JPS60110848A - Nonmagnetic high hardness steel - Google Patents

Nonmagnetic high hardness steel

Info

Publication number
JPS60110848A
JPS60110848A JP58218754A JP21875483A JPS60110848A JP S60110848 A JPS60110848 A JP S60110848A JP 58218754 A JP58218754 A JP 58218754A JP 21875483 A JP21875483 A JP 21875483A JP S60110848 A JPS60110848 A JP S60110848A
Authority
JP
Japan
Prior art keywords
weight
hardness
less
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58218754A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Tomohito Iikubo
知人 飯久保
Yutaka Kurebayashi
豊 紅林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58218754A priority Critical patent/JPS60110848A/en
Publication of JPS60110848A publication Critical patent/JPS60110848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled steel having high strength and hardness and showing stable nonmagnetism by providing a specified composition consisting of C, Si, Mn, Ni, Cr, B, Ti, Al, Nb and Fe. CONSTITUTION:This nonmagnetic high hardness steel consists of, by weight, <=0.05% C, <=2.0% Si, <=2.0% Mn, 20-30% Ni, 15-20% Cr, <=0.010% B, 2.5- 5.0% Ti, 0.1-1.0% Al, 0.2-2.0% Nb and the balance essentially Fe while satisfying an equation Ti+Al+Nb=4.0-7.0atm% or further contains one ore more among 0.001-0.020% Mg, 0.001-0.050% Zr, 0.001-0.020% Ca and 0.001-0.050% REM. The steel has high strength and hardness and shows stable nonmagnetism, and it is suitable for use as the material of parts requiring nonmagnetism, strength and wear resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、強瓜および硬度が大であってしかも安定し
て非磁性を示し、例えば、非磁性ばね。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a material that has high strength and hardness, yet stably exhibits non-magnetic properties, such as a non-magnetic spring.

VTR用シャフト、非磁性金型などの素材として利用す
ることができる非磁性高硬度鋼に関するものである。
The present invention relates to non-magnetic high-hardness steel that can be used as a material for VTR shafts, non-magnetic molds, etc.

(従来技術) 従来、例えば非磁性が要求される部品としては、電算機
に組込まれるリレースイッチ用ばねやVTR用シャフト
などがあり、これらの素材としては5US304やBe
−Cu系合金などが使用されていた。
(Prior art) Conventionally, for example, parts that require non-magnetic properties include springs for relay switches incorporated in computers and shafts for VTRs, and these materials include 5US304 and Be.
-Cu-based alloys were used.

しかしながら、例えば5US304の場合には低加工度
の状yルでは良好な非磁性が得られるものの強度および
硬度が低いため、強度」三部品寸法を小さくすることが
できなかったり、表面の摩耗が勇しかったりするという
欠点を有していた。一方、SU’5304の加工度を高
めて強度および硬度を一1= ’ilさせた場合には非
磁性のものを得ることができなくなり、」=述した非磁
性が要求される部品の累月としては適さなくなるという
問題点があった。他力、Be−Cu系合金の場合には安
定した非磁性が得られると共にある程度の強度および硬
度を41しているが、近年の各種製品の小型軽JIi化
の黄求に伴って部品のより一層の小型化が心霊となり、
このためにはさらに強度の大きい非磁性高強度材料が要
求されると共に、V T P、用シャフトなとの場合−
には硬度をより一層高めて耐摩耗性をさらに向上させ、
高品質の画像を長期にわたって得られるように、上記の
非磁性高強度に加えて高硬度の要求か強まってきている
However, in the case of 5US304, for example, although good non-magnetic properties can be obtained in low-machined shapes, the strength and hardness are low, so it is not possible to reduce the dimensions of the three parts, and surface wear is severe. It had the disadvantage of being scolded. On the other hand, if the strength and hardness of SU'5304 are increased by 11 = 'il, it becomes impossible to obtain a non-magnetic product. There was a problem that it became unsuitable as a. In the case of Be-Cu alloys, stable non-magnetism can be obtained, as well as a certain degree of strength and hardness. Further miniaturization becomes a ghost,
For this purpose, a non-magnetic high-strength material with even greater strength is required, and in the case of shafts for VTP,
The hardness has been further increased to further improve wear resistance,
In order to obtain high-quality images over a long period of time, there is an increasing demand for high hardness in addition to the above-mentioned non-magnetic high strength.

