JPS60116895A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPS60116895A
JPS60116895A JP22415783A JP22415783A JPS60116895A JP S60116895 A JPS60116895 A JP S60116895A JP 22415783 A JP22415783 A JP 22415783A JP 22415783 A JP22415783 A JP 22415783A JP S60116895 A JPS60116895 A JP S60116895A
Authority
JP
Japan
Prior art keywords
stage
impeller
pump stage
viscous
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22415783A
Other languages
Japanese (ja)
Other versions
JPH0477160B2 (en
Inventor
Masahiro Mase
正弘 真瀬
Yoshitsugu Tsutsumi
芳紹 堤
Minoru Taniyama
実 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22415783A priority Critical patent/JPS60116895A/en
Priority to DE19843442843 priority patent/DE3442843A1/en
Publication of JPS60116895A publication Critical patent/JPS60116895A/en
Publication of JPH0477160B2 publication Critical patent/JPH0477160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To obtain clean vacuum and reduce the friction loss of last stage as well as the necessary power of the pump by a method wherein the constitutions of the eddy current compression pump stage as well as the viscous screw type exhaust stage of the final stage are changed in the vacuum pump, whose exhaust port is in atmospheric pressure. CONSTITUTION:The friction loss of an impeller 12A is reduced by rotating a siegbahn molecular pump stage 10, effecting moledular pump effect, a centrifugal compression pump stage 11, effective in a viscous flow area, and the eddy current compression pump stage 12, having the small diametral impeller 12 coaxially. Gas, passed through the centrifugal compression pump stage after passing the driving effect of the molecular pump stage, is compressed by the viscous effect of the viscous screw type exhaust stage, having screw grooves, and is discharged out of the exhaust port 2B. In both of the constitutions, the diameters of the pumps for the final stages may be reduced remarkably and, therefore, the friction loss as well as the necessary power therefore may be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は排気口を大気圧とする真空ポンプ、例えば半導
体製造装置における清浄な真空を作り出すのに好適な真
空ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vacuum pump whose exhaust port is at atmospheric pressure, such as a vacuum pump suitable for creating a clean vacuum in semiconductor manufacturing equipment.

〔発明の背景〕[Background of the invention]

従来の真空ポンプ(特開昭51−3+11.13号)は
第\ 1図に示すように、1−T線を中心として左右対称に設
けられており、その右半部の構造は次のとおりである。
The conventional vacuum pump (Japanese Unexamined Patent Publication No. 51-3+11.13) is installed symmetrically around the 1-T line as shown in Figure 1, and the structure of the right half is as follows. It is.

すなわち@魁口2AとS領口2RG有するハウジング2
の内壁に取付けられた固定板3B〜6Bと、そのハウジ
ング2内に軸受7を介して回転自在に支持された回転軸
1に取付けられた回転円板3Aおよび羽根車4A〜6A
のそれぞれとからなる軸流ターボ分子ポンプ段3、付加
分子ポンプ段4、遠心圧縮ポンプ段5および渦流圧縮ポ
ンプ段6を、前記吸気口2A側から排気口2B側に至る
間のハウジング2内に順次」こ連設して構成されている
In other words, housing 2 with @Kairokuguchi 2A and S-Ryoguchi 2RG
fixed plates 3B to 6B attached to the inner wall of the housing 2, and a rotating disk 3A and impellers 4A to 6A attached to the rotating shaft 1 rotatably supported in the housing 2 via a bearing 7.
An axial turbo-molecular pump stage 3, an additional molecular pump stage 4, a centrifugal compression pump stage 5, and a vortex compression pump stage 6 each consisting of They are constructed by sequentially installing them.

上記軸流ターボ分子ポンプ段3は、前記回転円板3Aと
固定板3Bを交互に組立せて構成され、また付加分子ポ
ンプ段4は前記円板状羽根車4Aと固考板4Bを交互に
組合せで構成され、また遠心圧縮ポンプ段5は前記羽根
車5Aとディフューザ固定板5Bを交互に組合せて構成
され、さらに渦流圧縮ポンプ段6は前記回転板6Aど固
定板6Bとを交互に組合せて構成されている。
The axial turbo-molecular pump stage 3 is constructed by alternately assembling the rotating disk 3A and fixed plate 3B, and the additional molecular pump stage 4 is constructed by alternately assembling the disc-shaped impeller 4A and fixed plate 4B. The centrifugal compression pump stage 5 is constructed by alternately combining the impeller 5A and the diffuser fixed plate 5B, and the vortex compression pump stage 6 is constructed by alternately combining the rotary plate 6A and the fixed plate 6B. It is configured.

一方、回転軸1は駆動タービン8を介して駆動され、こ
の駆動タービン8はハウジング2の側壁に設けられた空
気人口9Aと空気出口9Bに連結されている。
On the other hand, the rotating shaft 1 is driven via a drive turbine 8, and the drive turbine 8 is connected to an air port 9A and an air outlet 9B provided on the side wall of the housing 2.

