JPS60116599A - Controller for attitude of artificial satellite - Google Patents

Controller for attitude of artificial satellite

Info

Publication number
JPS60116599A
JPS60116599A JP58224797A JP22479783A JPS60116599A JP S60116599 A JPS60116599 A JP S60116599A JP 58224797 A JP58224797 A JP 58224797A JP 22479783 A JP22479783 A JP 22479783A JP S60116599 A JPS60116599 A JP S60116599A
Authority
JP
Japan
Prior art keywords
axis
sensor
attitude
around
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224797A
Other languages
Japanese (ja)
Inventor
徹 岡沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58224797A priority Critical patent/JPS60116599A/en
Publication of JPS60116599A publication Critical patent/JPS60116599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は静止軌道上を飛翔する三軸安定型の人工??
T星の姿勢制御装置に関するもので〔従来技術〕 第1図は従来の姿勢制御装置を説明するための図であり
、第1図において、(1)はロール軸及びピッチ軸まわ
りの姿勢角誤差を検出する地球センサ、(2)は太陽セ
ンサ、(3)は恒星センサ、(4)は地上から発射され
た電波の方向を測定するR Fセンサであり、(2)〜
(4)はヨー軸まわりの姿勢角誤差を検出する機器であ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] Is this invention a triaxially stable artificial body that flies in a geostationary orbit? ?
This relates to the attitude control system for the T star [prior art] Fig. 1 is a diagram for explaining the conventional attitude control system. In Fig. 1, (1) shows the attitude angle error around the roll axis and the pitch axis. (2) is a solar sensor, (3) is a star sensor, (4) is an RF sensor that measures the direction of radio waves emitted from the ground, and (2) -
(4) is a device that detects attitude angle errors around the yaw axis.

(5)は人工イW星、(6)は静止軌道、(7)は地球
、(8)は太陽である。しかるに太陽センサ(2)の場
合は、太陽(8)、地球(力及び人工衛星(5)がIK
細線上並んだ時、ヨー軸まわりの姿勢角誤差が検出でき
ないという欠点をもつ。恒星センサ(3)の場合は、装
置が複雑で高価なこと及び恒星センサの視野内に観測さ
れた恒星が、赤経。
(5) is the artificial IW star, (6) is the geostationary orbit, (7) is the Earth, and (8) is the Sun. However, in the case of the solar sensor (2), the sun (8), the earth (power, and the satellite (5) are IK).
The drawback is that when lined up on a thin line, attitude angle errors around the yaw axis cannot be detected. In the case of a star sensor (3), the equipment is complicated and expensive, and the star observed within the field of view of the star sensor has a right ascension.

赤緯が!11前にわかっている恒星衣の中のどの恒星に
対応するかという同定処理が必要になるという欠点をも
つ。地上から発射された電波の方向を測定する几Fセン
サ(4)の場合は出力信号がヨー軸まわりの姿勢角誤差
そのものを示さず、ロール軸及びピッチ軸まわりの姿勢
角誤差と複雑な相関をもつため処理が複1fflで精度
が低いという欠点がめる。
Declination! It has the disadvantage that it requires identification processing to determine which star in the star cloth that has been known in advance. In the case of the F sensor (4), which measures the direction of radio waves emitted from the ground, the output signal does not indicate the attitude angle error itself around the yaw axis, but has a complex correlation with the attitude angle error around the roll and pitch axes. The drawback is that it requires multiple processing steps and low accuracy.

〔発明の概要〕[Summary of the invention]

この発明は上記従来の欠点を改善するためになされたも
ので、ミー軸まわりの姿勢角誤差を衛星の位置によらず
常に、しかも複雑なデータ処理をすることなく精度よく
めるために、静止軌道上の第1の人工衛星に搭載した光
学センサが静止軌道上の第2の人工far星に搭載され
た発光体の発する光を観測してヨー軸まわりの姿勢角誤
差を検出すると共に。
This invention was made to improve the above-mentioned drawbacks of the conventional technology. An optical sensor mounted on the first artificial satellite above observes the light emitted by a light emitter mounted on a second artificial FAR star in a geostationary orbit, and detects the attitude angle error around the yaw axis.

