JPS60113465A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60113465A
JPS60113465A JP58221018A JP22101883A JPS60113465A JP S60113465 A JPS60113465 A JP S60113465A JP 58221018 A JP58221018 A JP 58221018A JP 22101883 A JP22101883 A JP 22101883A JP S60113465 A JPS60113465 A JP S60113465A
Authority
JP
Japan
Prior art keywords
film
alpha
rays
coated
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58221018A
Other languages
Japanese (ja)
Inventor
Minoru Inoue
実 井上
Yasutaka Ban
伴 保隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58221018A priority Critical patent/JPS60113465A/en
Publication of JPS60113465A publication Critical patent/JPS60113465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • H01L23/556Protection against radiation, e.g. light or electromagnetic waves against alpha rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent faults due to alpha-rays by a method wherein the upper part of a region with at least a functional element is coated with a glass film containing metal particles. CONSTITUTION:Memory information accumulated in a capacitor composed of an N<+> type layer 2 and a poly Si layer 4 is shielded by an alpha ray shielding from 5 from the alpha-rays emitted from radioactive elements contained in a very small amount in an aluminum film 6. The film 5 is formed by mixing nickel ultrafine powder in 60wt% of silicon resin, and then by spin coating at a revolution of 500rpm after viscosity adjustment by using a solvent. Next, the film is calcined for a prescribed time at a temperature of 250 deg.C in nitrogen, and a semiconductor substrate is coated with it over the entire surface to a thickness of 15mum.

Description

【発明の詳細な説明】 (ハ9発明の技術分野 本発明は半導体装置に係り、特にα線による障高密度高
集積化された半導体メモリ、特にキャパシタに電荷を保
持することによって情報の記憶がなされるダイナミック
型ランダム・アクセス・メモリ等においては、外部より
の飛来または配線、封止、パンケージ材料に含まれる微
量の放射性元素から発生するα線によって記憶が損なわ
れるソフト・エラーが問題になっている。
Detailed Description of the Invention (C9) Technical Field of the Invention The present invention relates to a semiconductor device, and in particular to a highly integrated semiconductor memory with high density and high integration due to α rays, and in particular to a semiconductor memory which is capable of storing information by retaining charge in a capacitor. In dynamic random access memories, etc., soft errors, which damage the memory due to α rays coming from outside or from trace amounts of radioactive elements contained in wiring, sealing, and pancake materials, have become a problem. There is.

■、従来技術と問題点 従来のα線障害防止方法として、半導体基板上にポリイ
ミド膜単体あるいは高純度シリコン、パラフィン等をフ
ィラーに含んだポリイミド膜を被着してα線を遮蔽して
いた。しかし該膜を構成する物質中のα線の飛程(入射
α粒子のエネルギーが1/2になる膜厚)が太き(、ポ
リイミドで35μm、シリコンで30μm、パラフィン
で60μm程度であるため、完全に遮蔽するには50μ
m程度の膜厚を必要とした。このように厚い膜を均一な
膜厚に被着するためスピン・コートおよび塗布膜の焼成
を数回に分けて行う必要があり工程が複雑になる。
(2) Prior Art and Problems Conventional methods for preventing α-ray damage include coating a semiconductor substrate with a single polyimide film or a polyimide film containing filler such as high-purity silicon or paraffin to shield α-rays. However, since the range of α rays in the material constituting the film (the film thickness at which the energy of incident α particles is halved) is large (approximately 35 μm for polyimide, 30 μm for silicon, and 60 μm for paraffin), 50μ for complete shielding
The film required a film thickness of about 1.0 m. In order to deposit such a thick film with a uniform thickness, it is necessary to perform spin coating and baking of the applied film several times, which complicates the process.

さらにα線の飛程が小さい膜が最近提案されているが、
これらの膜を機能素子上に被着しても、配線膜に含まれ
る放射性元素から放出されるα線により障害が起こる。
Furthermore, membranes with a small range of alpha rays have been proposed recently;
Even if these films are deposited on functional elements, damage may occur due to alpha rays emitted from radioactive elements contained in the wiring film.

特に多層配線構造の半導体装置においてこの影響が顕著
である。一般に配線膜は種々の利点をもつアルミニウム
が多く用いられるが、アルミニウム中の放射性の不純物
、例えばウラン、トリウム等の除去は困難である。配線
膜はこの他にモリブデンシリサイド等が用いられている
が、いづれにしてもこれらの材料の高純度化を行えばよ
いが製造コストの上昇を来すことになる。そのため半導
体装置の眉間絶縁膜として適したα線の飛程が小さい膜
が必要になる。
This effect is particularly noticeable in semiconductor devices with multilayer wiring structures. Generally, aluminum is often used for wiring films because of its various advantages, but it is difficult to remove radioactive impurities such as uranium and thorium in aluminum. Other materials such as molybdenum silicide are also used for the wiring film, but in any case, it would be possible to improve the purity of these materials, but this would result in an increase in manufacturing costs. Therefore, a film with a small range of alpha rays suitable as an insulating film between the eyebrows of a semiconductor device is required.