上記のような構成からなる従来例では、ポンプの摩擦損
失の大部分は、大気圧に近いMト気ロ2B側、すなわち
渦流圧縮ポンプ段6で発生する。このポンプ段6の羽根
車6Aは、遠心圧縮ポンプ段5の羽根車5Aと数似形状
に形成され°Cいるため。
In the conventional example having the above-mentioned configuration, most of the friction loss of the pump occurs on the side of the M air chamber 2B near atmospheric pressure, that is, on the vortex compression pump stage 6. This is because the impeller 6A of the pump stage 6 is formed in a similar shape to the impeller 5A of the centrifugal compression pump stage 5.

渦流圧縮ポンプ段6の圧縮比は周速に比例する。The compression ratio of the vortex compression pump stage 6 is proportional to the circumferential speed.

この周速を増大するには、前記羽根車6Aの半径を増大
させるか、またはその回転数を増加させるかの二つの方
法がある。
There are two ways to increase this circumferential speed: increasing the radius of the impeller 6A or increasing its rotational speed.

ところが後者の方法では、回転数は危険速度により制限
があるため、前者の方法すなわち半径を増大する方法を
採用しな番ブればならない。一方、摩擦損失は半径の5
乗に比例して増加するので、大径の羽根車では多量の熱
を発生する。しかるに、渦流圧縮ポンプ段6を流通する
気体は、その前段(遠心圧縮ポンプ段)までに可なり圧
縮されているため、体積は縮小されているから気体によ
る熱の伝達も小さいので、冷却が困難である。
However, in the latter method, the number of rotations is limited by the critical speed, so the former method, that is, the method of increasing the radius, must be adopted. On the other hand, the friction loss is 5 of the radius.
Since it increases in proportion to the power of the power, a large diameter impeller generates a large amount of heat. However, the gas flowing through the vortex compression pump stage 6 has been compressed considerably by the stage before it (the centrifugal compression pump stage), so the volume is reduced and the heat transfer by the gas is also small, making cooling difficult. It is.

〔発明の目的〕[Purpose of the invention]

本発明は上記にかんがみ排気口圧力を大気圧付近に保ち
、かつ清浄な真′空をうろことができると共に、ポンプ
の最終段の摩擦損失を減少させて、所要動力を低減させ
ることを目的とするものである。
In view of the above, the present invention has an object to maintain the exhaust port pressure near atmospheric pressure, to allow the pump to move in a clean vacuum, and to reduce the required power by reducing the friction loss in the final stage of the pump. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、ノ)ウジングに設
けた吸気口から排気口に至る間のノ飄つジング内に、固
定板と回転円板または羽根車とからなるジーグバーン分
子ポンプ段、遠心圧縮ポンプ段および渦流圧縮ポンプ段
を順先に連設してなる真空ポンプにおいて、前記渦流圧
縮ポンプ段を、外周面に多数の羽根を有する羽根車と、
この羽根車を包囲する同板とにより構成すると共に、前
記羽根車と固定円板と1−より通風路を形成させたこと
を特徴とするものである。
In order to achieve the above object, the present invention provides: (a) a Siegbahn molecular pump stage consisting of a fixed plate and a rotating disk or an impeller, which is provided in the housing between the intake port and the exhaust port; In a vacuum pump comprising a centrifugal compression pump stage and a vortex compression pump stage connected in sequence, the vortex compression pump stage is equipped with an impeller having a large number of blades on its outer peripheral surface;
It is characterized in that it is constituted by the same plate that surrounds the impeller, and that a ventilation path is formed by the impeller, the fixed disk, and 1-.

また、一方の発明はハウジングに設けた吸気口から排気
口に至る間のハウジング内に、固定円板またはケーシン
グと、回転円板または羽根車また1上 d ← m□八
へ 、1N i ム fJ+ b J+−1−す−スノ
ー;乙−ぞ一ノイr)遠心圧縮ポンプ段および粘性ねじ
排気段を臀次に連設し、前記分子ポンプ段の固定円板お
よび回41円板のいずれか一方にら旋状溝を設け、前記
粘性ねじ排気段のケーシングまたは固定円板および回転
円筒または回転円板のいずれか一方にねじ溝を設けたこ
とを特徴とするものである。
Further, one invention has a fixed disk or a casing, a rotating disk or an impeller, and a fixed disk or a casing, and a rotating disk or an impeller, and a fixed disk or a casing, and a rotating disk or an impeller, and a fixed disk or a casing, and a rotary disk or an impeller, and a fixed disk or a casing, and a rotating disk or an impeller. b) A centrifugal compression pump stage and a viscous screw exhaust stage are connected to the buttock, and either the fixed disc of the molecular pump stage or the rotation 41 disc The present invention is characterized in that a helical groove is provided, and the thread groove is provided in either one of the casing, the fixed disk, the rotating cylinder, or the rotating disk of the viscous screw exhaust stage.

〔発明の実施例〕 以下1本発明の実施例を図面について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第2図は第一実施例を示すもので、]、−T線を中心と
して左右対称に設けられており、その右半部の構造は下
記のとおりである。
FIG. 2 shows the first embodiment, which is provided symmetrically with respect to the -T line, and the structure of the right half is as follows.