(発明の目的) こめ発明は、上述した従来の事情に着目してなされたも
ので、強度および硬度が大であってしかも安定して非磁
性を示し、非磁性ならびに強度や耐摩耗性等が要求され
る部品の素旧として好適に使用することができる非磁性
高硬度鋼を提供することを目的としている。
(Object of the invention) The present invention was made by paying attention to the above-mentioned conventional circumstances, and it has high strength and hardness, stably exhibits non-magnetic properties, and has excellent non-magnetic properties, strength, wear resistance, etc. The object of the present invention is to provide a non-magnetic high-hardness steel that can be suitably used as a material for required parts.

(発明の構成) この発明による非磁性高硬度鋼は、C: 0.05重量
%以下、Si:2.0重量%以下、Mn:2゜0重量%
以下、Ni:20〜30重量%、Cr:15〜20重量
%、B:0.010重量%以下、Ti:2.5〜5.0
重量%、A文:0.1〜1.0重量%、Nb:0.2〜
2.0重量%でかつ原子%に換算してTi+A文+Nb
=4.0〜7.0原子%を満足し、さらに必要に応じて
、Mg:0.001〜0.020重量%。
(Structure of the Invention) The non-magnetic high hardness steel according to the present invention contains C: 0.05% by weight or less, Si: 2.0% by weight or less, Mn: 2°0% by weight.
Below, Ni: 20-30% by weight, Cr: 15-20% by weight, B: 0.010% by weight or less, Ti: 2.5-5.0
Weight%, A text: 0.1 to 1.0 weight%, Nb: 0.2 to
2.0% by weight and converted to atomic%: Ti+A+Nb
Mg: 0.001 to 0.020% by weight, if necessary.

Zr:0.OOl 〜0.050重量%、Ca:o、o
oi〜0.020重量%、REM (Yを含む希土類元
素):O,OO1〜0.050重量%のうちの1種また
は2種以上を含有し、残部実質的にFeよりなることを
特徴としている。
Zr: 0. OOl ~0.050% by weight, Ca: o, o
oi ~ 0.020% by weight, REM (rare earth element containing Y): O, OO 1 to 0.050% by weight, and the remainder substantially consists of Fe. There is.

次に、この発明による非磁性高硬度鋼の成分範囲の限/
J=理由について説明する。
Next, the limits of the composition range of the non-magnetic high hardness steel according to the present invention/
J = Explain the reason.

C:0.05爪量%以下 Cは強力なオーステナイト形成元素であり、安定な非磁
性鋼を得るのに重要な元素であるが、Ti、Nbなとの
ような炭化物形成元素を多量に含む鋼では巨大炭化物を
形成しやすく、また多量に含有すると靭延性が低下する
ため0 、05fi1%以下に限定した。
C: 0.05% or less C is a strong austenite-forming element and is an important element for obtaining stable non-magnetic steel, but it also contains large amounts of carbide-forming elements such as Ti and Nb. In steel, giant carbides are likely to form, and if a large amount is contained, the toughness and ductility decreases, so the content was limited to 0.05fi1% or less.

Si二2,0重厚−%以下 Siは溶解時の脱酸元素として有効であるほか1.j、
I度を高める効果を有する元素であるが、多jIjに含
有すると熱間加工性や磁気特性を害するため2.Q屯4
1%以下に限定した。
Si 2 2,0 weight -% or lessSi is effective as a deoxidizing element during melting.1. j,
It is an element that has the effect of increasing the I degree, but if it is contained in a large amount, it impairs hot workability and magnetic properties.2. Qtun 4
Limited to 1% or less.

