JPS60115123A - Dispenser electrode and its manufacturing method - Google Patents

Dispenser electrode and its manufacturing method

Info

Publication number
JPS60115123A
JPS60115123A JP58220735A JP22073583A JPS60115123A JP S60115123 A JPS60115123 A JP S60115123A JP 58220735 A JP58220735 A JP 58220735A JP 22073583 A JP22073583 A JP 22073583A JP S60115123 A JPS60115123 A JP S60115123A
Authority
JP
Japan
Prior art keywords
cathode
heater
agent
cylinder
dispenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58220735A
Other languages
Japanese (ja)
Inventor
Toshiharu Higuchi
敏春 樋口
Katsuhisa Honma
克久 本間
Daisuke Miyazaki
大輔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58220735A priority Critical patent/JPS60115123A/en
Publication of JPS60115123A publication Critical patent/JPS60115123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a dispenser electrode having characteristics such as long life, high current density, and high speed, by welding a cathode cylinder, metal disc and heater cylinder simultaneously, and thus by achieving airtight enclosure of Bariumscandite agent. CONSTITUTION:A circular porous electrode base plate 21 formed into a curved surface is brazed to a cathode cylinder 221 via a filter metal 27 applied on the periphery of the base plate 21. Bariumscandite agent 26 is enclosed in a space 22a formed between the porous base plate 21 and the cathode cylinder 221. A metal disc 23 is fitted to the flange part of the cathode cylinder 221 for airtight sealing of the space 22a. A heater cylinder 222 which has a flange part and which houses a heater 25 is fixed to the other side of the metal disc and a heater 25 padded with a space filler is placed in the heater cylinder 222. The cathode cylinder 221, metal disc 23 and heater cylinder are welded together through a welding part 29.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高出力の磁子e、例えばクライストロン進行波
・gに使用される高(流密鹿屋のディスベンザ陰極とそ
の製造方法に猟9、特に衛星塔載用の進行波uなどに使
用されて長寿命を有するディスペンサ陰極とその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a disbenzer cathode used in a high-power magneto e, such as a klystron traveling wave g. The present invention relates to a dispenser cathode that has a long life and is used in a traveling wave u mounted on a satellite tower, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来のき受型1芸極の7吋造金第1図を用いて説明する
This will be explained with reference to Fig. 1 of the conventional 7-inch molded gold plate.

即ち、含浸型1嘘他基本(1)は1Vio製のヒータ円
筒(2)の一端部にfvIo−Ruろう材(3)全弁し
て固着され、このヒータ円1%5円(2)には埋込剤(
・りに埋込まJしたヒータ(5)が設けられている。
That is, the impregnated type 1 base (1) is fixed to one end of the heater cylinder (2) made by 1Vio with the fvIo-Ru brazing material (3) fully valved, and this heater circle 1% 5 yen (2) is the embedding agent (
- A heater (5) embedded in the rim is provided.

この含浸型陰極基本(1)はA立径3μ程此のタングス
テン粉末を水圧プレスで圧iAh成形し俸・ヒトとした
麦、A壁中で温菱21UO”C−(’焼結し−Cイ尋ら
れlこ比重が16程度の多孔質タングステン基体に電子
放射物質で必るBaO、A40a 、 CaOを溶融含
浸したものでめる。ただし電子放射物質の含浸は含浸温
度が約xsoo゛cであるため、後述J−るMo −n
uろう材の約2000 ’C;のろう付は後行なわれる
This impregnated cathode basic (1) is made by molding this tungsten powder with a hydraulic press of about 3 μm in vertical diameter and making it into a grain. It is made by melting and impregnating a porous tungsten substrate with a specific gravity of about 16 with electron emitting substances such as BaO, A40a, and CaO.However, when impregnating the electron emitting substance, the impregnation temperature is about Therefore, J-ruMo-n described later
Brazing of the solder metal at approximately 2000'C is carried out later.

また埋込剤(4)はアルミナの粉末を有機性ノくインダ
で泥状にして埋込み、その後焼結工程を行なうことによ
りヒータ(5)は固着される。
Further, the embedding agent (4) is made by turning alumina powder into a muddy form with an organic indulator and embedding it, followed by a sintering process to fix the heater (5).

上述した構造からなる含浸型1憾は、1乃至2V憶の高
直流密度(直流)を取り出し得る1芸極として高出力の
進行波・Uやスライストロンなどに用いられている。そ
して近年両足放送の発展(二伴ない、衛星搭載用進行波
官JiJ除極への応用が進められている。
The impregnated type device having the above-mentioned structure is used in high-output traveling wave U, slicetron, etc. as a technique capable of extracting a high direct current density (DC) of 1 to 2 V. And in recent years, the development of two-legged broadcasting (two-legged broadcasting) is progressing, and its application to satellite-mounted traveling wave carriers JiJ depolarization is progressing.

しかしながら衛星塔載用などの場会は約10年の寿命保
証が必要で必9、従来の含浸型原物ではこの寿命保証が
被同視されている。
However, in applications such as satellite mounting, a lifespan guarantee of about 10 years is necessary, and this lifespan guarantee is ignored in conventional impregnated originals.