(4)1発明の目的 本発明の目的は従来技術の有する上記の欠点を除去し、
少なくとも機能素子が形成されている領域の」二部が、
金属粒子を含むガラス膜で覆われてなるα線遮蔽構造の
半導体装置を提供することにある。
(4) 1.Object of the invention The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
At least two parts of the area where the functional element is formed are
An object of the present invention is to provide a semiconductor device having an α-ray shielding structure covered with a glass film containing metal particles.

に)0発明の構成 上記の目的は本発明によれば、少なくとも機能素子が形
成されている領域の上部が、金属粒子を含むガラス膜で
覆われてなることを特徴とする半導体装置の眉間絶縁に
用いられる酸化シリコンはα線の飛程が〜60μmであ
り、本発明はこれより短い飛程を有する金属の超微粉末
(粒径〜100人)を耐熱性、高絶縁性のスピン・オン
・グラス中に、その絶縁性が損なわれないで出来るだけ
多量に重量比で40〜60%混入させてα線の飛程を小
さくし、薄い膜厚に対しても充分なα線遮蔽効果を持た
せるようにしたものである。
According to the present invention, the above-mentioned object is to provide glabellar insulation for a semiconductor device, characterized in that at least an upper portion of a region where a functional element is formed is covered with a glass film containing metal particles. The range of the alpha rays of the silicon oxide used for the・Incorporate as much as 40 to 60% by weight of glass into the glass without impairing its insulating properties to reduce the range of alpha rays and achieve sufficient alpha ray shielding effect even with thin film thickness. It was designed to be held.

この目的に使用される金属に対するα線の飛程はモリブ
デン、コバルト、ニッケルで〜1oμm1タンタル、パ
ラジウムで〜8μm1オスミウム、白金、金で〜6μm
である。一般にこれらの金属中の放射性元素の含有率は
酸化シリコンと同程度の1〜3 ppbであり特別に高
度の精製を必要としない。
The range of alpha rays for metals used for this purpose is ~10μm for molybdenum, cobalt, and nickel1~8μm for tantalum and palladium~~6μm for osmium, platinum, and gold
It is. Generally, the content of radioactive elements in these metals is 1 to 3 ppb, which is about the same as that of silicon oxide, and does not require a particularly high degree of purification.

半導体装置の眉間絶縁には通常CVD法により燐珪酸ガ
ラス膜が用いられるが、その被着過程において前記の金
属粒を混入させることはできない。
Although a phosphosilicate glass film is usually used by the CVD method for glabellar insulation of semiconductor devices, the above-mentioned metal particles cannot be mixed in during the deposition process.

ン半導体基板、2はn+型層、3は酸化シリコン膜、4
はポリシリコン膜、5はニッケルの超微粉末を重量比で
60%混入したシリコン樹脂よりなセルの1部を示し2
と4で構成されたキャパシタに蓄積された記憶情報を5
のα線遮蔽膜により、6のアルミニウム膜に微量含まれ
る放射性元素より放出されるα線を遮蔽する。
2 is an n+ type layer, 3 is a silicon oxide film, 4 is a semiconductor substrate;
2 indicates a part of the cell made of polysilicon film, and 5 is made of silicone resin mixed with 60% by weight ultrafine nickel powder.
The stored information stored in the capacitor composed of 5 and 4
The alpha ray shielding film 6 shields the alpha rays emitted from the radioactive elements contained in trace amounts in the aluminum film 6.

α線遮蔽膜の形成は、まづ上記のニッケルの超微粉末を
重量比で60%シリコン樹脂中に混合させ、トルエン等
の溶媒を用いて粘度を調節し5゜Orpmの回転数でス
ピン・コートする。つぎに窒素中で250℃の温度で所
定時間焼成して半導体基板全面に厚さ15μmに被着す
る。つぎに図示されていないがレジス日灸をマスクにし
て4ふっ化メタン(CF4)等のフレオンガスのプラズ
マによる選択的なアッシングにより不必要な部分を除去
する。
To form the α-ray shielding film, first, the above-mentioned ultrafine nickel powder is mixed in silicone resin at a weight ratio of 60%, the viscosity is adjusted using a solvent such as toluene, and the mixture is spun at a rotation speed of 5°Orpm. coat. Next, it is baked in nitrogen at a temperature of 250° C. for a predetermined period of time to form a 15 μm thick coating over the entire surface of the semiconductor substrate. Next, although not shown in the drawings, unnecessary portions are removed by selective ashing using plasma of Freon gas such as tetrafluoromethane (CF4) using Regis moxibustion as a mask.