M n : 2 、 O爪Fi!4%以下Mnは溶解時
の脱酸元素として有効であるほか、安定し5たオーステ
ナイト組織すなわち安定な非磁性を得るための重要な元
素であるが、γ′相やδ相を析出することにより高い硬
度を得る強析出型合金では析出硬化能を害するため2.
0重量%以下に限定した。
Mn: 2, O nail Fi! 4% or less Mn is effective as a deoxidizing element during melting, and is an important element for obtaining a stable austenitic structure, that is, stable nonmagnetism. 2. Strong precipitation type alloys that achieve high hardness impair precipitation hardening ability.
It was limited to 0% by weight or less.

Ni:20〜30重量% ・Niは安定なオーステナイト組織、すなわち安定な非
磁性を得るだめの必須元素であり、磁性および加工硬化
能を制御するためには少なくとも20重量%以上含有さ
せることが必要であるが、多量に含有させても前記性質
が比例的に増大しなくなるほか、経済的にも高価となる
ため30重量%以下に限定した。
Ni: 20 to 30% by weight Ni is an essential element for obtaining a stable austenite structure, that is, stable nonmagnetism, and it is necessary to contain at least 20% by weight to control magnetism and work hardening ability. However, even if it is contained in a large amount, the above-mentioned properties do not increase proportionally, and it is also economically expensive, so it is limited to 30% by weight or less.

Cr:15〜20重量% Crは安定な非磁性ならびに良好な耐応力腐食割れ性お
よび腐食抵抗性を得るだめの改善効果が顕著な元素であ
り、このような効果を得るためには15重遍%以上含有
させることが必要であるが、多量に含有すると靭延性の
劣下を導き、磁気特性にも悪影響を及ぼすので20重量
%以下に限定した。
Cr: 15-20% by weight Cr is an element that has a remarkable effect on improving stable non-magnetism and good stress corrosion cracking resistance and corrosion resistance. It is necessary to contain more than 20% by weight, but since containing a large amount leads to deterioration of toughness and ductility and has an adverse effect on magnetic properties, the content is limited to 20% by weight or less.

B:O,OIO重星5以下 Bは粒界を強化し、靭延性の向上を助長する作用を有す
るほか、熱間加工性の改善に顕著な効果を有する元素で
あるが、多量に含イ1すると低融点硼化物が生成し、脱
化温度領域が広くなるため0 、 O1,0重遍5%以
下に限定した。
B: O, OIO double star 5 or less B is an element that strengthens grain boundaries and helps improve toughness and ductility, and has a remarkable effect on improving hot workability. When 1, a low melting point boride is produced and the deoxidization temperature range becomes wide, so the 0, O1,0 weight distribution was limited to 5% or less.

Ti:2.5〜5.0重液% Aす二0.1〜1.0重量% Nb:0.2〜2.0型部% Ti 、A文、Nbは微細な析出物γ′相、δ相の析出
硬化をもたらす必須元素であり、十分な硬さを11Iる
には各々T i : 2 、5重量%以上、AM=0.
1重量%以」二、Nb:0.2重量%以上含イ)させる
ことが必要であるが、多量に含有させると苫しく熱間加
工性を害するため、上記成分範囲に限定した。そして、
安定な非磁性と十分な硬度を11ノ・ると共に製造性の
観点から、原子%換算でT i + A文+Nb=4.
0〜7.0原子%どすることが最も望ましい。
Ti: 2.5 to 5.0% heavy liquid A2 0.1 to 1.0% by weight Nb: 0.2 to 2.0% by weight Ti, A, and Nb are fine precipitates γ' phase , is an essential element that brings about precipitation hardening of the δ phase, and in order to obtain sufficient hardness, T i :2, 5% by weight or more, AM=0.
Nb: It is necessary to contain 0.2% by weight or more (i) of 1% by weight or more, but if it is contained in a large amount it will be harsh and impair hot workability, so the component range was limited to the above. and,
From the viewpoint of manufacturability, as well as stable non-magnetism and sufficient hardness, T i + A + Nb = 4.
It is most desirable that the content be 0 to 7.0 at%.

