JPS60114746A - Spark discharge circuit for emission spectrochemical analysis - Google Patents

Spark discharge circuit for emission spectrochemical analysis

Info

Publication number
JPS60114746A
JPS60114746A JP22288983A JP22288983A JPS60114746A JP S60114746 A JPS60114746 A JP S60114746A JP 22288983 A JP22288983 A JP 22288983A JP 22288983 A JP22288983 A JP 22288983A JP S60114746 A JPS60114746 A JP S60114746A
Authority
JP
Japan
Prior art keywords
spark discharge
voltage
transformer
energy
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22288983A
Other languages
Japanese (ja)
Inventor
Hideo Hattori
秀雄 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP22288983A priority Critical patent/JPS60114746A/en
Publication of JPS60114746A publication Critical patent/JPS60114746A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable the generation of a spark discharge accurately at each time by charging a main capacitor with an induced current on the secondary side of a transformer while a trigger voltage is raised until the spark discharge starts to broaden the selection range of a discharge energy when exciting current is cut off. CONSTITUTION:A voltage of a DC power source DC is applied to a transformer Tr1 for a proper time length and current increasing with time flows through the primary side winding to accumulate a magnetic energy. Then, by cutting off between the transformer Tr1 and the DC power source DC, the magnetic energy is shifted to the main capacitor C1 for accumulating spark discharge energy with an induced current in the secondary winding. This operation is repeated desired times to increase the charged energy of the main capacitor C1 gradually while a trigger voltage is generated with a circuit whose output voltage rises with time whereby the trigger voltage is raised until the spark discharge starts in a discharge gap G2.

Description

【発明の詳細な説明】 イ・ 産業上の利用分野 本発明は発光分光分析装置における光源装置としての火
花放電回路に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a spark discharge circuit as a light source device in an emission spectrometer.

口・従来技術 従来の発光分光分析における火花放電回路は第1図に示
すような構成であった。ACは交流電源、Dは整流器、
Goは平滑用コンデンサ、Roは抵抗で、これらの各部
によって直流電源DCを構成している。Cは火花放電の
エネルギーを蓄える主コンデンサ、Gは光源用の火花放
電ギャップ、Sはスイッチ、ング素子である。スイッチ
ング素子Sは制御回路Pからの信号によって導通し、主
コンデンサCが上述した直流電源DCによって充電され
る。Tはトリガパルス発生器で、上記スイッチング素子
導通開始時点から測った所定のタイミングで放電ギャッ
プGに瞬間的に旨電圧を印加して放電ギャップGの絶縁
を破壊する。そうすると放電ギャップに火花放電が起り
、主コンデンサCの充電電荷が放電ギャップGを通して
放電される。
1. Prior Art A spark discharge circuit used in conventional emission spectrometry has a configuration as shown in FIG. AC is an alternating current power supply, D is a rectifier,
Go is a smoothing capacitor, Ro is a resistor, and these parts constitute a direct current power supply DC. C is a main capacitor that stores the energy of spark discharge, G is a spark discharge gap for the light source, and S is a switching element. The switching element S is made conductive by a signal from the control circuit P, and the main capacitor C is charged by the above-mentioned DC power supply DC. T is a trigger pulse generator which instantaneously applies a voltage to the discharge gap G at a predetermined timing measured from the time when the switching element starts conducting, thereby destroying the insulation of the discharge gap G. Then, a spark discharge occurs in the discharge gap, and the charge in the main capacitor C is discharged through the discharge gap G.

この構成では主コンデンサCの最高充電電圧は直流電源
DCの出力電圧で定まり、スイッチング素子Sはこの直
流電源の出力電圧に耐え得る必要があり、′°スイッチ
ング素子の耐圧の関係マ、主コンデンサの最高充電電圧
は余シ高くできなかった。
In this configuration, the maximum charging voltage of the main capacitor C is determined by the output voltage of the DC power supply DC, and the switching element S must be able to withstand the output voltage of this DC power supply. The maximum charging voltage could not be made too high.