第2図において、lは吸気口2Aと排気口2Bを有する
ハウジング2を貫通し、軸受7を介して回転自在シこ支
持された回転1111 ’tF 、−乙の一端は駆動源
(図示せず)に連結されている。lO〜12は前記吸気
tコ2A側から排気口2B側に至る間のハウジング2内
に順次に連設されたノーグバーン分子ポンプ段、遠心圧
縮ポンプ段および渦流圧縮ポンプ段である。
In FIG. 2, l extends through a housing 2 having an intake port 2A and an exhaust port 2B, and is rotatably supported via a bearing 7. One end of -B is a drive source (not shown). ) is connected to. Reference numerals 10 to 12 denote a Norgburn molecular pump stage, a centrifugal compression pump stage, and a vortex compression pump stage, which are successively installed in the housing 2 from the intake port 2A side to the exhaust port 2B side.

上記ジーグバーン分子ポンプ段10は2回転軸1に取付
けられた回転円@】OAとハウジング2の内壁に取付け
られた固定円+& 10 Bとを交互に配置して構成さ
れている。しかも、その固定円板10Bは第3図(a)
、(b)に示すように、回転円板(図示上ず)に対向す
る面(第3図aの右面)にら旋状溝LOB、が設けられ
ている。
The Siegbahn molecular pump stage 10 is constructed by alternately arranging two rotating circles OA attached to the rotating shaft 1 and fixed circles OA attached to the inner wall of the housing 2. Moreover, the fixed disk 10B is shown in FIG. 3(a).
, (b), a spiral groove LOB is provided on the surface (right surface in FIG. 3a) facing the rotating disk (not shown).

また、前記遠心圧縮ポンプ段11は、第4図(a)、(
b)に示すように表面に放射状に配置した複数個の羽根
14を有し、かつ回転軸1に取付けられた羽根車11.
Aと、第4図(a)に示すようにハウジング2に取付け
られ、かつ前記羽根車11Aの表面(羽根14を設けな
い面)に対向する面に、複数個のリターンチャンネル1
5を設けた固定円板11. Bどを交互に配置しで構成
されている。
Further, the centrifugal compression pump stage 11 is configured as shown in FIG. 4(a), (
As shown in b), an impeller 11 has a plurality of blades 14 arranged radially on its surface and is attached to the rotating shaft 1.
A and a plurality of return channels 1 attached to the housing 2 as shown in FIG.
Fixed disc 11 with 5. B is arranged alternately.

さらに、渦流圧縮ポンプ段12は、第5図(a)1(b
)に示すように固定i1+1111に取イ]けられ、外
周面に多数の羽根16を放射状に設けた羽根車12Aと
、ハウジング(図示せず)に取付りられ、かつ前記羽根
車12Aを包囲する一対の固定円板12Bとを組合せ、
第5図(a)に示すように通風路17を形成した構造の
ものを並置して構成されている。
Further, the vortex compression pump stage 12 is arranged as shown in FIGS.
), an impeller 12A is attached to a fixed i1+1111 and has a large number of blades 16 radially provided on its outer peripheral surface, and an impeller 12A is attached to a housing (not shown) and surrounds the impeller 12A. In combination with a pair of fixed discs 12B,
As shown in FIG. 5(a), a structure in which ventilation passages 17 are formed are arranged side by side.

上記の第1実施例によれば、ジーグバーン分子ポンプ段
10は高圧縮比となるため、低圧まで分子ポンプ作用を
行う機能を有する。一方、粘性流領域で有効な遠心圧縮
ポンプ段11は、大気圧から数トルク(Torr)の圧
力範囲で作動されるようになっているので、前記ジーグ
バーン分子ポンプ段10に対して有利な作動環境かえら
れる。さらに、最終段である渦流圧縮ポンプ段12の締
切点付近の圧力係数は、遠心圧縮ポンプ段11に比べて
5〜10倍と高くとれるので、同一圧縮比をつるために
羽根車12Aの直径を小さくすることができる。したが
って、羽根車12Aの摩擦損失を低減させると共に、晴
のスラスト力を減少させることができる。
According to the first embodiment described above, the Siegbahn molecular pump stage 10 has a high compression ratio, so it has the function of performing a molecular pumping action up to a low pressure. On the other hand, the centrifugal compression pump stage 11, which is effective in a viscous flow region, is operated in a pressure range from atmospheric pressure to several Torr, which is an advantageous operating environment for the Siegbahn molecular pump stage 10. I can be hatched. Furthermore, the pressure coefficient near the cut-off point of the final stage, the vortex compression pump stage 12, can be set 5 to 10 times higher than that of the centrifugal compression pump stage 11, so the diameter of the impeller 12A can be adjusted to maintain the same compression ratio. Can be made smaller. Therefore, the friction loss of the impeller 12A can be reduced, and the thrust force of the air can be reduced.

第6図は第2実施例を示すもので、I−I線を中心とし
て左右対称に設けられており、その右半部の構造につい
て説明する。
FIG. 6 shows a second embodiment, which is provided symmetrically with respect to the II line, and the structure of the right half will be described.