その理由は電子放射物質が動作時間と共に熱蒸発し、つ
いには枯掲してし祉うためである。従って長寿館壓隘極
にするためには、電子放射物質の含授量を多くしてやる
必要がある。
The reason for this is that the electron emitting material evaporates thermally over time and eventually dies out. Therefore, in order to achieve longevity, it is necessary to increase the content of electron emitting substances.

その一つの手段として多孔質タングステンの比重を12
乃至14程度にして壁孔率を尚くrることにより電子放
射物質の′4υ量を多くする方法があるが、この方法は
、逆に空孔率が増加するため熱蒸発量が増加し好ましく
ない。
One way to do this is to increase the specific gravity of porous tungsten to 12
There is a method of increasing the amount of electron emitting material by reducing the wall porosity to about 14 to 14, but this method is preferable because the porosity increases and the amount of heat evaporation increases. do not have.

他の手段として陰極基本の肉厚を厚くする方法もあるが
この方法は陰極の速厖υ性の点から好ましく シ辷 い
 。
Another method is to increase the thickness of the cathode base, but this method is preferable from the viewpoint of rapid removal of the cathode.

この理由について実例を用いて説明すると、第1図に示
す陰極の1嘘他基本tl)は1■径が8hJLで表面は
曲率を有しているが、平均の厚さは2/IN l:設計
さJtている。このような陰極基本(1)を動作温度1
020“C9放射屯流密度1.5’ A/17111で
動作させた時の寿命時間(陰極小流が10%低下した時
の時間を寿命時間とする)は約50000時間である。
To explain the reason for this using an example, the cathode shown in Figure 1 has a diameter of 8hJL and a surface with a curvature, but the average thickness is 2/INl: Designed by Jt. This kind of cathode basic (1) is operated at 1
The lifetime when operated at 020"C9 radial flow density 1.5' A/17111 (lifetime is defined as the time when the cathode flow decreases by 10%) is about 50,000 hours.

従って寿命時間を100000時間程度にするだめの陰
極基体(1)の厚さは電子放射物質の含浸量を2倍にす
るために4朋程度必要であることが見積られる。
Accordingly, it is estimated that the thickness of the cathode substrate (1) in order to increase the life time to approximately 100,000 hours is required to be approximately 4 mm in order to double the amount of impregnated electron emitting material.

一方;“lさ2・・+711の場汗はヒータ点火後陰部
温度が上昇して陰極IE流が安定するまでには約10分
間を蒙するが、!!メさ4 i+I+4の」烏合は17
分もの長時間を必要とし、実用的でない。この」理由は
、原物の速動性は一般旧に仄の式で与えられ、1jd成
材料の中で最も比重の尚い陰極基本(゛タングステン)
の体積が増加J−るためである。
On the other hand, it takes about 10 minutes for the genital area temperature to rise and the cathode IE flow to stabilize after the heater is ignited.
It takes many minutes and is not practical. The reason for this is that the rapidity of the original material is generally given by the following formula, and the cathode basic material (tungsten) has the lowest specific gravity among the 1JD materials.
This is because the volume of J- increases.

但し t:1.!極をT’Cまで上げるに袋する時間ρ
:比慮 V:体積 C:比熱 ′r:温度 PI(ニヒータ市力 前述した問題点を改良した1茜他としては第2図に示す
ような構造をもつL型1婆極と呼ばれる陰極が提唱され
ている。
However, t:1. ! Time ρ to raise the pole to T'C
:Reference V:Volume C:Specific heat 'r:Temperature PI (Nihita Shiroku) Akane et al. proposed a cathode called an L-type 1b pole with the structure shown in Figure 2, which improved the above-mentioned problems. has been done.

即ち、隔壁部(1均を有するや1曲形状1■形のモリブ
テン製陰極支持体Uシの上t111窒洞都(12a)内
には電子放射物質dfi)が収納され、端部には多孔質
タングステンからなる陰極基体ul)が、がしめ法によ
ってかしめ部ti74で固着されており、下部全洞部(
12b)内には埋込剤(Eカに埋込まれたヒータj15
Jが設けられている。
That is, the partition wall part (electron emitting material dfi in the upper t111 nitrogen cave (12a) of the molybdenum cathode support U having a curved shape of 1 mm) is housed, and the end part has porous holes. The cathode substrate ul) made of high quality tungsten is fixed at the caulking part ti74 by the caulking method, and the entire lower cavity (
12b) contains an embedding agent (heater j15 embedded in E).
J is provided.

次にこのL型隙極の製造方法について述べると、モリブ
デン製陰極支持体u21の下部空?1一部(12b)に
ヒ−タ(151を埋込剤圓で埋込み、真空中あるいは還
元雰囲気中で1800C,2時間焼結J−る。次に、上
部空4if1部(12a)内に電子放射吻質μωτ収納
し、さらに多孔質タングステンからなる1芸極基体(、
υを上部空洞部(12a)の開口上端部に凪合せ、侵械
+iDな、かしめ法によシかしめ部すθで支持体(IJ
と陰極基体法υを固着する。以上の工程によってILJ
i’6極は完成する。
Next, the manufacturing method of this L-shaped gap electrode will be described. 1 part (12b) is filled with a heater (151) using a embedding agent round, and sintered at 1800C for 2 hours in a vacuum or reducing atmosphere.Next, electrons are injected into the upper space 4if 1 part (12a). It houses the radial proboscis μωτ, and also has a one-art base made of porous tungsten (,
Align υ with the upper end of the opening of the upper cavity (12a), and swage the support body (IJ
and fix the cathode substrate method υ. Through the above process, ILJ
The i'6 pole is completed.