地球センサでもってロールiql+及びピッチl]l+
まわりの姿勢角誤差を検出し三軸姿勢制御を行うように
したものである。なお、第2の人工衛星は本来三軸姿勢
flilJ flilを行う静止軌道上の人工衛星の近
傍を飛翔しているものとする。
Roll iql+ and pitch l]l+ with earth sensor
This system detects attitude angle errors in the surroundings and performs three-axis attitude control. It is assumed that the second artificial satellite is flying in the vicinity of the artificial satellite on the geostationary orbit that originally performs the three-axis attitude flilJ flil.

〔発明の実施例〕[Embodiments of the invention]

以下図面に従ってこの発明のl待機とする姿勢制御装誼
を説明する。
The standby attitude control system of the present invention will be explained below with reference to the drawings.

第2図及び第3図はこの発明の一実施例を示すもので1
図において(1)は地球センサ、(5a)(5b)は静
止υL道道上第1及び@20人工衛星(6)は静止軌道
、(7)は地球、(8)は発光体、(9)はロール軸、
0ωはピッチ軸、(1υはヨー軸、aカはロールホイー
ル、αJはピッチホイール、 (141はヨーホイール
、 (151は演n器を含むデータ処理器、u61はブ
0学センサである。第3図は第2図に示したイトテ成要
素間の信号の流れを示すものである。
Figures 2 and 3 show one embodiment of this invention.
In the figure, (1) is the earth sensor, (5a) and (5b) are the geostationary υL Dojo 1st and @20 satellites (6) are in geostationary orbit, (7) is the earth, (8) is the light emitter, (9) is the roll axis,
0ω is a pitch axis, (1υ is a yaw axis, a is a roll wheel, αJ is a pitch wheel, (141 is a yaw wheel, (151 is a data processor including a calculator, and u61 is a logic sensor. FIG. 3 shows the flow of signals between the components shown in FIG.

三軸姿弓(制御衛星の姿勢制御の目的は、ヨ’i’i!
] ullを地球中心に指向させ、ピッチ軸αωをij
;lL道面に乎直にさせることである。したがって今+
 YII−止軌道上の第2の人工衛星(5b)が本来の
静止1iuL道上の第1の人工衛星(5a)の近傍を飛
翔しており、静止軌道上の第2の人工衛星(5b)上で
正又は負のロール軸方向まわりに光を発射する発光体(
8)の発する光の方向を。
Three-axis bow (the purpose of the control satellite's attitude control is Yo'i'i!
] ul is directed toward the center of the earth, and the pitch axis αω is ij
;l It is to make Do-myeon be honest. Therefore now +
YII - A second satellite (5b) in a geostationary orbit is flying near the first satellite (5a) on its original geostationary 1iuL path, and the second satellite (5b) in a geostationary orbit A light emitter that emits light around the positive or negative roll axis direction (
8) The direction of the light emitted by.

本来の静止軌道上の第1の人工’lr7星(5a)に備
えられた光学センサ(161が測定している場合。
When the optical sensor (161) equipped on the first artificial 'lr7 star (5a) on its original geosynchronous orbit is measuring.

光学センサ1山の出力が静止軌道上の第1の人工1゛d
星(5a)のヨー軸aυまわりの姿勢角誤差を示す。
The output of one optical sensor is the first artificial 1゛d on the geostationary orbit.
The attitude angle error around the yaw axis aυ of star (5a) is shown.

静止軌道上の第2の人工衛星(5b)が赤道面から離れ
ている場合、地上でこの11[Eれている呈を計算して
データ処理器fls+’(入力し、光学センサueの出
力・信号にバイアス量として加えることにより、ヨー軸
0υまわりの姿勢角誤差を示す信号が得られる。ロール
軸(9)及びピッチ軸00;・まわりの姿勢角誤差は地
球センサ(1)の出力信号で示される。
When the second artificial satellite (5b) on the geostationary orbit is far from the equatorial plane, this 11 [E angle on the ground is calculated and inputted to the data processor fls+' (the output of the optical sensor ue). By adding it to the signal as a bias amount, a signal indicating the attitude angle error around the yaw axis 0υ can be obtained.The attitude angle error around the roll axis (9) and the pitch axis 0υ is the output signal of the earth sensor (1). shown.

