JPS60110826A - Production of billet - Google Patents

Production of billet

Info

Publication number
JPS60110826A
JPS60110826A JP21759883A JP21759883A JPS60110826A JP S60110826 A JPS60110826 A JP S60110826A JP 21759883 A JP21759883 A JP 21759883A JP 21759883 A JP21759883 A JP 21759883A JP S60110826 A JPS60110826 A JP S60110826A
Authority
JP
Japan
Prior art keywords
alloy
ingot
casting ingot
case
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21759883A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Miyaki
美光 宮木
Masakazu Hirano
正和 平野
Shoshi Koga
詔司 古賀
Takehiko Eto
武比古 江藤
Koji Arita
幸司 有田
Masanori Moribe
森部 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21759883A priority Critical patent/JPS60110826A/en
Publication of JPS60110826A publication Critical patent/JPS60110826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve toughness, fatigue strength, workability and resistance to stress corrosion cracking by irradiating the ray flux having a high energy density to a large-sized casting ingot consisting of a metal or alloy to effect continuously local remelting and solidification thereby forming finer structure and increasing the solid solubility limit of the additive elements. CONSTITUTION:A large-sized casting ingot of a metal or alloy is generally low in cooling rate and therefore the crystal grain size is large and in the case of an alloy, an intermetallic compd. is crystallized by which the workability in rolling, extruding, casting, etc. is deteriorated and various physical characteristics are deteriorated. The ray flux having a high energy density such as electron beam, plasma arc or the like is irradiated from the surface to the large-sized casting ingot in this case to effect local remelting and succeeding quick cooling. The crystal grain size of the casting ingot is made fine and in the case of the alloy, the solid solubility limit of the alloy elements is increased, by which the hot and cold workability is improved and the toughness, fatigue strength, corrosion resistance, etc. of the worked product are improved.

Description

【発明の詳細な説明】 本発明は91片の製造方法に関し、さらに詳しくは、晶
出物か微細化した或いは合金成分か強制固lH化された
金属および合金の鋳片の製造方法に関Vる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 91 pieces, and more particularly, to a method for producing cast pieces of metals and alloys in which crystallized matter has been refined or alloy components have been forcibly solidified. Ru.

R米の1.業的な鋳造法によって得られる大型鋳塊は、
鶏jh時の凝固速攻力弓0−1℃/see程度と遅いた
め、 一般に、鋳塊の結晶粒度が大きく、添加丸木を多
くすると巨人な金属間化合物が晶出し、キャビティー′
X9この欠陥を発生することが多い。
R rice 1. Large ingots obtained by industrial casting methods are
Since the solidification speed at the time of heating is slow at about 0-1℃/see, the crystal grain size of the ingot is generally large and when the amount of added logs is increased, giant intermetallic compounds will crystallize and the cavity'
X9 This defect often occurs.

このような組織は、圧延、押出し、鍛造等の製造工程に
おける熱開加工性或いは冷りn+加工性を(圧下させ、
最終的に得られた製品についても、靭性、疲労強度、耐
蝕性、成形加工性、応力腐蝕割れ性等の性能を劣化させ
る主原因となる。
Such a structure reduces hot openability or cold n+ workability in manufacturing processes such as rolling, extrusion, and forging.
This is also the main cause of deterioration in the properties of the final product, such as toughness, fatigue strength, corrosion resistance, moldability, stress corrosion cracking resistance, etc.

このことは、良く知られていることであり、金属材料の
緒特性を向上させるために、鋳塊の結晶粒微細化および
晶出物の微細化等について、改良か続けられており近年
では晶出物の微細化のため、高純度地金を使用し不純物
元素の量を規制した材料の開発が行なわれている。
This is well known, and in order to improve the properties of metal materials, improvements have been made to refine the crystal grains of ingots and the refinement of crystallized substances, and in recent years, In order to miniaturize materials, materials are being developed that use high-purity metals and control the amount of impurity elements.

一方、製造方法においては、かかる問題を解決するため
に急速冷却凝固を利用した粉末冶金法が一部で用いられ
ている。しかしこれらの方法は何れも工業的な大量生産
に適していなかったり、高コストであるという欠点かあ
る。
On the other hand, in some manufacturing methods, a powder metallurgy method using rapid cooling solidification is used to solve this problem. However, all of these methods have drawbacks such as being unsuitable for industrial mass production and being expensive.

本発明はこのような従来の技術的な事情に鑑み 。The present invention was developed in view of such conventional technical circumstances.

なされたものであり、工業的な大型#塊における問題点
を解消して鋳塊の品質を向」ニさせることのでとる鋳片
の製造方法を提供するものである。
The purpose of this invention is to provide a method for manufacturing slabs that solves the problems associated with industrial large ingots and improves the quality of the ingots.