し少るに、この陰極の揚・計、陰極基体駄υヶ1浪他支
持体11々にLd層するのには、〃為しめ法しか匣用r
ることがごさない。このため、陰極基本([υと陰極支
持体す4を−i全に気がシールして上部空洞部(12a
)を密閉」−ることは不i’J’ ++巳である。その
ため電子放射物*tui)が異常蒸発し、陰極の短寿命
及び異常蒸発物の他屯憾への付着のための′α内放屯事
故などで問題となっていた。
However, in order to deposit the Ld layer on the cathode, the cathode substrate, the support 11, etc., the only method that can be used is the method.
Things don't go by. For this reason, the cathode base ([υ) and the cathode support 4 are sealed completely with air, and the upper cavity (12a
) is not sealed. As a result, electron emitters *tui) are abnormally evaporated, causing problems such as a short life of the cathode and an internal radiation accident due to the abnormal evaporated materials adhering to other parts.

この哄憾C陰極基体妓ηの固’iRにかしめ法しか使用
できない理由について、さら(二浦足づ−ると、電子放
射物賀熊を図に示す位置に収納した状態で陰惺基体(1
υと陰極支持体1121をろう付する必要が必るが、こ
のような作業は1区子放射物質ublの融点(約180
0’C)に対し、ろう材(Mo −Ru )の融点(約
1950 G)が高いためである。
Regarding the reason why only the caulking method can be used for the solid iR of this emitting C cathode substrate (Niura), I further explained that with the electron emitter housed in the position shown in the figure, 1
Although it is necessary to braze the cathode support 1121 to
This is because the melting point (about 1950 G) of the brazing filler metal (Mo-Ru) is higher than that of the brazing material (Mo-Ru).

更に、かしめ部17)で完全な気密シールが出来ない理
由について補足すると多孔質タングステンからなる陰極
基体Iはタングステン粉末の焼結体であシ、さらにMO
sの陰極支持体u4は埋込剤ζ1滲の焼結工程で高温の
処理を受けているため、かしめ作業時に充分な圧縮強既
でかしめることは不可能であり、かしめ部U″0で完全
な気密シールすることができない。
Furthermore, to explain why the caulked portion 17) cannot provide a perfect airtight seal, the cathode substrate I made of porous tungsten is a sintered body of tungsten powder, and MO
Since the cathode support u4 of s is subjected to high temperature treatment in the sintering process of the embedding agent ζ1, it is impossible to caulk it with sufficient compression strength during the caulking operation, and the caulking part U″0 It is not possible to create a complete airtight seal.

〔発明の目的〕[Purpose of the invention]

本発明は上述した諸問題点に鑑みなされたもので69、
衛星搭載用進行波・αなどに使用して好適な長寿命、高
「区υIL密度、速動型を兼ね備えたディスペンサ陰極
及びその製造方法を提供することを目的としている。
The present invention was made in view of the problems mentioned above69,
The object of the present invention is to provide a dispenser cathode that has a long life, a high density υIL, and a fast-acting type suitable for use in traveling waves and α for satellites, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

即ち、本@明はタングステン粉末単体もしくはタングス
テン粉末と酸化スカンジウム粉末を圧、l1ii成形後
焼結してなる多孔質の陰極基板と、陰極基板の周辺部に
気密にろう付固着された陰・薦円面と、陰極基板と陰極
円筒(=より祷成される空間部に収納されたバリウムス
カンデイト剤と、このバリウムスカンデイト剤f密IA
]するよう(二函億円筒の端縁部に固着された金属円板
と、金属円板に一方の端部が固着されたヒータを収納J
−るためのヒータ円筒とよシなることを特徴とrるディ
スペンサ1会極とその製遠方法であり、il!fに製造
方法ではバリウムスカンデイト11すを、よシ低温で陰
部基板と陰極円1語及び舗絹円板からなる空間部に気密
収納するために陰1砿円筒と金属円板、及びヒータ円筒
とを同時にアーキング法、重子ビーム浴嶺法あるいはレ
ーザ(d接法CLi!、1看すること奮特敢としている
In other words, this book uses a porous cathode substrate made by sintering tungsten powder alone or tungsten powder and scandium oxide powder after compression molding, and a cathode electrode hermetically soldered to the periphery of the cathode substrate. A barium scandate agent housed in a space formed by a circular surface, a cathode substrate, and a cathode cylinder, and this barium scandate agent f-dense IA.
] (A metal disk fixed to the edge of a two-fold cylinder and a heater whose one end is fixed to the metal disk are stored.)
This is a dispenser 1 pole and its manufacturing method, which is characterized by the same characteristics as a heater cylinder for use in heating. In the production method f, in order to airtightly store barium scandate 11 at a very low temperature in a space consisting of a shade substrate, a cathode circle, and a silk disk, a shade cylinder, a metal disk, and a heater cylinder are used. At the same time, the arcing method, the multiplex beam ridge method, or the laser (d-tangential method CLi!) is being used.