Mg:O,OO1〜0.020重量1%Zr:0.OO
I〜0.050重量% Ca+0.001〜0.020重品% RE重量%、001〜0..050重量%Mg、Zr、
Ca、REM(Yを含む右土類元素)はいずれも強靭性
の改善に右動な元素であり、また熱間加工性を著しく向
」ニーさせる作用を有しているが、多部に含有させると
粒界脆化の傾向を強めるので、」二足の範囲内でこれら
の1種または2種以」二を惑星に応じて添加する。
Mg: O, OO1-0.020 weight 1% Zr: 0. OO
I~0.050 wt% Ca+0.001~0.020 wt% RE wt%, 001~0. .. 050% by weight Mg, Zr,
Both Ca and REM (right-earth elements including Y) are elements that are effective in improving toughness, and also have the effect of significantly improving hot workability. Since this will increase the tendency of grain boundary embrittlement, one or more of these may be added depending on the planet.

(実施例1) 第1表に示す成分の未発明鋼を真空誘導炉により溶製し
たのち造塊して30kg鋼塊を製造し、鍛造および圧延
を行ってJlf、さ1 mm 、幅20mmの平板を製
造し、次いで、第2表に示す熱処理条件で各平板を固溶
化熱処理したのち660°0X10hrの条件で時効処
理し、次いで時効処理後の平板材から厚さIIIIIl
l、lIIIiilomm、長さ100mmの薄板状試
験片を採取した。
(Example 1) An uninvented steel with the components shown in Table 1 was melted in a vacuum induction furnace and then ingot-formed to produce a 30 kg steel ingot, which was then forged and rolled to have a Jlf of 1 mm and a width of 20 mm. A flat plate was manufactured, and then each flat plate was subjected to solution heat treatment under the heat treatment conditions shown in Table 2, and then aged under the conditions of 660°0 x 10 hr, and then the thickness of the flat plate after aging was
A thin plate-shaped test piece with a length of 100 mm and a length of 100 mm was taken.

また、第1表に示す成分の鋼のうちB、Eの鋼塊に対し
て鍛造および圧延を行って厚さ5mm、幅20+n+n
の平板を製造し、次いで、第2表に示す熱処理条件で各
平板を固溶化熱処理したのち80%の冷間加工を施して
厚さl ms 、幅20mmの平板としたのち、660
℃X10hrの条件で時効処理し、次いで時効処Jll
!後の平板材から厚さin+石2幅10mm、長さ10
0闘の薄板状試験片を採取した。
In addition, steel ingots B and E of the steel compositions shown in Table 1 were forged and rolled to a thickness of 5 mm and a width of 20+n+n.
Next, each plate was subjected to solution heat treatment under the heat treatment conditions shown in Table 2, and then subjected to 80% cold working to obtain a flat plate with a thickness of 1 ms and a width of 20 mm.
Aging treatment under the conditions of ℃×10hr, then aging treatment Jll
! Thickness in + stone 2 width 10 mm, length 10 from the next flat plate material
A thin plate-shaped test piece with zero resistance was taken.

一方、比較のために、同じく第1表に示す成分の市販合
金を用意し、5tLS304およびBe−Cu合金に対
しては厚さ1m11まで冷間圧延した後、第2表に示す
条件で固溶化熱処理を行い、次いで時効処理を行ったの
ち、時効処理後の平板材から厚さ1 mm 、 IIV
li 10rnm 、長さ100mmの薄板状試験片を
採取した6さらに、5US631に対しても第2表に示
す条件で熱処理を施し、前記と同寸法の薄板状試験片を
製作した。
On the other hand, for comparison, commercially available alloys with the same composition shown in Table 1 were prepared, and 5tLS304 and Be-Cu alloys were cold rolled to a thickness of 1 m11 and then solid solution treated under the conditions shown in Table 2. After heat treatment and then aging treatment, a thickness of 1 mm was obtained from the aged plate material, IIV
A thin plate-like test piece with a li of 10 rnm and a length of 100 mm was taken6.Furthermore, 5US631 was also heat-treated under the conditions shown in Table 2 to produce a thin-plate test piece with the same dimensions as above.