第6図において、lは吸気口2Aと排気口2Bを有する
ハウジング2内に軸受7を介して回転自在に支持さ1し
た回転軸、20〜22は前記吸気口2A側から排気口2
B側に至る間のハウジング2内に順次に連設された分子
ポンプ段、遠心圧縮ポンプ段とおよび粘性ねじ形排気段
である。
In FIG. 6, l is a rotary shaft 1 rotatably supported via a bearing 7 in a housing 2 having an intake port 2A and an exhaust port 2B;
A molecular pump stage, a centrifugal compression pump stage and a viscous screw type exhaust stage are successively arranged in the housing 2 up to the B side.

上記分子ポンプ段20は、ハウジング2の内壁に取(j
けられたリング20aとハウジング2の内壁に取付けら
れ、ら旋状m 20 eを有する固定円板20c、20
d (第7図参照)と、この両固定円板20c、2Od
問に、こ汎らと適宜間隔を保つように回転@1に取付け
られた回転円板20 k+とからなり、かつ前記固定円
板20c、20dと回転円板20 bどを組合せてなる
ポンプ並置して構成さJしている。
The molecular pump stage 20 is mounted on the inner wall of the housing 2 (j
Fixed discs 20c, 20 are attached to the hollowed ring 20a and the inner wall of the housing 2 and have a helical shape m 20 e.
d (see Fig. 7), and both fixed disks 20c and 2Od.
In question, there is a juxtaposed pump consisting of a rotary disk 20k+ attached to the rotary @1 so as to keep an appropriate distance from the pumps, and a combination of the fixed disks 20c, 20d and the rotating disk 20b, etc. It is composed of J.

また、前i!8遠心圧縮ポンプ段21は、固定板21、
 aおよび交互に配置された羽根車21bと固定円板2
1cからなり、この羽根車21bは第8図に示すように
、心[2l b、の表面(第8図(、)では右側面)な
羽根21b2を放射状に配置して構成されている。また
」二記固定円板21cは第9図に示すように、各板2】
c、の表面(第8図(a)では右側面)に羽根21 C
gを放射状に配置して構成されている。
Also, Mae i! The 8 centrifugal compression pump stages 21 include a fixed plate 21,
a, and the impellers 21b and fixed discs 2 arranged alternately.
As shown in FIG. 8, this impeller 21b is constructed by radially arranging blades 21b2 on the surface of the center (the right side in FIG. 8(, )). In addition, as shown in FIG. 9, the fixing disk 21c is
There is a blade 21 on the surface of c (right side in Fig. 8(a)).
g are arranged radially.

さらに、前記粘性ねじ形排気段22は、ハウジング2の
内壁に取付けらり、かつ円筒部22a。
Furthermore, the viscous threaded exhaust stage 22 is attached to the inner wall of the housing 2 and has a cylindrical portion 22a.

を有するケーシング22aと、その円筒部22a。and a cylindrical portion 22a thereof.

内に挿入され、かつ回転軸1に取イ]けられた回転円筒
22bとからなり、この回転円筒22bの外周面にはね
じ溝(せ旋状溝)22cが設けられている。前記回転円
板20b、羽根車21bおよび回転円筒22bはナツト
24を介して回転軸1に固定されている。また、前記ケ
ーシング22aとハウジング側壁2cとの間にはスペー
サ23が設けられている。
The rotary cylinder 22b is inserted into the rotary shaft 1 and taken on the rotary shaft 1, and a threaded groove (helical groove) 22c is provided on the outer peripheral surface of the rotary cylinder 22b. The rotating disk 20b, impeller 21b and rotating cylinder 22b are fixed to the rotating shaft 1 via a nut 24. Further, a spacer 23 is provided between the casing 22a and the housing side wall 2c.

この第2実施例(第6図)では、分子ポンプ段20の固
定円板20c、20dにら旋状溝20eを、また粘状ね
じ形排気段22の回転円筒22bにら旋状溝22cをそ
れぞれ設けたが、ひれら代り前記ら旋4に瀧211r、
c*、2Orし4)準ゼ゛ノゴ目ν20の回転円板20
bおよび粘性ねじ形排気段22のケーシング円筒部22
a、にそれぞれ設けてもよい。
In this second embodiment (FIG. 6), the fixed disks 20c and 20d of the molecular pump stage 20 are provided with helical grooves 20e, and the rotating cylinder 22b of the viscous threaded exhaust stage 22 is provided with a helical groove 22c. They were installed respectively, but instead of fins, waterfall 211r was installed on the spiral 4,
c*, 2Or 4) Rotating disk 20 of quasi-genus ν20
b and the casing cylindrical part 22 of the viscous threaded exhaust stage 22
a, respectively.

次に上記のような構成からなる第2実施例の作用につい
て説明する。
Next, the operation of the second embodiment configured as described above will be explained.