〔発明の実施例〕[Embodiments of the invention]

次に、本づ11明のディスペンサi裟極の一実施例を第
3図によυ説明する。
Next, an embodiment of the dispenser according to the present invention will be described with reference to FIG.

即ち、曲面状に成形さAした円形の多孔質の陰極基板シ
υは周辺部において、ろう材シフ)を介して隅極円筒(
:l’1.)にろう付され、この陰極円l#(22□)
の1会極基板シυと反対1111の端部には7ランク部
が形成されている。この多孔質基板シυと陰極円筒(2
21)により形mされた空間ifB (22a) を二
はバリウムスカンデイト剤1f1(9が収納されている
。そして、この哄・富円筒(22+)の7ランク部(二
は金属円板り漕が固着され、空間部(22a)を気密シ
ールするよりに・rつ′〔いる。金属円板1−の陰極円
筒(22□)と反対11111にはフランジ郡を有する
ヒータv9を収ηt’jするヒータ円j句(222)が
固着され、このヒータ円筒Q22)内には埋込fill
 b!(1)に址込まれたヒータ(2■が設けられてい
る。図においてし@は、1呉・菖円+ril (22θ
輩Hi円板(ハ)及びヒータ円筒■2Dを向jMする定
めの俗接部である。
That is, a circular porous cathode substrate υ formed into a curved shape A is connected to a corner pole cylinder (
:l'1. ), and this cathode circle l# (22□)
A 7-rank portion is formed at the end 1111 opposite to the first polar board υ. This porous substrate υ and cathode cylinder (2
The space ifB (22a) shaped by 21) contains the barium scandate agent 1f1 (9). is fixed to airtightly seal the space (22a).A heater v9 having a flange group is installed at 11111 opposite to the cathode cylinder (22□) of the metal disk 1-. A heater cylinder (222) is fixed to the heater cylinder Q22).
b! There is a heater (2) embedded in (1).
This is a regular contact part that faces the Hi disc (c) and the heater cylinder (2D).

次に各部について説明すると、1裟僕基板CDは平均杭
径3μmのタングステン粉末と″−1′均拉径3μmの
酸化スカンジウム粉末をそれぞλL 95 wt q6
の比率で混罰し、この粉末をラバーの中に入れ水圧プレ
スで圧、潴する。その後真空中あるいは水紫中i? 1
700゛C(ニガl)棲し、箪孔417係の焼1清11
トと吏る。次に、この焼結4り)二切iツリ那工1生金
艮くするため(二:1liJ kl“4温水素炉で會浸
する。次に、この銅會反戊結体を旋盤加工し、陰極基板
形状例えば直径8、μm、肉厚l 1mに加工し、次に
銅を硝酸中及び高温水素炉中で除去し多孔質の陰極基板
12υを得る。
Next, to explain each part, the first substrate CD is made of tungsten powder with an average pile diameter of 3 μm and scandium oxide powder with a −1′ uniform diameter of 3 μm at λL 95 wt q6.
Mix the powder in the following ratio, put this powder into a rubber, press it with a hydraulic press, and press it. Then in a vacuum or in water? 1
700゛C (Niga l) inhabits, 417 pits, Yaki 1 Kiyo 11
I scream. Next, this sintered body is immersed in a 4-temperature hydrogen furnace to make it into raw metal (2:1liJ kl).Next, this sintered body is lathe-processed. Then, the cathode substrate is processed into a shape of, for example, 8 μm in diameter and 1 m in thickness, and then the copper is removed in nitric acid and in a high-temperature hydrogen furnace to obtain a porous cathode substrate 12υ.

陰極円筒(221)はモリブデン棹体を切削加工によっ
て製作する。
The cathode cylinder (221) is manufactured by cutting a molybdenum rod.

この原物円1苛G!21)の頂一部に陰極基板I2刀を
組合せMo−Ruろう材u9)を塗布した後、水素炉中
で短時間2100’C:に昇温し、ろう付は部分に隙間
がないよう(二気密シールする。このろう付は作業時に
は陰極基板−υの裏側の面でバリウムスカンデイト剤(
7!Qと対向する面にはろう材が付層しないようにして
おくことが公表である。
This original yen is 1 G! After combining the cathode substrate I2 on the top part of 21) and applying Mo-Ru brazing material u9), the temperature was raised to 2100'C for a short time in a hydrogen furnace, and the brazing was done so that there were no gaps in the parts ( During this brazing process, use a barium scandate agent (
7! It has been announced that the surface facing Q should not be coated with brazing material.

次のバリウムスカンデイト剤りψの製造方法は、先づB
aCO3#末とSc20g粉末をモル比で3:2となる
よう(二混合し、さら(二微量の有機性ノ(インダを加
えて混錬する。次にプレス機で外径6υI翼、肉厚2m
界に圧縮成形し錠剤に製作する。次に、この錠剤を空気
炉(二人れ、まず900℃に昇温し、BaC0aをBa
Oに分解する。さら(21400℃まで昇温して15時
間保持することによjl) Ba3Se40gの錠剤を
得る。
The following method for producing barium scandate agent ψ is first B.
Mix aCO3# powder and Sc20g powder at a molar ratio of 3:2, and then knead by adding a trace amount of organic powder. 2m
It is then compressed into tablets. Next, the tablets were heated in an air oven (both of us first raised the temperature to 900°C, and the BaC0a was
Decomposes into O. Further (by raising the temperature to 21,400°C and holding it for 15 hours), 40 g of Ba3Se tablets are obtained.