火花放電のエネルギーはコンデンサCの充電エネルギー
であシ、これはコンデンサの充電電圧の2乗に比例する
が、主コンデンサの最高電圧が直流電源DCの出力電圧
までに規制されるので、火花放電エネルギーの選択範囲
も余り広くできず、分析対象に最適の分析条件を選ぶこ
とが困難であった。また従来は一定電圧の一回のトリガ
パルスによって火花放電を開始させていたので、放電ギ
ャップの状態の変化によって放電ギャップの絶縁破壊電
圧が変化し、放電が開始されないことがあって、繰返し
放電を行っている間に放電ミスが起っていた。
The energy of the spark discharge is the charging energy of the capacitor C, which is proportional to the square of the charging voltage of the capacitor, but since the maximum voltage of the main capacitor is regulated to the output voltage of the DC power supply DC, the energy of the spark discharge is The range of selection was not very wide, and it was difficult to select the optimal analysis conditions for the analysis target. In addition, conventionally, spark discharge was started by a single trigger pulse of a constant voltage, so the dielectric breakdown voltage of the discharge gap changes due to changes in the state of the discharge gap, and the discharge may not start, resulting in repeated discharges. While doing so, a discharge error occurred.

大目 的 本発明は従来例の上述した問題点を解消し、主コンデン
サの充電電圧が電源電圧に規制されることなく決められ
、放電エネルギーの選択範囲が広く、まだ毎回の火花放
電を確実に起させるようにすることを1」的とする。
Main Purpose The present invention solves the above-mentioned problems of the prior art, allows the charging voltage of the main capacitor to be determined without being restricted by the power supply voltage, has a wide selection range of discharge energy, and still ensures spark discharge every time. The first goal is to make it happen.

二・ 構 成 本発明火花放電回路は、トランスに適宜時間直流電源市
川を印加し経時的に増加して行く電流を一次側巻線に流
して磁気的エネルギーを蓄積し、トランスと直b1を電
源との間を遮断することによって二次巻線に発生する誘
導電流によって上記磁気的エネルギーを火花放電エネル
ギーを蓄える主コンデンサに移しかえて該コンデンサを
充電すると云う動作を任意回数繰返すことによって、主
コンデンサの充電エネルギーを段階的に増加させて行く
と共に、出力電圧が経時的に上昇して行く回路によって
トリガ電圧を発生させ、火花放電が開始される首でトリ
ガ電圧を高めて行くようにしだ点に特徴をイJする。
2. Configuration The spark discharge circuit of the present invention applies a DC power source Ichikawa to the transformer for an appropriate period of time, causes a current that increases over time to flow through the primary winding, accumulates magnetic energy, and connects the transformer and direct current B1 as a power source. The magnetic energy is transferred to the main capacitor that stores spark discharge energy by the induced current generated in the secondary winding by interrupting the capacitor, and the capacitor is charged. The trigger voltage is generated by a circuit that gradually increases the charging energy and the output voltage increases over time, and the trigger voltage is raised at the neck where spark discharge starts. I want to do it.

ホ・実施例 第2図は本発明の一実施例を示す。G1は分析用主放電
ギャップであり、G2はトリガ用放電ギャップである。
E. Embodiment FIG. 2 shows an embodiment of the present invention. G1 is a main discharge gap for analysis, and G2 is a discharge gap for triggering.

トランスT r 1. T r 2を含む同じような構
成の回路が上下に二つ並んで、互に並列に共通の直流電
源DCに接続されているが、上の回路が主放電ギャップ
Glで主放電を行わせる回路であシ、下の回路はトリガ
用放電ギャップG2に放電を行わせる回路である。スイ
ッチングトランジスタS1及びS2はゲー)Al、A2
を介してパルス発生器Pから送られて来るパルス信号に
よって間欠的に導通せしめられる。Qは制御回路でゲー
)AI、A2の開閉を司っている。
Trans T r 1. Two circuits with a similar configuration including T r 2 are lined up one above the other and connected in parallel to a common DC power supply DC, but the upper circuit is the circuit that causes the main discharge in the main discharge gap Gl. The circuit below is a circuit that causes the trigger discharge gap G2 to discharge. Switching transistors S1 and S2 are gate transistors) Al, A2
It is made conductive intermittently by a pulse signal sent from the pulse generator P via the pulse generator P. Q is a control circuit that controls the opening and closing of AI and A2.

当初ゲー)A2は閉じA1が開いていて、トランジスタ
Slのベースにパルス発生器Pからのパルス信号が印加
されてSlがオンオフしている。
Initially, gate A2 is closed and A1 is open, and a pulse signal from the pulse generator P is applied to the base of the transistor Sl, turning Sl on and off.