ハウジング2の吸気口2Aより流入した排気される気体
は、環状流路を形成するリング20aを経て、分子ポン
プ段20の固定円板20eのら旋状溝20eに流入する
。この流入した気体は、回転円板20bのドライブ作用
により対向側のta定円板20dのら旋状溝20 p、
を流通する。このような動作を以降も繰返し行った後、
分子ボ〉・ブ段20から流出した気体は遠心圧縮ポンプ
段21に流入する。このポンプ段21に流入した気体は
、固定板21aと羽根車2]L+の心根21b、とによ
り形成された流路を流通した後、羽根車21bに設けた
長、短羽根21b、、21b:1間を流通する。このよ
うな動作を以降も緑返し行つノミ・後、遠心圧縮ポンプ
段21から流出した気体は、粘性ねじ形排気段22に流
入し、ねじ溝22cを有する回転円筒22bの粘性作用
により圧縮された後に排気口2Bから排出される。
The gas to be exhausted that has flowed in through the intake port 2A of the housing 2 flows into the helical groove 20e of the fixed disk 20e of the molecular pump stage 20 through the ring 20a forming an annular flow path. Due to the driving action of the rotating disk 20b, this inflowing gas flows through the spiral groove 20p of the ta fixed disk 20d on the opposite side.
be distributed. After repeating this operation,
The gas flowing out from the molecular bomb stage 20 flows into the centrifugal compression pump stage 21. The gas flowing into the pump stage 21 flows through the flow path formed by the fixed plate 21a and the core root 21b of the impeller 2]L+, and then the long and short blades 21b, 21b provided on the impeller 21b: It circulates between 1 and 2. After continuing this operation, the gas flowing out from the centrifugal compression pump stage 21 flows into the viscous screw type exhaust stage 22 and is compressed by the viscous action of the rotating cylinder 22b having the thread groove 22c. After that, it is discharged from the exhaust port 2B.

上述した第2実施例によれば、最終段すなわち粘性ねじ
形排気段22の回転円筒22bの直径を著しく小さくす
ることができるので1M擦損失を大幅に低減させること
が可能であるから、ポンプ全体の動力減少をはかること
ができる。
According to the second embodiment described above, the diameter of the rotating cylinder 22b of the final stage, that is, the viscous screw type exhaust stage 22, can be significantly reduced, and the 1M friction loss can be significantly reduced. The power reduction can be measured.

前記粘性ねじ形排気段22(第6図)は、軸流形式の単
体に形成されているが、これに代り第10図に示すよう
に、ハウジング2の内壁に取付けられた固定円板22′
aと、回転軸1に取(=Jけられ、前記固定円板22′
aに対する裏面にら旋状溝22’dti−設けると共に
、表面(遠心圧縮ポンプ段21側)に長い羽根22’c
、および短い羽根22’c、を交互に、かつ放射状に改
番ブた羽根車22’b(第11図参照)とにより構成し
てもよい。その他の構造は第6図に示す実施例と同一で
あるから説明を省略する。このように構成すれば、粘性
ねじ形Mト気段22′の軸方向長さを短縮できる利点が
ある。
The viscous screw type exhaust stage 22 (FIG. 6) is formed as a single piece of axial flow type, but instead, as shown in FIG.
a, and the fixed disk 22' is attached to the rotating shaft 1 (=J).
A spiral groove 22'dti- is provided on the back surface of a, and a long blade 22'c is provided on the surface (centrifugal compression pump stage 21 side).
, and short blades 22'c may be arranged alternately and radially with a numbered impeller 22'b (see FIG. 11). The rest of the structure is the same as the embodiment shown in FIG. 6, so a description thereof will be omitted. With this configuration, there is an advantage that the axial length of the viscous threaded M-air stage 22' can be shortened.

第12図に示す第4実施例は、第6図に示す実施例とほ
ぼ同一の構造である。すなわち第4実施例では、粘性ね
じ形排気段22のケーシング22aにリーク用孔25を
設け、このリーク用孔25に例えばふた26aとばね2
6bからなる開閉機構26を設けた点が第一実施例と異
なり、その他の構造は同一であるから説明を省略する。
The fourth embodiment shown in FIG. 12 has almost the same structure as the embodiment shown in FIG. That is, in the fourth embodiment, a leak hole 25 is provided in the casing 22a of the viscous screw type exhaust stage 22, and a lid 26a and a spring 2 are inserted into the leak hole 25, for example.
This embodiment differs from the first embodiment in that an opening/closing mechanism 26 consisting of 6b is provided, and the other structures are the same, so a description thereof will be omitted.

上記開閉機構26のふk 26 aは、吸気口2A側の
圧力が排気口2B側の圧力より低い場合、すなわち、ふ
た26aの内側(リース用孔24内)の圧力が、ふた2
6aの外側(排気口2B側)の圧力より低い場合には、
ばね26bの力に抗して閉じられる。
The lid 26a of the opening/closing mechanism 26 is configured such that when the pressure on the intake port 2A side is lower than the pressure on the exhaust port 2B side, that is, the pressure inside the lid 26a (inside the lease hole 24)
If the pressure is lower than the pressure outside 6a (exhaust port 2B side),
It is closed against the force of spring 26b.