Ba28c20!1の錠剤を得る場合にはBaCO5と
5c203をモル比で2=1に混合したものを用いBa
3Se40゜の時と異なるところは、焼成反応温度を1
0000にする点である。
To obtain Ba28c20!1 tablets, use a mixture of BaCO5 and 5c203 in a molar ratio of 2=1.
The difference from the case of 3Se40° is that the calcination reaction temperature was changed to 1
The point is to set it to 0000.

ヒータ円筒(四2)はモリブデン#木を切削加工するこ
とによって製作される。
The heater cylinder (42) is manufactured by cutting molybdenum wood.

ヒータ(ハ)は3 % He−W線をダブルヘリカル状
にコイリング成形して得られる。
The heater (c) is obtained by coiling a 3% He-W wire into a double helical shape.

埋込剤eaはアルミナであシ、ヒータ円筒に)Dにヒー
タシ国を入れ、アルミナ粉末を有截性バインダで混錬し
、泥状化したものを流し込牟、その後乾燥、焼結の工8
を経ることによって得られる。
The embedding agent EA is alumina, the heater cylinder is put into the heater cylinder (D), the alumina powder is kneaded with a concrete binder, the slurry is poured into the cylinder, and then the process of drying and sintering is carried out. 8
It can be obtained by going through.

次に本実施例の効果を列記する。Next, the effects of this embodiment will be listed.

1)電子放射物質の貝を従来の陰極の場合より多くする
ことができる構造であるため長寿命型陰極である。
1) It is a long-life cathode because it has a structure that allows for more shells of electron emitting material than in conventional cathodes.

即ち、空孔率17%、直径8鵡、厚さ2寵の含浸型陰極
基体を有する第1図に示す構造の陰極の場合の電子放射
物質の含浸量は50 mgであった。これ(二対し本実
施例のディスペンサ陰極の場合は、直径6 rnm H
厚さ2+++翼の電子放射物質をプレス成形して使用し
ているが、この場合の電子放射物質の量は170側であ
る。従って後工程の空気焼きによるCO2ガスの抜は瀘
を見積っても第1図の4a造の陰極の3倍の電子放射物
質の盾を確保できる。このため、@他励作中に電子放射
物質の熱蒸発(二よる枯渇のための寿命は本実施例の場
合第1図の1盛惚に対して3倍長く見積ることができる
That is, in the case of a cathode having the structure shown in FIG. 1 having an impregnated cathode substrate having a porosity of 17%, a diameter of 8 mm, and a thickness of 2 mm, the amount of impregnated electron emitting material was 50 mg. This (2) In the case of the dispenser cathode of this example, the diameter is 6 rnm H
An electron emitting material having a thickness of 2+++ wings is press-molded and used, but the amount of electron emitting material in this case is on the 170 side. Therefore, even if we estimate the removal of CO2 gas by air firing in the post-process, it is possible to secure a shield of electron emitting material three times as large as that of the cathode of the 4a structure shown in FIG. 1. For this reason, the lifetime due to thermal evaporation (depletion due to double depletion) of the electron emitting substance during external excitation can be estimated to be three times longer in this embodiment than the one excitation shown in FIG.

史に補足説明すると、−子放射物質の蒸発斌は陰極の動
作温度を一定とした場合、陰極基板の空孔率によって決
まる。従って同一の空孔率の場合には、電子放射物質の
蒸発速度は同一と考えられる。従って不実〃出側のよう
(二従来の3倍もの電子放射物質の量の多い陰極の方が
、より長ンi命となる。
As a supplementary explanation, the evaporation rate of the -son emitter is determined by the porosity of the cathode substrate when the operating temperature of the cathode is constant. Therefore, when the porosity is the same, the evaporation rate of the electron emitting material is considered to be the same. Therefore, a cathode with three times as much electron emitting material as a conventional cathode will have a longer life.

2)陰極基板の肉厚を従来の%に設計したため連動型で
ある。
2) It is an interlocking type because the thickness of the cathode substrate is designed to be % of the conventional thickness.

即ち、従来の第1図の構造は陰極基板の空孔部(二電子
放射物質を含浸する方式であるため電子放射物質の含浸
量を増やすためには陰極基板の厚さを厚くするしか手段
がなかった。
In other words, since the conventional structure shown in FIG. 1 is a method in which the holes in the cathode substrate are impregnated with a two-electron emitting material, the only way to increase the amount of impregnated electron emitting material is to increase the thickness of the cathode substrate. There wasn't.

これに対し、本実施例の場合は陰極基板以外の場所に電
子放射物質を収納するため陰極基板の肉厚を1籠にする
ことができた。
On the other hand, in the case of this embodiment, the thickness of the cathode substrate could be reduced to one basket because the electron emitting material was housed in a place other than the cathode substrate.

実験によれば、従来の陰極の場合、ヒータ点火後、陰極
電流が安定するまでに10分間を要していたが、本実施
例の陰極では6分18」まで短縮することができた。
According to experiments, in the case of a conventional cathode, it took 10 minutes for the cathode current to stabilize after ignition of the heater, but with the cathode of this embodiment, the time could be shortened to 6 minutes and 18 minutes.