第3図aがパルス発生器Pの出力を示し、同出力が・・
イレベルである間S1が導通している。Slの導通期間
中トランスTrlの一次側には直流電源DCによって一
定電圧が印加さ−れているので、Trlの一次側には第
3図すで区間Tに示すような次第に増加する電流が流れ
てトランスのコアに磁気的エネルギーが蓄積されて行く
。第3図CはトランスTrlの二次側出力電圧を示し、
Slの導通期間中は一定電圧であるが、Slがオフにな
ると反対極性の高電圧が誘起される。トランスTr1の
二次巻線はダイオードd1と火花放電用主コンデンサC
1とで直列回路を構成しており、ダイオードd1はトラ
ンジスタ81の導通期間におけるトランスTrlの二次
側の出力電圧に対して逆方向となっている。従って81
がオフになるとTrlの二次側に誘起される誘導電流に
よってコンデンサC1が充電される。このような過程に
よってトランスTrlのコアに蓄えられた磁気的エネル
ギーが主コンデンサC1に移し変えられ、C1に静電エ
ネルギーとして蓄えられる。このとき(7) ニア 7
 テンザC1の充電電圧VはコンデンサC1の容量によ
り、この容量をC1磁気的エネルギーをBとすると、V
=f’iBン石であり、直流電源DCの出力電圧による
制限なしに電圧■が決まる。
Figure 3a shows the output of the pulse generator P, and the output is...
S1 is conductive while the current level is high. During the conduction period of Sl, a constant voltage is applied to the primary side of the transformer Trl by the DC power supply, so a gradually increasing current flows through the primary side of the Trl as shown in section T in Figure 3. As a result, magnetic energy is accumulated in the core of the transformer. Figure 3C shows the secondary output voltage of the transformer Trl,
While the voltage is constant during the conduction period of Sl, a high voltage of the opposite polarity is induced when Sl is turned off. The secondary winding of the transformer Tr1 is a diode d1 and a main capacitor C for spark discharge.
1 constitutes a series circuit, and the diode d1 has a direction opposite to the output voltage on the secondary side of the transformer Trl during the conduction period of the transistor 81. Therefore 81
When Trl is turned off, capacitor C1 is charged by an induced current induced on the secondary side of Trl. Through this process, the magnetic energy stored in the core of the transformer Trl is transferred to the main capacitor C1, and is stored in C1 as electrostatic energy. At this time (7) Near 7
The charging voltage V of Tenza C1 is determined by the capacitance of the capacitor C1.If this capacitance is C1 and the magnetic energy is B, then V
=f'iB, and the voltage (2) is determined without being limited by the output voltage of the DC power supply DC.

上述した動作はゲートAIが開いている間、トランジス
タS1がオンオフを行う度に繰返され、コンデンサC1
の充電電荷は段階的に増加し、充電電圧が高まって行く
。この充電電圧はトランジスタS1のオンオフの繰返し
数に略比例しておシ、この繰返し回数を設定しておくこ
とによって色々に選択できる。制御回路QはゲートAl
を通して送られたパルス数を計数していて、所定回数に
達したらゲー)AIを閉じA2を開く。そうすると今度
はトランジスタS2がオンオフを繰返し、上述した所と
同様にしてトランスTr2の一次側電流がオンオフされ
る。82オツの際トランスTr2の二次側にダイオード
d2の順方向電圧が誘起されてコンデンサC2が充電さ
れ、この動作が繰返されてコンデンサC2の充電電圧が
高まる。C2の容量はC1より小さく、比較的短時間で
01の充電電圧より高電圧に充電され放電ギャップ02
間に火花放電を起させる。そうすると火花放電の電流が
主ギャップG1を流れようとして同ギャップの絶縁を破
るので、主コンデンサC1の充電電荷が01を通して放
電されて主火花放電が起る。
The above operation is repeated every time the transistor S1 is turned on and off while the gate AI is open, and the capacitor C1
The charging charge increases step by step, and the charging voltage increases. This charging voltage is approximately proportional to the number of repetitions of turning on and off the transistor S1, and can be selected in various ways by setting the number of repetitions. Control circuit Q has gate Al
The number of pulses sent through is counted, and when it reaches a predetermined number, game) AI is closed and A2 is opened. Then, the transistor S2 is turned on and off repeatedly, and the primary current of the transformer Tr2 is turned on and off in the same manner as described above. When the voltage is 82, the forward voltage of the diode d2 is induced on the secondary side of the transformer Tr2 to charge the capacitor C2, and this operation is repeated to increase the charging voltage of the capacitor C2. The capacitance of C2 is smaller than C1, and it is charged to a higher voltage than the charging voltage of 01 in a relatively short time, and the discharge gap 02
A spark discharge is caused in between. Then, the spark discharge current tries to flow through the main gap G1 and breaks the insulation of the gap, so that the charge in the main capacitor C1 is discharged through 01 and a main spark discharge occurs.