以上のようにして、必要な場合データ処311L器]1
51の中で補正計算を行うことによりyC学七ンサQ[
il、地球センサ(11の出力をロール1llIl+ 
(9) 。
As described above, if necessary, the data processing unit 311L]1
By performing correction calculations in 51, yC Gakusei Q[
il, earth sensor (roll 11 outputs 1llIl+
(9).

ピンチ軸uf#及びヨー軸tillまわりの姿勢角誤差
と見なすことができ、したがってこの姿勢角誤差を除去
するようにロールホイールoz、ピッチホイール(13
,ヨーホイールt141を駆!1のする信号をデータ処
理器1I51の中で計算出来る。このように計算でめら
れた駆動信号でホイールを回転しトルクを発生させるこ
とにまり三軸姿勢制御が可能になる。
It can be considered as an attitude angle error around the pinch axis uf# and the yaw axis till, and therefore the roll wheel oz and pitch wheel (13
, Drive the yaw wheel T141! 1 can be calculated in the data processor 1I51. By rotating the wheel and generating torque using the calculated drive signal, three-axis attitude control becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、静止軌道上の第2
の人工衛星と光学センサと地球センサと演n器ぞ含むデ
ータ処理器を用いることにより、衛星の三軸まわりの姿
勢角誤差を検出することが可能であり、特にヨー軸まわ
りの姿勢角誤差を検出する場合、従来の太陽センサ、恒
星センサ及び地上から発射された電波の方向を測定する
工(・Fセンサを用いた三軸姿勢jlj制御??j星よ
り、衛星の位β“にょらず常にしかも簡単なデータ処理
だけで精度の良い姿勢開側lを行うことが可能になる。
As described above, according to the present invention, the second
By using an artificial satellite, an optical sensor, an earth sensor, and a data processor that includes an encoder, it is possible to detect attitude angle errors around the three axes of the satellite, and in particular, it is possible to detect attitude angle errors around the yaw axis. For detection, conventional solar sensors, stellar sensors, and methods that measure the direction of radio waves emitted from the ground (3-axis attitude control using F sensors) It becomes possible to always perform posture open side l with high precision just by simple data processing.

なお、実施例において、ホイール構成は直交する3個の
ホイールからなるが、4個以上のホイールからなる(1
4成及び値数ホイールのうち1個がバイアス角運動量を
もつホイール構成の場合も同様に姿勢制御ができるもの
である。
In addition, in the example, the wheel configuration consists of three orthogonal wheels, but it consists of four or more wheels (1
In the case of a wheel configuration in which one of the four-component and numerical wheels has bias angular momentum, attitude control can be similarly performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の人工11?i星の姿勢:fj制御装置を
説明するだめの図、第2図及び第3図はこの発明による
人工衛星の姿勢制御装置行を説明するだめの図、第4図
は第3図に示す第1ケ成機器間の接続及び信号の流れを
示す図である。 図中、(1)は地月(センサ、(2)は太1ii5セン
ザ、(3)は恒星センサ、(4)はRI”センサ、(5
)は人工衛星、 (5a)は第1の人工11(1星、 
(sb)は第2の人工衛星、(6)は静止軌道、(7)
は地球、(8)は太陽、(9)はロール軸、0旧まピッ
チll1ll+、 011はヨflitl 、 ++2
1 ハ。 −ルポイール、 (131はピッチホイール、u4)は
ヨーホイール、 a5Iはデータ処理i’t; 、 u
a+はブC学センサでるる。 なお1図中同一あるいは相当部分には同一符号を伺して
示しである。 代理人 大 岩 増 却− 第 1 ムl ニj’5 2 F’!1 卯・31・I X−10 第4 ’:;〈i
Is Figure 1 the conventional artificial 11? Attitude of star i: A diagram for explaining the fj control device, FIGS. 2 and 3 are diagrams for explaining the attitude control device for an artificial satellite according to the present invention, and FIG. 4 is a diagram for explaining the attitude control device for an artificial satellite according to the present invention. FIG. 2 is a diagram showing connections and signal flows between one-piece devices. In the figure, (1) is the Earth Moon (sensor), (2) is the Tai1ii5 sensor, (3) is the star sensor, (4) is the RI'' sensor, (5
) is an artificial satellite, (5a) is the first artificial 11 (1 star,
(sb) is the second artificial satellite, (6) is in geostationary orbit, (7)
is the Earth, (8) is the Sun, (9) is the roll axis, 0 old pitch ll1ll+, 011 is Yoflitl, ++2
1 Ha. - Lepoille, (131 is pitch wheel, u4) is yaw wheel, a5I is data processing i't; , u
a+ is a computer science sensor. Note that the same or corresponding parts in each figure are indicated by the same reference numerals. Agent Oiwa Masu - 1st Mul Nij'5 2 F'! 1 Rabbit・31・I X-10 4th ':;〈i