次いで、各試験ノ)−の0.2%耐力、引張強さ、硬さ
および透磁率を測定したところ、第3表に示す結果とな
った。なお、第3表に木印で示すものは、 JiiJ記
したように固溶化熱処理後に室温において加工率80%
の冷間加工を行い、その後時効硬化処理した場合を示し
ている。
Next, the 0.2% proof stress, tensile strength, hardness, and magnetic permeability of each test were measured, and the results are shown in Table 3. In addition, those indicated with wooden stamps in Table 3 have a processing rate of 80% at room temperature after solution heat treatment, as noted in JiiJ.
This shows the case where cold working was performed and then age hardening treatment was performed.

第2表 第 3 表 表に示す結果より明らかなように、本発明鋼A〜Fはい
ずれも強度および硬度が大であってしかも良好な非磁性
をもつものであり、Mg、Zr。
As is clear from the results shown in Tables 2 and 3, the steels A to F of the present invention all have high strength and hardness, as well as good nonmagnetic properties.

Ca 、REMの1種以上を添加した場合には強靭性お
よび熱間加工性を一層改善できることがわかった。また
、冷間における加工度を高めた場合には、安定な非磁性
を十分に確保した上でさらに強度および硬度を著しく高
めることができた。
It has been found that the toughness and hot workability can be further improved when one or more of Ca and REM is added. Furthermore, when the degree of cold working was increased, it was possible to significantly increase the strength and hardness while ensuring sufficient stable nonmagnetism.

これに対して、比較の5US304では良好な非磁性が
得られるものの強度および硬度が劣り、例えばばねの高
応力化に対応できないと共に、VTR用シャフト等に適
用した場合に耐摩耗性が劣るものである。また、5US
831は強度および硬度に優れているものの十分な非磁
性が得られず、Be−Cu合金は良好な非磁性を有して
いるものの強度および硬度は十分満足いくものではない
。さらに、5US304の冷間における加工度を高めた
場合には加工によりマルテンサイト化するため所望の非
磁性が得られなくなる。
On the other hand, the comparative 5US304 has good non-magnetic properties but is inferior in strength and hardness, and cannot cope with high stress in springs, for example, and has poor wear resistance when applied to shafts for VTRs, etc. be. Also, 5US
Although 831 has excellent strength and hardness, it does not have sufficient nonmagnetism, and although Be-Cu alloy has good nonmagnetism, its strength and hardness are not fully satisfactory. Furthermore, if the degree of cold working of 5US304 is increased, the desired non-magnetic properties cannot be obtained because the working results in martensite formation.

次に、第1表に示す供試材のうち本発明鋼A。Next, among the test materials shown in Table 1, the invention steel A.

D、’Eおよび市販合金5US304.Be−Cu合金
から製作した前記薄板状試験片についてばね限界値を測
定したところ、第4表に示す結果どなった。
D, 'E and commercial alloy 5US304. When the spring limit value was measured for the thin plate-shaped test piece made from the Be-Cu alloy, the results are shown in Table 4.

第 4 表 第4表に示すように、本発明鋼ではいずれも良好な値を
示しており、ばねの高応力化に対応でき、あるいはばね
の小型化を実現することも可能である。これに対して比
較の5US304では第3表に示したように強度が著し
く低く、ばね限界値も小さな値であり、Be−Cu合金
ではばねの高応力化や小型化に十分対応できないもので
あった。
Table 4 As shown in Table 4, all of the steels of the present invention show good values, and are able to cope with higher stress in springs or to realize miniaturization of springs. On the other hand, the comparative 5US304 has extremely low strength and a small spring limit value, as shown in Table 3, and the Be-Cu alloy cannot sufficiently respond to high stress and miniaturization of the spring. Ta.