3)新しい製造方法及び構成品材の改良によシ嘔子放射
物質異常蒸発金防ぐ構造とすることがeきた。
3) Through new manufacturing methods and improvements in component materials, it has become possible to create a structure that prevents abnormal evaporation of radioactive materials.

即ち、従来の第2図に示すL型哄極では陰極基板(1υ
と陰極支持体u4の固着が、かしめ法によってしかでき
ないため、かしめ部面から4L子放射物質α0が異常蒸
発し、陰極の短寿命、−#内放I−i!、事故などを起
したが、本実施例では、先づ陰極基板りυと陰極円周(
221)をMo−Ruつう材(2θで完全に気智シール
し、次に電子放射物質であるバリウムスカンデイト剤U
りを収納し金属円板V、禿を用いて溶接部−9)で爵接
する方式を採用しているためバリウムスカンディト剤を
先金(二気密シールすることができ電子放射物質の異常
蒸発を防止することができた。
That is, in the conventional L-shaped electrode shown in Fig. 2, the cathode substrate (1υ
Since the cathode support u4 can only be fixed by the caulking method, the 4L-emitting substance α0 is abnormally evaporated from the caulked surface, shortening the life of the cathode and -# internal emission I-i! However, in this example, the cathode substrate thickness υ and the cathode circumference (
221) was completely sealed with Mo-Ru material (2θ), and then treated with barium scandate agent U, which is an electron emitting substance.
This method uses a method in which the metal disk V and the bald surface are used to connect the barium scandit agent to the welded part (9), which allows the barium scandit agent to be sealed air-tightly and prevents abnormal evaporation of the electron-emitting material. could be prevented.

また金属円板(ハ)の材料にRe金属を採用しているた
め、このReと陰極円筒(22θの構成材料であるMo
は合金化し易く、浴接部での浴接作用時にRe −Mo
合金を形成しながら気密シールを行なう。とのRe−f
Vllo合金はダクタイルであシ、このため以後の熱応
力(動・作中に加わる熱応カンに対しても強く、この部
分からファインクラックが発生することもない。従って
陰極動作中も気密性は保たれる。
In addition, since Re metal is used as the material of the metal disk (c), this Re and the cathode cylinder (Mo, which is the constituent material of the 22θ)
Re-Mo is easily alloyed, and during the bath contact action at the bath contact part, Re-Mo
Create an airtight seal while forming the alloy. Re-f with
Vllo alloy is ductile, so it is resistant to subsequent thermal stress (thermal stress applied during operation and operation), and fine cracks do not occur from this part. Therefore, airtightness is maintained even during cathode operation. It is maintained.

4)尚磁流密度型陰極である。4) It is a magnetic current density type cathode.

本実施例のディスペンサ陰極は磁子放射物質として、バ
リウムスカンデイト剤を用いているため、バリウムアル
ミネート材を言浸した従来の含浸型@極より電子放射特
性が良い。更に陰極基板にスカンジウム粉末を混合した
ものは、より好適な結果を得ることができる。このため
従来屋と同じ磁流密度で動作させる場合は陰極の動作温
度を下げ磁子放射物質の熱蒸発量を低下させることがで
きるため、長寿命となる。さらに蒸発量が低下するため
蒸発物による管内異常放屯現尿も低下させることができ
る。
Since the dispenser cathode of this embodiment uses a barium scandate agent as the magneton emitting material, it has better electron emission characteristics than the conventional impregnated type @ electrode impregnated with barium aluminate material. Furthermore, more suitable results can be obtained by mixing scandium powder in the cathode substrate. Therefore, when operated at the same magnetic current density as the conventional one, the operating temperature of the cathode can be lowered and the amount of heat evaporation of the magneton emitting material can be reduced, resulting in a long life. Furthermore, since the amount of evaporation is reduced, the amount of urine discharged abnormally into the tube due to evaporated matter can also be reduced.

5)電子放射物質が空気中で安定なため取扱いが簡単で
ある。
5) Since the electron emitting material is stable in the air, it is easy to handle.

即チ、バリウムスカンデイト剤はBaCO5と5t20
sとを適量混合し、空気中で1000〜1400”Cで
焼成したものであるため、構成物はBa3Sc40gあ
るいはBa、、 5c2Q5あるいは両者の混合体が土
成分をしめるものである。従って空気中で安定である。
So, barium scandate agent is BaCO5 and 5t20
s and calcined in air at 1000 to 1400''C, the composition is composed of 40 g of Ba3Sc, Ba, 5c2Q5, or a mixture of both as the soil component.Therefore, in the air It is stable.

このため製造工程での変質が少なく、完成した陰極個々
の電子放射特性のばらつきが小さく、品質的に安定であ
る。
Therefore, there is little deterioration during the manufacturing process, and the variation in electron emission characteristics of each completed cathode is small, resulting in stable quality.

6)排気中のガス放出量が小さい。6) The amount of gas released during exhaust is small.

