ozone introduction tube makes the flow of gas containing nitric oxide into a laminar flow. , a chemiluminescent analyzer that emits light inside an ozone introduction tube.
(2)前記したオゾン導入管の内径は4ミリ、前記した
一酸化窒素を含むガスを導入するガス導入管の内径は0
5ミリ、前記したオゾン導入管の先端部からガラス窓の
内面までの距離が5ミリ、そして−酸化窒素を含むガス
を導入するガス導入管の先端部からガラス窓内面の距離
が40ミリである特許請求の範囲第(1)項記載の化学
発光式分析計。
(2) The inner diameter of the ozone introduction tube described above is 4 mm, and the inner diameter of the gas introduction tube for introducing the gas containing nitrogen monoxide described above is 0 mm.
5 mm, the distance from the tip of the ozone introduction tube to the inner surface of the glass window is 5 mm, and - the distance from the tip of the gas introduction tube that introduces the gas containing nitrogen oxide to the inner surface of the glass window is 40 mm. A chemiluminescent analyzer according to claim (1).
JP22645883A 1983-11-30 1983-11-30 Chemiluminescence analyzer Granted JPS60119445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22645883A JPS60119445A (en) 1983-11-30 1983-11-30 Chemiluminescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22645883A JPS60119445A (en) 1983-11-30 1983-11-30 Chemiluminescence analyzer

Publications (2)

Publication Number Publication Date
JPS60119445A true JPS60119445A (en) 1985-06-26
JPH0452892B2 JPH0452892B2 (en) 1992-08-25

Family

ID=16845407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22645883A Granted JPS60119445A (en) 1983-11-30 1983-11-30 Chemiluminescence analyzer

Country Status (1)

Country Link
JP (1) JPS60119445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894445B2 (en) 1997-02-12 1999-05-24 日本たばこ産業株式会社 Compounds effective as CETP activity inhibitors

Also Published As

Publication number Publication date
JPH0452892B2 (en) 1992-08-25

Similar Documents

Publication Publication Date Title
USRE28374E (en) Chemiluminescent instrument
NORTON et al. Comparison of experimental and computed species concentration and temperature profiles in laminar, two-dimensional methane/air diffusion flames
Maeda et al. Chemiluminescence method for the determination of nitrogen dioxide
US10295517B2 (en) Heated graphite scrubber to reduce interferences in ozone monitors
US5696378A (en) High accuracy determination of chlorine content by isotope dilution flame infrared emission spectrometry (ID-FIRE)
EP1540334A1 (en) Method and apparatus to detect a gas by measuring ozone depletion
US20100027016A1 (en) Ozone Monitor with Gas-Phase Ozone Scrubber
US6716637B2 (en) Chemiluminescent gas analyzer
US7255836B2 (en) Analytical sensitivity enhancement by catalytic transformation
JPS60119445A (en) Chemiluminescence analyzer
CN104335028B (en) For the device for the concentration for determining at least one of sample gas gas
JP4218954B2 (en) Absorption analyzer
US3906226A (en) Nitric oxide pollution monitor
JP3104383B2 (en) Chemiluminescence concentration measuring device
US4810654A (en) Method for the concentration determination of silane gas in a gaseous mixture
CN104535499B (en) Sulfur dioxide online monitoring method
JPH03152445A (en) Method and apparatus for chemical emission quantification of ammonia
JP2006292512A (en) Analyzing method of of2 gas
Fried A Study of Measurement Interference in the Optoacoustic Detection of NO2 by Argon-Ion Laser Excitation
CN213633175U (en) Nitric oxide measuring device based on long-axis ellipsoidal reaction chamber
Kim et al. A compact AC-glow discharge-optical emission spectrometer for real-time detection of N 2 and Ar in O 2 with sub-ppm-level sensitivity
Nakahara et al. The Atomic Absorption Spectrophotometric Determination of Zinc in Premixed Inert Gas (Entrained Air)-Hydrogen Flames and the Measurement of the Flame Temperature
Guicherit Indirect determination of nitrogen oxides by a chemiluminescence technique
JP2005003497A (en) Luminescent cell and nitrogen oxides measuring device using it
Chen et al. Mechanism of the NO2 Conversion to NO2− in an Alkaline Solution