本発明に係る鋳片の製造方法の特徴とするところは、金
属および合金の鋳塊の製造方法において、高エネルギー
密度の線束を鋳塊【こ照射して、局部的匈!’l if
律仕よび凝固を連続的に行なわせること(二ある9゜ 本発明に係る鋳片の製造方法は、全べての金属t3J−
び合金の」、東面方法により製造された大型鋳塊を、表
面よりエレクトロレビーム、プラズマアーク、電弧アー
ク等の高エネルギー密度の線束を照射して局部的な再溶
解および凝固を連続的に行なわせ、9)塊の表面層等の
一部分或と1は夕J塊の全体を山落11’l’する。こ
れにより通常の工業的に製造された金型象、塊或いは連
続鋳造より遥かに大きい冷却速度で急速冷ノー11凝固
させたSJJ塊とすることにより、従来のダj塊で゛は
イ1)られなかった合金成分の強制固溶による固溶(i
)の増加を可能にし、さらに、品出物を微細化にし、か
つ、結晶粒度が微細である々i・の晶tlを向1−させ
た」工業的な大型鋳塊を製造[る方法て゛ある。
The feature of the method for manufacturing slabs according to the present invention is that in the method for manufacturing metal and alloy ingots, the ingot is irradiated with a beam of high energy density to produce local blasts. 'l if
The method for manufacturing slabs according to the present invention is to continuously perform tempering and solidification (2).
Large ingots manufactured by the Tomen method are irradiated with high energy density beams such as electrorebeam, plasma arc, electric arc, etc. from the surface to continuously remelt and solidify locally. 9) A part of the surface layer of the lump or the whole of the lump is removed 11'l'. As a result, by making the SJJ lump rapidly cooled and solidified at a much higher cooling rate than ordinary industrially produced molds, lumps, or continuous casting, it is possible to achieve Solid solution (i
), and furthermore, the product is made finer, and the crystal grain size is finer. be.

不発明に係る5)JI’+の製造方法にI3いて、高エ
ネルギー密度の線束を照射する方法として、例えば、エ
レクトロンビームの照射は、一般に10−’−・10−
’+lImHHの高真空中において、加熱されたタング
ステンフィラメン1から発生したエレクトロンlこ高電
圧をかけ、加速されたエレクトロンビームを被溶解部材
に照射することにより、エレクトロンの運動エネルギー
を熱エネルギーに変えて溶解するものであるか、エネル
ギー密度が極めて高いために深い溶込みが得られ、その
ため、厚さ数1、00 +n+nの鋳塊の再溶解がii
J能となる。
5) In the method of manufacturing JI'+ according to the invention, as a method of irradiating with a high energy density beam, for example, electron beam irradiation is generally 10-'-/10-
In a high vacuum of +lImHH, a high voltage is applied to the electrons generated from the heated tungsten filament 1, and the accelerated electron beam is irradiated onto the member to be melted, thereby converting the kinetic energy of the electrons into thermal energy. Either it is meltable or the energy density is extremely high, so deep penetration can be obtained, so remelting of an ingot with a thickness of several 1,00 + n + n is possible.
Becomes J Noh.

また、再)8解するための熱入力が少なくて済むので、
溶解中411近の温度」二昇時間か短かく結晶粒の成長
が起らない。そして、M ’tFi M後の冷却凝固は
鋳塊の非加熱部との熱伝導により行なわれるのであるが
、上記したように1企めて少ない熱入力で、1幅が狭く
、かつ、溶込みか深く溶解するので、凝固時の冷却効果
か大きい。
In addition, since the heat input for re)8 solving is small,
During melting, the temperature is close to 411°C, and the rising time is short, so no crystal grain growth occurs. Cooling and solidification after M'tFi M is performed by heat conduction with the unheated part of the ingot, but as mentioned above, the width is narrow and the penetration is small. Since it dissolves deeply, it has a large cooling effect during solidification.

なお、連続的に再溶解する場合、被溶解祠の温度管理を
充分に行なっておく必要かある。即ち、連続的に再溶解
を繰返し被溶解材の温度が高くなると、冷却速度が比較
的に遅くなり、結果とじ℃合金元素の固溶量の減少や晶
出物の和犬化、結晶粒の粗大化を起し易くなる傾向にあ
るた灼である。
In addition, in the case of continuous re-melting, it is necessary to sufficiently control the temperature of the melting shrine. In other words, when the temperature of the material to be melted increases due to continuous remelting, the cooling rate becomes relatively slow, resulting in a decrease in the amount of solid solution of alloying elements, formation of crystallized substances, and formation of crystal grains. It is a type of burn that tends to cause coarsening.