逆にリース用孔25内の圧力が排気口2B側の圧力より
高い場合には、ばね26bの伸長力と相まってふた26
aは開かれる。
Conversely, when the pressure inside the lease hole 25 is higher than the pressure on the exhaust port 2B side, the expansion force of the spring 26b causes the lid 26 to
a is opened.

一般に始動時には吸込圧が高いため、ポンプ内の圧力は
吐出側圧力よりも高くなっているので、遠心圧縮ポンプ
段で圧縮された高圧流体は、開閉機構26の開放により
リーク用孔25を経て排気口2Bより排出される。この
結果、ポンプ内の圧力低下により、粘性ねじ形排気段2
2が作動すると、開閉機構26のふた26aは閉じて定
常運転状態になる。したがって、始動時には粘性ねじ形
排気段22を流通する流体が減少し、前記開閉機構の閉
塞を防ぐことができるため、所要の真空度をうる所要時
間を短縮することが可能である。
Generally, at startup, the suction pressure is high, so the pressure inside the pump is higher than the discharge side pressure, so the high-pressure fluid compressed in the centrifugal compression pump stage is exhausted through the leak hole 25 by opening the opening/closing mechanism 26. It is discharged from the port 2B. As a result, the pressure drop inside the pump causes the viscous threaded exhaust stage 2 to
2 is activated, the lid 26a of the opening/closing mechanism 26 is closed to enter a steady operating state. Therefore, at the time of startup, the fluid flowing through the viscous screw type exhaust stage 22 is reduced, and the opening/closing mechanism can be prevented from being blocked, thereby shortening the time required to obtain the required degree of vacuum.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、排気口圧力を大気
圧付近に保ち、かつ清浄な真空をうろことができると共
に、ポンプの損失、特に最終段の摩擦損失を低減させ、
所要動力を減少させることができる。
As explained above, according to the present invention, the exhaust port pressure can be maintained near atmospheric pressure and a clean vacuum can be maintained, and the loss of the pump, especially the friction loss in the final stage, can be reduced.
Power requirements can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の真空ポンプの断面図、第2図は本発明の
真空ポンプの第1実施例を示す断面図、第3図(a)、
(b)は第1実施例のジーグバーン分子ポンプ段の断面
図および正面図、第4図は(a)。 (b)は第1実施例の遠心圧縮ポンプ段の要部断面図お
よび羽根車の正面図、第5図(a)、 (b)は第1実
施例の渦流圧縮ポンプ段の要部断面図および羽根車正面
図、第6図は本発明に係わる第2実施例を示す断面図、
第7図(a)、 (b)は第2実施例の分子ポンプ段の
固定円板の断面図および正面図。 第8図(a)、(b)は第2実施例の遠心圧縮ポンプ段
の回転円板の断面図および正面図、第9図(a)。 (b)は第2実施例の固定円板の断面図および正面図、
第10図は本発明に係わる第3実施例の断面図、第11
図(a)〜(c)は第3実施例の粘性ねじ形排気段の回
転円板の表面図、断面図および裏面図、第12図は本発
明に係わる第4実施例の断面図である。 1・・・回転軸、2・・・ハウジング、2A・・・吸入
口、2B・・・吐出口、10.20・・・分子ポンプ段
、11゜21・・・遠心圧縮ポンプ段、12,22,2
2’・・・粘性ねじ形排気段、12A、20b、22’
b・・・回転円板、12B、20c、22d、22’ 
a −固定円板、16・・・羽根、17・・・通風路、
20e。 22c、22’d・・・ら旋状溝、22a・・・ケーシ
ング、25・・・リーク用孔、26・・・開閉機構。 η 3 (2) χ 4 図 第 ’l 図 (θ−) (lA) ZOC(ZOd) !fI3 図 (0−)(り 罵り 図 仏) (幻
Fig. 1 is a sectional view of a conventional vacuum pump, Fig. 2 is a sectional view showing a first embodiment of the vacuum pump of the present invention, Fig. 3(a),
(b) is a sectional view and a front view of the Siegbahn molecular pump stage of the first embodiment, and FIG. 4 is (a). (b) is a sectional view of the main part of the centrifugal compression pump stage of the first embodiment and a front view of the impeller, and FIGS. 5(a) and (b) are sectional views of the main part of the vortex compression pump stage of the first embodiment. and a front view of the impeller; FIG. 6 is a sectional view showing a second embodiment of the present invention;
FIGS. 7(a) and 7(b) are a sectional view and a front view of the fixed disk of the molecular pump stage of the second embodiment. FIGS. 8(a) and 8(b) are a cross-sectional view and a front view of a rotating disk of a centrifugal compression pump stage of the second embodiment, and FIG. 9(a). (b) is a sectional view and a front view of the fixed disk of the second embodiment,
FIG. 10 is a sectional view of the third embodiment according to the present invention, and FIG.
Figures (a) to (c) are a front view, a cross-sectional view, and a back view of a rotating disk of a viscous screw type exhaust stage according to a third embodiment, and Fig. 12 is a cross-sectional view of a fourth embodiment according to the present invention. . DESCRIPTION OF SYMBOLS 1...Rotating shaft, 2...Housing, 2A...Suction port, 2B...Discharge port, 10.20...Molecular pump stage, 11°21...Centrifugal compression pump stage, 12, 22,2
2'...Viscous screw type exhaust stage, 12A, 20b, 22'
b...Rotating disk, 12B, 20c, 22d, 22'
a - fixed disk, 16... blade, 17... ventilation duct,
20e. 22c, 22'd... Spiral groove, 22a... Casing, 25... Leak hole, 26... Opening/closing mechanism. η 3 (2) χ 4 Figure 'l (θ-) (lA) ZOC(ZOd) ! fI3 Figure (0-) (Cursing Figure Buddha) (Illusion)