この火花放電の電流が抵抗rの両端間電圧によって制御
回路Qに検知されると、制御回路QはゲートA2を閉じ
、主火花放電が終った後A1を開いて上述した動作を再
び開始させる。このようにして火花放電が繰返される。
When the current of this spark discharge is detected by the control circuit Q by the voltage across the resistor r, the control circuit Q closes the gate A2 and opens A1 after the main spark discharge ends to restart the above-described operation. In this way, spark discharge is repeated.

なおトリガ回路側の高圧発生回路としてはコックロフト
回路を用いてもよい0 へ、効 果 この回路の特徴は主コンデンサC1の充電を一度に行わ
ず、少しずつ何回にも分けて行うことによってトランス
Trlの励磁電流の値を小さく抑えた所にある。このた
めトランスTrlが小形にできる利点がある。トランス
Tr2も同様である。
Note that a Cockroft circuit may be used as the high voltage generating circuit on the trigger circuit side.The feature of this circuit is that the main capacitor C1 is not charged all at once, but is charged little by little several times. This is because the value of the excitation current of the transformer Trl is suppressed to a small value. Therefore, there is an advantage that the transformer Trl can be made smaller. The same applies to transformer Tr2.

もう一つの特徴は、トリガ回路のコンデンサC2の充電
は放電が始まる電圧に達するまで続けられるので、電圧
不足による放電ミスが起らない点にある。従来のように
一回だけの充電で高圧を得る方法では放電ギャップの状
態変化による絶縁破壊電圧の変動によって放電ミスが起
っていたが本発明ではこのようなことは起らない。また
本発明によれば、トランスの一次側の励磁電流によって
コアに蓄えられた磁気的エネルギーをコンデンサに静電
エネルギーとして移しかえる動作を繰返してコンデンサ
を充電して行くので、主コンデンサの充電電圧は電源電
圧に規制されず広い範囲で選択口J能となり試料に応じ
た最適放電条件の選択が可能となって分析精度の向上が
得られる。
Another feature is that since charging of the capacitor C2 of the trigger circuit continues until it reaches a voltage at which discharging begins, no discharge errors occur due to insufficient voltage. In the conventional method of obtaining high voltage by charging only once, discharge errors occur due to fluctuations in breakdown voltage due to changes in the state of the discharge gap, but this does not occur in the present invention. Furthermore, according to the present invention, since the capacitor is charged by repeatedly transferring the magnetic energy stored in the core to the capacitor as electrostatic energy by the excitation current on the primary side of the transformer, the charging voltage of the main capacitor is The selection port is not restricted by the power supply voltage and can be selected over a wide range, making it possible to select the optimum discharge conditions according to the sample, resulting in improved analysis accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の回路図、第2図は本発明の一実施例の
回路図、第3図は同実施例の動作を説明する波形図であ
る。 DC・・・直流電源、C,Gl、G2・・・火花放電ギ
ャップ、C1・・・火花放電用エネルギーを蓄える主コ
ンデンサ。 代理人 弁理士 味 浩 介
FIG. 1 is a circuit diagram of a conventional example, FIG. 2 is a circuit diagram of an embodiment of the present invention, and FIG. 3 is a waveform diagram explaining the operation of the embodiment. DC...DC power supply, C, Gl, G2...Spark discharge gap, C1...Main capacitor that stores energy for spark discharge. Agent Patent Attorney Kosuke Aji

Claims (1)