即ち、BaC0aと3c20g粉末を空気中1000〜
1400℃で焼成して得られたノくリウムスカンデイト
剤はCO2ガスを含んでいないこと及び常温での安定性
が良いため、磁子管の排気時、原物点火時のガス放出量
が小さい。従って管内が汚染されることなく、良好な電
子放射特性を得ることができる。
That is, 20g of powder of BaC0a and 3c was exposed to 1000 ~
The Norium Scandite agent obtained by firing at 1400℃ does not contain CO2 gas and has good stability at room temperature, so the amount of gas released during magneton tube exhaust and original ignition is small. . Therefore, good electron emission characteristics can be obtained without contaminating the inside of the tube.

7)磁子放射物質の含浸工程がないため陰極基板が漬汁
である。
7) Since there is no step of impregnating the magneton emitting material, the cathode substrate is made of dipping sauce.

即ち、従来の含(5C!&!! is極の場合、多孔質
タングステンの哄極基体上;二電子放射物質を載置し、
水素炉中で約1800 ’″Cに昇温して電子放射物質
を浴融させて含浸するが、この作業時に磁子放射物質で
あるBaOと基体金属であるタングステンが反応り電子
放射1iヒカの小さい反応物質BavVO4を生じ好ま
しくなかったが、本実施例の陰極の場合は4子放射物質
の含浸工程がないため陰極基板が清伊である。
That is, in the case of the conventional 5C!&!!is electrode, a two-electron emitting material is placed on the porous tungsten electrode substrate
The temperature is raised to approximately 1800'''C in a hydrogen furnace to melt and impregnate the electron emitting material. During this process, BaO, the magneton emitting material, reacts with tungsten, the base metal, resulting in an electron emitting radiation of 1i. Although this was undesirable as a small reactant BavVO4 was produced, the cathode substrate of this example is pure because there is no step of impregnating the tetragon emitting substance.

MtJ述した実施例では陰極基板の材質をば化スカンジ
ウム粉末とタングステン粉末の混合体の場合について説
明したがこれはタングステン粉末単体1タングステン粉
末羊体よpなる陰極基板上に数1000人のOs + 
Ru + Re + Irなどの貴金属を被穏したもの
であっても効果は同じであるし、更に金属円板もBe 
’r2属のほか、Re−Mo合金でも良好な特性が期待
できる。
In the embodiment described above, the material of the cathode substrate was a mixture of scandium baride powder and tungsten powder, but in this case, several thousand Os +
The effect is the same even if noble metals such as Ru + Re + Ir are tempered, and metal discs also have Be
In addition to the 'r2 group, Re-Mo alloys can also be expected to have good properties.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明のディスペンサ陰極とその製造方法
(二よれば長寿命、速鯛型、高市流密波型であ夛、磁子
放射物質の異常蒸発が防げ取扱いが簡単であり、かつ排
気中のガス放出−が小さく、陰極基板が清伊でめるディ
スペンサ函直を提供できる。
As mentioned above, the dispenser cathode of the present invention and its manufacturing method (2) have a long life, are available in a fast sea bream type, a high flow wave type, prevent abnormal evaporation of magneton emitting substances, are easy to handle, and It is possible to provide a straight dispenser box with small gas emissions during exhaust and a cathode substrate that can be easily removed.

【図面の簡単な説明】[Brief explanation of drawings]

弗1図は従来の含浸屋@極を示す一1面図、第2図は従
来のL型陰他を示す一11m図、第3図は本発明のディ
スペンサ陰極の一実施例を示す断面図である。 21・・・陰極基板 滴・・・陰極円部222・・・ヒ
ータ円筒 乙・・・金属円板冴・・・埋込剤 5・・・
ヒータ あ・・・バリウムスカンデイト剤29・・・俗接都代理
人 弁理士 井 上 −男
Figure 1 is a 11-plane view showing a conventional impregnator @ electrode, Figure 2 is a 111m view showing a conventional L-type cathode, and Figure 3 is a sectional view showing an embodiment of the dispenser cathode of the present invention. It is. 21...Cathode substrate Droplet...Cathode circular part 222...Heater cylinder Otsu...Metal disc Sae...Embedding agent 5...
Heater... Barium scandate agent 29... Secular capital agent Patent attorney Inoue - Male

Claims (4)