実施例では眉間絶縁膜として本発明に係るα線遮蔽膜を
用いたが、外部から飛来するα線やパンケージを構成す
るセラミック材料、封止用ボンディング・ワイヤ等に含
まれる微量の放射性元素から放出するα線を遮蔽するカ
バー膜としても極めて有効である。
In the examples, the alpha ray shielding film according to the present invention was used as the glabella insulating film, but it was emitted from alpha rays coming from the outside, from trace amounts of radioactive elements contained in the ceramic material making up the pancage, the bonding wire for sealing, etc. It is also extremely effective as a cover film for blocking alpha rays.

本発明ではスピン・オン・グラスとしてシリコン樹脂を
用いたが、テトラ・メチル・シリケートを主成分とする
塗布酸化膜、燐の化合物とシリコンの化合物からなるス
ピン・オン・グラス液等を用いてもよい。またこれに混
入する金属粒についてはは前記金属はいづれも使用でき
、前記以外に以上詳細に説明した様に本発明によれば、
少なくとも機能素子が形成されている領域の上部が、金
属粒子を含むガラス膜で覆われてなるα線遮蔽構造の半
導体装置を提供するすることができる。
In the present invention, a silicone resin is used as the spin-on glass, but it is also possible to use a coated oxide film containing tetramethyl silicate as the main component, a spin-on glass liquid consisting of a phosphorus compound and a silicon compound, etc. good. Further, as for the metal particles mixed therein, any of the metals mentioned above can be used, and in addition to the above, according to the present invention, as explained in detail above,
It is possible to provide a semiconductor device having an α-ray shielding structure in which at least the upper part of a region where a functional element is formed is covered with a glass film containing metal particles.

特に該膜は眉間絶縁膜に適用して極めて有効である。In particular, this film is extremely effective when applied to an insulating film between the eyebrows.

【図面の簡単な説明】[Brief explanation of drawings]

2はn十型層、3は酸化シリコン膜、4はポリシリコン
膜、5は金属粒混入スピン・オン・グラス股、6はアル
ミニウム膜を示す。 第1図
2 is an n-type layer, 3 is a silicon oxide film, 4 is a polysilicon film, 5 is a spin-on-glass layer mixed with metal grains, and 6 is an aluminum film. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 少なくとも機能素子が形成されている領域の上部が、金
属粒子を含むガラス膜で覆われてなることを特徴とする
半導体装置。
A semiconductor device characterized in that at least an upper portion of a region where a functional element is formed is covered with a glass film containing metal particles.
JP58221018A 1983-11-24 1983-11-24 Semiconductor device Pending JPS60113465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221018A JPS60113465A (en) 1983-11-24 1983-11-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221018A JPS60113465A (en) 1983-11-24 1983-11-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60113465A true JPS60113465A (en) 1985-06-19

Family

ID=16760189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221018A Pending JPS60113465A (en) 1983-11-24 1983-11-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60113465A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162258A (en) * 1979-06-05 1980-12-17 Fujitsu Ltd Semiconductor memory device
JPS5650554A (en) * 1979-10-02 1981-05-07 Mitsubishi Electric Corp Semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162258A (en) * 1979-06-05 1980-12-17 Fujitsu Ltd Semiconductor memory device
JPS5650554A (en) * 1979-10-02 1981-05-07 Mitsubishi Electric Corp Semiconductor memory

Similar Documents

Publication Publication Date Title
US3511703A (en) Method for depositing mixed oxide films containing aluminum oxide
US5071510A (en) Process for anisotropic etching of silicon plates
US4492717A (en) Method for forming a planarized integrated circuit
EP0034455A2 (en) Semiconductor device having a protective layer, and method for producing it
JPH08239264A (en) Thin barium titanate strontium film using boron
Schnable et al. Passivation coatings on silicon devices
US3745428A (en) Semiconductor device having a composite film as a passivating film
JP2518617B2 (en) Nonvolatile memory and method of manufacturing the same
CA1071941A (en) Chemical vapor deposition of films and resulting products
JPS60113465A (en) Semiconductor device
TW504821B (en) Semiconductor device and method for fabricating the same
KR20000005604A (en) Semiconductor device
EP0114106A2 (en) Method for manufacturing a semiconductor memory device having a high radiation resistance
Watanabe et al. Radiation hardened silicon devices using a novel thick oxide
US3676756A (en) Insulated gate field effect device having glass gate insulator
US8946874B2 (en) IC in-process solution to reduce thermal neutrons soft error rate
US6403160B1 (en) Ferroelectric thin film, production method thereof and coating liquid for making thin film
JPS6077447A (en) Semiconductor device
US3505107A (en) Vapor deposition of germanium semiconductor material
JPS6210017B2 (en)
US3698945A (en) Method of coating pn junction of semiconductor device with mixture of sio2 and tio2
KR100260551B1 (en) Semiconductor device for reducing soft error and manufacturing method thereof
JPS5812322A (en) Formation of semiconductor film
JPH07120651B2 (en) Method of forming a device having a silicon oxide region
Shimbo et al. Surface-charge properties of fluorine-doped lead borosilicate glass