【特許請求の範囲】[Claims] スイッチを介して直流電源よシ励磁電流を供給されるト
ランスと、上記トランスの二次側とダイオードと火花放
電エネルギーを蓄える主コンデンサとの直列回路で、励
磁電流が増加している間の上記トランスの二次側に誘起
されている電圧に対して上記ダイオードが逆方向である
二次回路と、この二次回路の上記主コンデンサの両端間
に接続された主放電ギャップと、出力電圧が経時的に上
昇していく電圧発生回路よりなる放電トリガ回路と、上
記スイッチを所定回数繰返しオンオフさせる制御回路と
よりなり、上記励磁電流遮断時に上記トランスの二次側
に誘起される電流で上記主コンデンサを段階的に充電す
ると共に、火花放電が開始されるまでトリガ電圧を高め
て行くようにした発光分光分析用火花放電回路。。
This is a series circuit consisting of a transformer supplied with excitation current from a DC power supply via a switch, the secondary side of the transformer, a diode, and a main capacitor that stores spark discharge energy. A secondary circuit in which said diode is in the opposite direction with respect to the voltage induced on the secondary side of the It consists of a discharge trigger circuit consisting of a voltage generating circuit that increases the voltage, and a control circuit that repeatedly turns on and off the switch a predetermined number of times. A spark discharge circuit for optical emission spectrometry that charges in stages and increases the trigger voltage until spark discharge starts. .
JP22288983A 1983-11-25 1983-11-25 Spark discharge circuit for emission spectrochemical analysis Pending JPS60114746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22288983A JPS60114746A (en) 1983-11-25 1983-11-25 Spark discharge circuit for emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22288983A JPS60114746A (en) 1983-11-25 1983-11-25 Spark discharge circuit for emission spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPS60114746A true JPS60114746A (en) 1985-06-21

Family

ID=16789456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22288983A Pending JPS60114746A (en) 1983-11-25 1983-11-25 Spark discharge circuit for emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS60114746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109533A (en) * 2001-07-24 2003-04-11 Agilent Technol Inc Electron circuit
JPWO2008072318A1 (en) * 2006-12-13 2010-03-25 株式会社島津製作所 Luminescence analyzer
JP2010078392A (en) * 2008-09-25 2010-04-08 Hugle Electronics Inc Ion concentration measuring circuit and ion current sensor
WO2011048696A1 (en) * 2009-10-23 2011-04-28 株式会社島津製作所 Pulse voltage generating circuit, discharge circuit, and emission analyzer using the circuits
US8179657B2 (en) 2006-10-31 2012-05-15 Shimadzu Corporation Emission analyzer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109533A (en) * 2001-07-24 2003-04-11 Agilent Technol Inc Electron circuit
GB2382216A (en) * 2001-07-24 2003-05-21 Agilent Technologies Inc Electrical discharge circuits for ionization detectors
GB2382216B (en) * 2001-07-24 2005-09-21 Agilent Technologies Inc Electrical discharge circuits
US8179657B2 (en) 2006-10-31 2012-05-15 Shimadzu Corporation Emission analyzer
JPWO2008072318A1 (en) * 2006-12-13 2010-03-25 株式会社島津製作所 Luminescence analyzer
JP2010078392A (en) * 2008-09-25 2010-04-08 Hugle Electronics Inc Ion concentration measuring circuit and ion current sensor
WO2011048696A1 (en) * 2009-10-23 2011-04-28 株式会社島津製作所 Pulse voltage generating circuit, discharge circuit, and emission analyzer using the circuits
JPWO2011048696A1 (en) * 2009-10-23 2013-03-07 株式会社島津製作所 Pulse voltage generation circuit, discharge circuit, and emission analyzer using the same
JP5472310B2 (en) * 2009-10-23 2014-04-16 株式会社島津製作所 Pulse voltage generation circuit, discharge circuit, and emission analyzer using the same

Similar Documents

Publication Publication Date Title
US5558071A (en) Ignition system power converter and controller
DE3714155C2 (en)
US4394719A (en) Current control apparatus for a flyback capacitor charger
US6563252B2 (en) Circuit and method for driving at least one capacitive actuator
JPH0599107A (en) Ignitor for internal combustion engine
JPS60114746A (en) Spark discharge circuit for emission spectrochemical analysis
JPH06117347A (en) Ignition device of internal combustion engine
US11215157B2 (en) Ignition control device for internal combustion engine
US6367318B1 (en) Multicharge ignition system having combustion feedback for termination
US6701904B2 (en) Capacitive discharge ignition system with extended duration spark
JP4502659B2 (en) Pulse generator
JP2599230B2 (en) Charging device
JPH05256235A (en) Ignition device for internal combustion engine
JP2005183038A (en) Stroboscopic flash device
JPH11153079A (en) Igniter
JP5154371B2 (en) Ion current detector
JP5410214B2 (en) Ion current detector
RU2011493C1 (en) Method and device for producing electric arc
US3400300A (en) Capacitive discharge ignition system employing a saturable switching core and a transistor
JPS62163569A (en) Charging circuit for energy storing capacitor
CA2195793C (en) Ignition system for internal combustion engines
JPS6323918Y2 (en)
SU356710A1 (en) PROGRAM TIME RELAY
JPS5845839B2 (en) Laser processing equipment
RU2107988C1 (en) High-voltage switch