Claims (1)

【特許請求の範囲】[Claims] 静止軌道上の人工衛星に搭載された発光体の発する光の
方向を測定する光学センサと、地球を観測してロール軸
及びピンチ軸まわりの姿勢角誤差を検出する地球センサ
と、ロール軸、ピッチ軸及びヨー軸のまわりに回転トル
クを発生するホイールと、上記光学センサのヨー軸まわ
りの姿勢角誤差検出信号と上記地球センサのロール軸7
及びピッチ軸まわりの姿勢角誤差検出信号とをもとにし
て人工衛星のロール軸、ピッチ軸及びヨー軸まわりの姿
勢誤差を除去するだめの信号を作成し、その信号により
上記ホイールを駆動する処理器とを具備したことを特徴
とする人工衛星の姿勢制御装置。
An optical sensor that measures the direction of light emitted by a light emitter mounted on a satellite in geostationary orbit, an earth sensor that observes the earth and detects attitude angle errors around the roll axis and pinch axis, and a roll axis and pitch sensor A wheel that generates rotational torque around the axis and yaw axis, an attitude angle error detection signal around the yaw axis of the optical sensor, and a roll axis 7 of the earth sensor.
and the attitude angle error detection signal around the pitch axis to create a signal for removing attitude errors around the roll axis, pitch axis, and yaw axis of the artificial satellite, and drive the wheel with the signal. An attitude control device for an artificial satellite, characterized in that it is equipped with a device.
JP58224797A 1983-11-29 1983-11-29 Controller for attitude of artificial satellite Pending JPS60116599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224797A JPS60116599A (en) 1983-11-29 1983-11-29 Controller for attitude of artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224797A JPS60116599A (en) 1983-11-29 1983-11-29 Controller for attitude of artificial satellite

Publications (1)

Publication Number Publication Date
JPS60116599A true JPS60116599A (en) 1985-06-24

Family

ID=16819347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224797A Pending JPS60116599A (en) 1983-11-29 1983-11-29 Controller for attitude of artificial satellite

Country Status (1)

Country Link
JP (1) JPS60116599A (en)

Similar Documents

Publication Publication Date Title
US5412574A (en) Method of attitude determination using earth and star sensors
JPS6047159B2 (en) Satellite attitude control device
JP3027734B2 (en) Method and device for autonomously determining the position of a satellite on board
JPH0133400B2 (en)
US8321076B2 (en) On-line inertia estimation for use in controlling an aerospace vehicle
CN106155074A (en) A kind of satellite three axle Direct to the sun control method ensureing satellite-ground link
US7996119B2 (en) Method for determining the position of a spacecraft with the aid of a direction vector and an overall spin measurement
US6441776B1 (en) Method and apparatus for spacecraft payload pointing registration
JPH0420124B2 (en)
CN112550767A (en) Flywheel set momentum management method under satellite yaw guidance
JP2001063698A (en) Ephemeris/attitude reference decision system by using communication link
Savage Introduction to strapdown inertial navigation systems
JPS60116599A (en) Controller for attitude of artificial satellite
US3439884A (en) Space vehicle guidance system
JPS60189696A (en) Controller for attitude of artificial satellite
JPS60128100A (en) Controller for attitude of artificial satellite
JPS59192698A (en) Control system of attitude of artificial satellite
Somov et al. Attitude guidance and control of the navigation satellites at a passage of the singular orbital sites.
JPS62175300A (en) Attitude controller for artificial satellite
EP0267086A1 (en) Spacecraft with an antenna earth pointing device
JPS5932599A (en) Control system of attitude of stationary orbit artificial satellite
Fateev et al. Attitude guidance and control of the navigation satellites at passage of singular orbit sites
JPH07257496A (en) Attitude control device
JPH08164898A (en) Attitude control device
JPS5957100A (en) Control system of directivity of spin satellite