(実施例2) 第1表に示す本発明鋼のうちB、C,Fの成分の鋼を真
空誘導炉で溶製したのち造塊して30kg鋼塊を製造し
、鍛造および圧延を行って直径1011fflの棒材を
製造した。次いで、前記第2表に示す熱処理条件で各棒
材を固溶化熱処理したのち冷間引抜きを行って直径3m
mの棒材とし、次いで、660℃X10hrの条件で時
効処理してVTR用シャフトを製作した。
(Example 2) Among the steels of the present invention shown in Table 1, steels with components B, C, and F were melted in a vacuum induction furnace and then formed into ingots to produce a 30 kg steel ingot, which was then forged and rolled. A bar with a diameter of 1011 ffl was produced. Next, each bar was subjected to solution heat treatment under the heat treatment conditions shown in Table 2 above, and then cold drawn to a diameter of 3 m.
A shaft of VTR was produced by aging the bar material at 660° C. for 10 hours.

一方、比較のために同じく第1表に示す成分の市販合金
5US304および5US631を用意し、5US30
4に対しては冷間圧延したのち第2表に示す熱処理条件
で固溶化熱処理を行い、次いで時効処理を施して同じ<
VTR用シャフトを製作した。また、5US631に対
しては同じく第2表に示す条件で熱処理を施すことによ
り、VTR用シャフトを製作した。さらに、5US30
4については加工度を90%まで高めたものについても
製作した。
On the other hand, for comparison, commercially available alloys 5US304 and 5US631 having the same composition shown in Table 1 were prepared, and 5US30
4 was cold rolled, then subjected to solution heat treatment under the heat treatment conditions shown in Table 2, and then subjected to aging treatment.
We manufactured shafts for VTRs. Further, 5US631 was heat treated under the conditions shown in Table 2 to produce a VTR shaft. Furthermore, 5US30
Regarding No. 4, we also manufactured a version with a processing degree of up to 90%.

次いで、各VTR用シャフトを実機テストに供し、テー
プ走行500時間後の摩耗減量を測定すると共に、再生
された画質についても調べた。また、人工海水中で50
時間浸漬して発錆の有無を調べた。この結果を第5表に
示す。
Next, each VTR shaft was subjected to an actual machine test, and the wear loss after 500 hours of tape running was measured, and the reproduced image quality was also examined. In addition, 50% in artificial seawater
The samples were immersed for a period of time and examined for the presence or absence of rust. The results are shown in Table 5.

第5表 第5表に示すように、本発明鋼はいずれも摩耗減量が少
なく、liw腐食性も良好であって、VTR用シャフト
の寿命延長を実現することが可能であり、画質も良好で
あるというすぐれた結果が得られた。
Table 5 As shown in Table 5, all of the steels of the present invention have low wear loss, good LIW corrosion resistance, can extend the life of VTR shafts, and have good image quality. An excellent result was obtained.

これに対して、比較の5US304では硬度が低いため
摩耗が多く、90%加工を施して硬度を高めた場合には
画質が劣ると共に耐腐食性にも劣っており、また5US
631の場合にも画質が劣ると共に耐腐食性にも劣ると
いう好ましくない結果となった。
On the other hand, the comparative 5US304 suffers from a lot of wear due to its low hardness, and when the hardness is increased by 90% processing, the image quality is inferior and the corrosion resistance is also inferior.
In the case of 631 as well, the image quality was poor and the corrosion resistance was also poor, which were undesirable results.

(発明の効果) 以上説明してきたように、この発明による非磁性高硬度
鋼は、C:0.05重量%以下、Sj:2.0重量%以
下、Mn:2.0重量%以下。
(Effects of the Invention) As explained above, the nonmagnetic high hardness steel according to the present invention contains C: 0.05% by weight or less, Sj: 2.0% by weight or less, and Mn: 2.0% by weight or less.