【特許請求の範囲】[Claims] (1) タングステン粉末単体もしくは前記タングステ
ン粉末と酸化スカンジウム粉末を圧縮成形後焼結してな
る多孔質の陰極基板と、前i己陰極基板の周辺部)=ろ
う・IJけ固iJされた陰極円部と、前記陰極基板と前
記1裏極円筒により構成される空間部に1区11りされ
7”こバリウムスカンデイト剤と、前δ己バリウムスカ
ンデイト剤金密閉するようじ前i己陰極円1語の端A−
茨ii1!に固着された金、4円板と、+」iJ r尼
金属円板;ニ一方の端11μが固着されたヒータを収納
するためのヒータ円面とよりなることを特徴とするディ
スペンサ陰極。
(1) A porous cathode substrate made by compression molding and sintering tungsten powder alone or the above-mentioned tungsten powder and scandium oxide powder, and the peripheral part of the cathode substrate) = wax-solidified cathode circle A space formed by the cathode substrate and the back electrode cylinder is filled with a 7" barium scandate agent, and a toothpick sealed with barium scandate agent gold. word end A-
Thorn ii1! A dispenser cathode characterized in that it consists of four circular plates of gold fixed to the metal disk; and a circular heater circular surface for accommodating a heater to which one end 11μ is fixed.
(2) バリウムスカンデイト剤がBa2Sc2O5あ
るいはBa2Sc2O5必るいはBa3S’c40gと
Ba2 bc20*の混合体を主成分としていることを
特徴とする特許請求の範囲第1項記載のディスペンサ陰
極。
(2) The dispenser cathode according to claim 1, wherein the barium scandate agent is mainly composed of Ba2Sc2O5, Ba2Sc2O5, or a mixture of 40 g of Ba3S'c and Ba2 bc20*.
(3)金^・4円板の材質がRe輩属あるいはRe−M
。 合金であることを特徴とする特許請求の範囲第1jjJ
 fie載のディスペンサ陰極。
(3) The material of the gold and 4 discs is Re or Re-M.
. Claim 1jjJ characterized in that it is an alloy.
Dispenser cathode mounted on fie.
(4) タングステン粉末単体もしくは前6.2タング
ステン粉末と筬化スカンジウム粉末を圧縮成形後焼結し
でなる陰極基板の周辺部に1vlo製の1棋極円筒k 
Mo −Ruろう材をぼ用して−A密にろう付固着する
工程と、BaCO5と5c20s’ t’ rJA 8
し窒気中で1000 ’C乃至1400 にで焼結して
1′ト成しlこバリウムスカンデイト剤を前記陰極基板
と前記陰極円!旬によシ構成される空間に収納j−る工
1呈と、1」u記陰極円面と。 前記空間を密閉する佐属円板及びヒータを収納するヒー
タ円面とを同時に浴接方法ご固着することを特徴とする
ディスペンサは画の製造方法。 (i、jJ j&接方法が、アーキング法あるいは電子
ビーム直接法あるいはレーザ溶接法でおることを特徴と
する特許ル肖求の範囲第4項、1己・哉のティスペンサ
陰極の5A遺方法。
(4) A 1vlo cylinder is attached to the periphery of the cathode substrate, which is made by compression molding and sintering tungsten powder alone or 6.2 tungsten powder and scandium refractide powder.
The process of tightly brazing and fixing -A by using Mo -Ru brazing material, and BaCO5 and 5c20s't' rJA 8
The barium scandate agent is then sintered at 1000 to 1400 C in nitrogen atmosphere to form a 1' barium scandate agent on the cathode substrate and the cathode circle. In the space that is constructed according to the season, there is a space for storage, and a cathode circular surface. A method of manufacturing a dispenser is characterized in that a retainer disk for sealing the space and a heater disk for accommodating a heater are fixed together by a bath contact method. (i, jJ j & 5A method of Tispensa cathode of 1st and 3rd person, Section 4 of the scope of patent application, characterized in that the contact method is an arcing method, an electron beam direct method, or a laser welding method.
JP58220735A 1983-11-25 1983-11-25 Dispenser electrode and its manufacturing method Pending JPS60115123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58220735A JPS60115123A (en) 1983-11-25 1983-11-25 Dispenser electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220735A JPS60115123A (en) 1983-11-25 1983-11-25 Dispenser electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS60115123A true JPS60115123A (en) 1985-06-21

Family

ID=16755702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220735A Pending JPS60115123A (en) 1983-11-25 1983-11-25 Dispenser electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS60115123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173036A (en) * 1989-11-09 1991-07-26 Samsung Electron Devices Co Ltd Dispenser cathode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173036A (en) * 1989-11-09 1991-07-26 Samsung Electron Devices Co Ltd Dispenser cathode

Similar Documents

Publication Publication Date Title
US2912611A (en) Thermionic cathodes
JPS58154131A (en) Impregnation type cathode
US3582702A (en) Thermionic electron-emissive electrode with a gas-binding material
EP0409275A2 (en) Method for fabricating an impregnated type cathode
JPS6191822A (en) Manufacture of scandium dispensor cathode and dispensor cathode manufactured thereby
US4310603A (en) Dispenser cathode
US4982133A (en) Dispenser cathode and manufacturing method therefor
JPS60115123A (en) Dispenser electrode and its manufacturing method
US3758809A (en) Emissive fused pellet electrode
US2914402A (en) Method of making sintered cathodes
KR920001335B1 (en) Dispenser cathode
JPS58908Y2 (en) Nijigata magnetron
CA1150763A (en) Method of fabricating a dispenser cathode
US2447973A (en) Coated anode for electron discharge devices
JP3196221B2 (en) Impregnated cathode
JP2001006521A (en) Cathode body structure and color picture tube
JPS5842132A (en) Direct-heated dispenser cathode and manufacturing method
US3279029A (en) Method of spacing electron tube elements
JPS6057653B2 (en) Manufacturing method of magnetron cathode body
JPH06168661A (en) Manufacture of impregnation type cathode
JP4476662B2 (en) MATRIX MATERIAL MANUFACTURING METHOD, MATRIX TYPE CATHODE STRUCTURE AND ITS MANUFACTURING METHOD
JP3611984B2 (en) Discharge tube and method for manufacturing cathode for discharge tube
SU510174A3 (en) A method of manufacturing an electrode for fluorescent lamps
JPS6032232A (en) Impregnated cathode
JPS6017831A (en) Impregnated cathode