Claims (1)

【特許請求の範囲】 1、吸気口と排気口を有するハウジングの内壁に取付け
られた固定円板と、そのハウジング内に回転自在に支持
された回転軸に取付けられた回転円板または羽根車とか
らなるジーグバーン分子ポンプ段、遠心圧縮ポンプ段お
よび渦流圧縮ポンプ段を、前記吸気口側から排気口側に
至る間のハウジング内に順次に連設してなる真空ポンプ
において、前記渦流圧縮ポンプ段を外周面に多数の羽根
を有する羽根車と、この羽根車を包囲する固定円板とに
より構成すると共に。 前記羽根車および固定円板により通風路を形成させたこ
とを特徴とする真空ポンプ。 2、吸気口と排気口を有するハウジングの内壁に取付け
られた固定円板またはケーシングと、そのハウジング内
に回転自在に支持された回転軸に1回転円板または羽根
車または回転円筒の】−+ ノー+ t+J、、I’、
−す17−1−ヱi」−ノーf日ル −告、ン1ロC勿
々□、奮?ンプ段および粘性ねじ形排気段を順次に連設
し。 前記分子ポンプ段の固定円板および回転円板のいずれか
一方にら旋状溝を設け、前記粘性ねじ形排気段のケーシ
ングまたは固定円板および回転円筒または回転円板のい
ずれか一方にら旋状溝を設けたことを特徴とする真空ポ
ンプ。 3、上記粘性ねじ形排気段のケーシングにり−ク用孔を
設けると共に、このリーク用孔に開閉機構を取付けたこ
とを特徴とする特許請求の範囲第2項記載の真空ポンプ
[Claims] 1. A fixed disk attached to the inner wall of a housing having an intake port and an exhaust port, and a rotating disk or impeller attached to a rotating shaft rotatably supported within the housing. In a vacuum pump comprising a Siegbahn molecular pump stage, a centrifugal compression pump stage, and a vortex compression pump stage, which are successively arranged in a housing between the intake port side and the exhaust port side, the vortex compression pump stage is It consists of an impeller having a large number of blades on its outer peripheral surface, and a fixed disk surrounding the impeller. A vacuum pump characterized in that a ventilation passage is formed by the impeller and the fixed disc. 2. A fixed disk or casing attached to the inner wall of the housing having an intake port and an exhaust port, and a rotating disk, impeller, or rotating cylinder that rotates once on a rotating shaft rotatably supported within the housing.]-+ No+t+J,,I',
-su17-1-ei''-nofdayru-announcement, n1roC matron□, is it? A pump stage and a viscous screw type exhaust stage are installed in sequence. A spiral groove is provided in one of the fixed disk and the rotating disk of the molecular pump stage, and a spiral groove is provided in either the casing or the fixed disk and the rotating cylinder or the rotating disk of the viscous threaded exhaust stage. A vacuum pump characterized by having a shaped groove. 3. The vacuum pump according to claim 2, wherein a leak hole is provided in the casing of the viscous screw type exhaust stage, and an opening/closing mechanism is attached to the leak hole.
JP22415783A 1983-11-30 1983-11-30 Vacuum pump Granted JPS60116895A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22415783A JPS60116895A (en) 1983-11-30 1983-11-30 Vacuum pump
DE19843442843 DE3442843A1 (en) 1983-11-30 1984-11-23 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22415783A JPS60116895A (en) 1983-11-30 1983-11-30 Vacuum pump

Publications (2)

Publication Number Publication Date
JPS60116895A true JPS60116895A (en) 1985-06-24
JPH0477160B2 JPH0477160B2 (en) 1992-12-07

Family

ID=16809422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22415783A Granted JPS60116895A (en) 1983-11-30 1983-11-30 Vacuum pump

Country Status (2)