N + : 20〜30重量%、Cr:15〜20重量
%、B:0.010重量%以下、Ti:2.5〜5.0
重量%、AfL:0.1〜1.0重量%、Nb:0.2
〜2.0重量%でかつ原子%に換算してT i + A
文+Nb=4.0〜7.0原子%を満足し、さらに必要
に応じて、Mg:0.001〜0.020重都X。
N+: 20-30% by weight, Cr: 15-20% by weight, B: 0.010% by weight or less, Ti: 2.5-5.0
Weight %, AfL: 0.1 to 1.0 weight %, Nb: 0.2
~2.0% by weight and converted to atomic% T i + A
Satisfies carbon + Nb = 4.0 to 7.0 atomic %, and if necessary, Mg: 0.001 to 0.020 Juto X.

Zr:0.001−0.050iJ1%、Ca:0.0
01〜0.020重量%、REM (Yを含む希土類元
素):0.001〜0.050重量%のうちの1種また
は2種以上を含有し、残部実質的にFeよりなるもので
あるから、強度および硬度が大であってしかも安定して
良好な非磁性を示すものであり、非磁性が要求されると
同時に強度や耐摩耗性等が要求される部品の素材として
好適に使用することができ、例えば電算機等のリレース
イッチ用非磁性ばねの高応力化や小型化に十分対応する
ことができ、VTR用シVフトの強度増大、小型化およ
び耐摩耗性向上を実現することができ、非磁性金型の強
靭化による耐割れ性の向上および金型寿命の延長をはか
ることができるなど、著しくすぐれた効果をもたらすも
のである。
Zr: 0.001-0.050iJ1%, Ca: 0.0
01 to 0.020% by weight, REM (rare earth element containing Y): 0.001 to 0.050% by weight, and the remainder substantially consists of Fe. , has high strength and hardness, and exhibits stable and good non-magnetism, and can be suitably used as a material for parts that require non-magnetism as well as strength, wear resistance, etc. For example, it can fully cope with the high stress and miniaturization of non-magnetic springs for relay switches in computers, etc., and can realize increased strength, miniaturization, and improved wear resistance of VTR shafts. It brings about remarkable effects such as improving the cracking resistance and extending the life of the mold by making the non-magnetic mold tougher.

特許出願人 大同特殊鋼株式会社Patent applicant: Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 (+)C:0.0.5型部%以下、Si :2.O重I
A%以下、Mn:2.0重量%以下、Ni : 20〜
3 Q 型部%、Cr:15〜20重量%、B:0 、
01 C)ir、(ii%以下、Ti:2.5〜5.0
rrI′+11%、AfL: 0 、 l−1、0i1
.%、Nb:0.2〜2.0重量%でかつTi+A文+
Nb=4.0〜7.0原子%を満足し、残部実質的にF
eよりなることを特徴とする非磁性高硬度鋼。 (2)C:0.05重型底以下、St :2.O重I−
%以下、M n : 2 、0重量%以下、Ni:20
〜30[il %、 Cr:15〜20 重ffi二%
、B:O,OIO爪量%以下、Ti:2.5〜5.0屯
41%、A文=0.1〜1.0重量%、Nb:0.2〜
2.0重量%でかつT i + A文+Nb=4.0〜
7.0原子%を満足し、さらにMg:0.OO1〜0.
020重量%。 Zr:0.001〜0.050重量%、Ca:O,OO
1〜0.020重量%、REM:o、ooi〜0.05
0重量%のうちの1種または2種以上を含有し、残部実
質的にFeよりなることを特徴とする非磁性高硬度鋼。
[Claims] (+)C: 0.0.5 mold part % or less, Si: 2. O Heavy I
A% or less, Mn: 2.0% by weight or less, Ni: 20~
3 Q mold part%, Cr: 15-20% by weight, B: 0,
01 C) ir, (ii% or less, Ti: 2.5 to 5.0
rrI'+11%, AfL: 0, l-1, 0i1
.. %, Nb: 0.2 to 2.0% by weight, and Ti + A pattern +
Satisfies Nb = 4.0 to 7.0 at%, and the remainder is substantially F.
A non-magnetic high hardness steel characterized by consisting of e. (2) C: 0.05 heavy bottom or less, St: 2. O Heavy I-
% or less, M n : 2, 0 weight % or less, Ni: 20
~30[il%, Cr:15-20 heavy ffi2%
, B: O, OIO nail amount % or less, Ti: 2.5 to 5.0 tons 41%, A text = 0.1 to 1.0 weight %, Nb: 0.2 to
2.0% by weight and T i + A sentence + Nb = 4.0~
7.0 atom %, and Mg: 0. OO1~0.
020% by weight. Zr: 0.001 to 0.050% by weight, Ca: O, OO
1 to 0.020% by weight, REM: o, ooi to 0.05
A non-magnetic high-hardness steel characterized by containing one or more of 0% by weight and the remainder substantially consisting of Fe.
JP58218754A 1983-11-22 1983-11-22 Nonmagnetic high hardness steel Pending JPS60110848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58218754A JPS60110848A (en) 1983-11-22 1983-11-22 Nonmagnetic high hardness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58218754A JPS60110848A (en) 1983-11-22 1983-11-22 Nonmagnetic high hardness steel