Country Link
JP (1) JPS60116895A (en)
DE (1) DE3442843A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266188A (en) * 1987-04-24 1988-11-02 Osaka Shinku Kiki Seisakusho:Kk Complex vacuum pump
JPS6447994U (en) * 1987-09-18 1989-03-24
JPH01187396A (en) * 1988-01-22 1989-07-26 Hitachi Ltd Vacuum pump
JPH0223297A (en) * 1988-07-13 1990-01-25 Osaka Shinku Kiki Seisakusho:Kk Circular groove vacuum pump
JPH0255897A (en) * 1988-08-17 1990-02-26 Osaka Shinku Kiki Seisakusho:Kk Combined vacuum pump
JPH0275796A (en) * 1988-09-12 1990-03-15 Osaka Shinku Kiki Seisakusho:Kk Composite vacuum pump
CN103423160A (en) * 2013-09-04 2013-12-04 张周卫 Variable pitch spiral compression machine head of spiral compression-expansion refrigerator
CN103644118A (en) * 2013-12-17 2014-03-19 储继国 Parallel circulating pump, combined circulating pump, complex circulating pump and air-bleed set
RU2543917C1 (en) * 2014-03-24 2015-03-10 Общество с ограниченной ответственностью "Владимирский центр механической обработки" Two-flow turbomolecular vacuum pump with hybrid air-gas channels
JP2017020502A (en) * 2015-07-01 2017-01-26 プファイファー・ヴァキューム・ゲーエムベーハー Split flow vacuum pump and vacuum system having split flow vacuum pump

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247893A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Vacuum pump
DE3728154C2 (en) * 1987-08-24 1996-04-18 Balzers Pfeiffer Gmbh Multi-stage molecular pump
US5358373A (en) * 1992-04-29 1994-10-25 Varian Associates, Inc. High performance turbomolecular vacuum pumps
DE4314418A1 (en) * 1993-05-03 1994-11-10 Leybold Ag Friction vacuum pump with differently designed pump sections
US5449270A (en) * 1994-06-24 1995-09-12 Varian Associates, Inc. Tangential flow pumping channel for turbomolecular pumps
DE10114585A1 (en) * 2001-03-24 2002-09-26 Pfeiffer Vacuum Gmbh vacuum pump
US8109744B2 (en) * 2008-03-26 2012-02-07 Ebara Corporation Turbo vacuum pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048512A (en) * 1973-03-30 1975-04-30

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2405890A1 (en) * 1974-02-07 1975-08-14 Siemens Ag SIDE CHANNEL RING COMPRESSOR
US3969039A (en) * 1974-08-01 1976-07-13 American Optical Corporation Vacuum pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048512A (en) * 1973-03-30 1975-04-30

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266188A (en) * 1987-04-24 1988-11-02 Osaka Shinku Kiki Seisakusho:Kk Complex vacuum pump
JPS6447994U (en) * 1987-09-18 1989-03-24
JPH01187396A (en) * 1988-01-22 1989-07-26 Hitachi Ltd Vacuum pump
JPH0223297A (en) * 1988-07-13 1990-01-25 Osaka Shinku Kiki Seisakusho:Kk Circular groove vacuum pump
JPH0255897A (en) * 1988-08-17 1990-02-26 Osaka Shinku Kiki Seisakusho:Kk Combined vacuum pump
JPH0275796A (en) * 1988-09-12 1990-03-15 Osaka Shinku Kiki Seisakusho:Kk Composite vacuum pump
CN103423160A (en) * 2013-09-04 2013-12-04 张周卫 Variable pitch spiral compression machine head of spiral compression-expansion refrigerator
CN103423160B (en) * 2013-09-04 2015-11-25 张周卫 Variable pitch spiral compression machine head of spiral compression-expansiorefrigerator refrigerator
CN103644118A (en) * 2013-12-17 2014-03-19 储继国 Parallel circulating pump, combined circulating pump, complex circulating pump and air-bleed set
RU2543917C1 (en) * 2014-03-24 2015-03-10 Общество с ограниченной ответственностью "Владимирский центр механической обработки" Two-flow turbomolecular vacuum pump with hybrid air-gas channels
JP2017020502A (en) * 2015-07-01 2017-01-26 プファイファー・ヴァキューム・ゲーエムベーハー Split flow vacuum pump and vacuum system having split flow vacuum pump

Also Published As

Publication number Publication date
JPH0477160B2 (en) 1992-12-07
DE3442843A1 (en) 1985-06-05

Similar Documents

Publication Publication Date Title
JPS60116895A (en) Vacuum pump
US10753372B2 (en) Direct drive type dual turbo blower cooling structure
EP0568069B1 (en) Turbomolecular vacuum pumps
US3969039A (en) Vacuum pump
US5238362A (en) Turbomolecular pump
US4668160A (en) Vacuum pump
CN102648351B (en) Vacuum pump
KR20000062974A (en) Turbo-molecular pump
KR102213998B1 (en) Vacuum exhaust mechanism, compound vacuum pump, and rotating body component
JPH04224295A (en) Turbo-molecular pump
KR20010053279A (en) Turbo-molecular pump
US3289923A (en) Multi-stage pump
JPH02502743A (en) molecular vacuum pump
JP2018135836A (en) Centrifugal compressor
JPH0219694A (en) Oil-free vacuum pump
JP2757922B2 (en) Centrifugal compressor
JPS61226596A (en) Turbo particle pump
USRE33129E (en) Vacuum pump
JPH02264196A (en) Turbine vacuum pump
JPH0311193A (en) Vacuum pump
JPS6385291A (en) Vacuum pump
US3322334A (en) Radial-flow molecular pump
JPH01170795A (en) Vortex turbo-machinery
JP2022120669A (en) Motor pump and manufacturing method for motor pump
KR100320207B1 (en) Turbo compressor