Publications (1)

Publication Number Publication Date
JPS60110848A true JPS60110848A (en) 1985-06-17

Family

ID=16724887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58218754A Pending JPS60110848A (en) 1983-11-22 1983-11-22 Nonmagnetic high hardness steel

Country Status (1)

Country Link
JP (1) JPS60110848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230957A (en) * 1986-03-31 1987-10-09 Aichi Steel Works Ltd Precipitation hardening-type nonmagnetic stainless steel
JPH0426740A (en) * 1990-05-21 1992-01-29 Nippon Stainless Steel Co Ltd High strength non-magnetic steel
US11198930B2 (en) * 2014-09-19 2021-12-14 Nippon Steel Corporation Austenitic stainless steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230957A (en) * 1986-03-31 1987-10-09 Aichi Steel Works Ltd Precipitation hardening-type nonmagnetic stainless steel
JPH0426740A (en) * 1990-05-21 1992-01-29 Nippon Stainless Steel Co Ltd High strength non-magnetic steel
US11198930B2 (en) * 2014-09-19 2021-12-14 Nippon Steel Corporation Austenitic stainless steel plate

Similar Documents

Publication Publication Date Title
US20050158201A1 (en) High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having an excellent corrosion resistance, embrittlement resistance castability and hot workability
CN111373067A (en) Nonmagnetic austenitic stainless steel having excellent corrosion resistance and method for manufacturing same
JPH11264058A (en) Iron-cobalt alloy
JPH0542493B2 (en)
JPH07113144A (en) Nonmagnetic stainless steel excellent in surface property and production thereof
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
JPS60110848A (en) Nonmagnetic high hardness steel
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP4018021B2 (en) Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance
EP0077079B1 (en) Use of a non-magnetic alloy having high hardness for electromagnetic stirrer rolls
JPH0753896B2 (en) High Mn non-magnetic steel with good rust resistance and machinability
US4484958A (en) Non-magnetic alloy having high hardness and good weldability
KR20210008732A (en) Non-magnetic austenitic stainless steel
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
JPH0475305B2 (en)
JPS62136557A (en) High strength nonmagnetic steel having rust resistance
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JPH07278747A (en) Spring steel reduced in decarburization characteristic
JP7506479B2 (en) Austenitic stainless steel material, its manufacturing method, and electronic device component
JP3429023B2 (en) Electromagnetic stainless steel sheet with excellent soft magnetic properties and press formability
JP3370378B2 (en) High hardness stainless steel with excellent wear resistance
JPS6123750A (en) Nonmagnetic steel
JPH07107187B2 (en) High Mn non-magnetic steel with low susceptibility to stress corrosion cracking
JPH05255817A (en) Corrosion resistant soft magnetic material