この本発明に係る釣片の製造方法により製造された鋳塊
は、晶出物が微細で、かっ、結晶粒度も微細であり、さ
らに、強制固溶により固)8限の小さい含有元素につい
ても通常の金型夕J造、連続鋳造片の1.岩的方法で製
造した鋳塊より海かに火きい固溶ノ庭か1:1−られる
The ingot produced by the method for producing a fishing piece according to the present invention has fine crystallized substances and a fine crystal grain size, and furthermore, it has a small content of elements as low as 8 (hardened by forced solid solution). 1. Continuously cast piece of normal mold construction. The ingot produced by the rock method is heated 1:1 by the sea.

このため、本発明に係る鋳片の製造方法を、例えば、再
結晶粒の成長を191止する効果の太きい、N111、
C「、Z、、\“、I゛1、FC!、Ni、Co、BQ
、W、11[,1,=、 Mo、■゛a″&の含有元素
を1種または2神具14を総計0.+181111%以
1−を含有するアルミニラl、合金ダi1mに適用する
と、従来の連続鋳造法に比して含有元素の固溶量が大き
くなることを1:、な原因とし′C1晶出物か微41+
1で、かつ、結晶粒度か微1111な板4・(、押出し
4・4および鍛造ヰJが製造できる。
For this reason, the method for producing slabs according to the present invention is applied to, for example, N111, which has a large effect of inhibiting the growth of recrystallized grains.
C",Z,,\",I゛1,FC! , Ni, Co, BQ
, W, 11[,1,=, Mo, ■゛a''& When applying one or two elements 14 to aluminum l, alloy die i1m containing a total of 0.+181111% or more 1-, The reason for this is that the solid solution amount of the contained elements is larger than in the conventional continuous casting method.
1, and a plate 4 (, extruded 4, 4, and forged) with a grain size of 1111 can be manufactured.

この場合、エレクトロンビームを照射して再溶1’lイ
、凝固を施した鋳塊は一般的な1−程により処理11自
ルγ−114,+1’+!II t?丁1−!l+イ:
屯j−1−土、入 イb+l斗 I(2(、l o (
11系、5000系、7 (j (−,1(’)系等の
アルミニウム合金系によって若干穴なるが、適当な製造
工程は次の通りである。即ち、」1記アルミニウム合金
鋳塊を、3 S (1・−55(じCL:r)温度r4
−24H「・の均質化処理を行なった後、3 fi+ 
(1〜500°Cの温度で熱開成形加]二を行ない、さ
らに、冷開成形加工を行なって所定の形状寸法に仕」二
げる。
In this case, the ingot, which has been remelted and solidified by electron beam irradiation, is processed by the general procedure 11, γ-114, +1'+! IIt? Ding 1-! l+i:
tun j-1-earth, entering i b + l to I (2(, l o (
Although there may be some holes depending on the aluminum alloy system such as 11 series, 5000 series, 7 (j (-, 1 (') series), the appropriate manufacturing process is as follows. Namely, "1 aluminum alloy ingot, 3 S (1・-55 (diCL:r) temperature r4
-24H After homogenization treatment, 3 fi+
(Heat open molding at a temperature of 1 to 500°C) 2 is performed, and then cold open mold is performed to finish the product into a predetermined shape and size.

この場合、冷間加」二前に30 (1= 5 fl O
”Cの温度で必要な時間の軟化処理を加えることができ
る。
In this case, 30 (1 = 5 fl O
It is possible to apply a softening treatment for the necessary time at a temperature of "C".

その後、35()〜550℃の温度に加熱することによ
り、微細な結晶粒組織の製品か得られる。この場合、加
熱速度を火とくすればより微細な結晶粒組織が得られる
Thereafter, by heating to a temperature of 35() to 550°C, a product with a fine grain structure is obtained. In this case, a finer grain structure can be obtained by increasing the heating rate.

このようにして製造された微細な結晶粒組織の板キイは
、多量に固溶した上記含有元素を鋳塊の適当なソーキン
グ処理にて微細に11出させることにより、結晶粒界移
動(粒成長)の阻止効果か大きく、かつ、晶出物が微細
になっているためボイド発生の少ない材料が製造できる
。そのため、外部からの引張り等の力に対してくびれ等
の局部的な変形か発生することなく、数] (−1o%
を越える超塑性現象を有rる拐料が製造でとる。
The plate key with a fine grain structure manufactured in this way is produced by finely extracting a large amount of the above-mentioned elements dissolved in solid solution through an appropriate soaking treatment of the ingot, resulting in grain boundary movement (grain growth). ), and because the crystallized substances are fine, it is possible to produce a material with less void generation. Therefore, local deformation such as constriction does not occur in response to external forces such as tension, and the number of
During production, a material with a superplastic phenomenon exceeding

本発明に係る鋳片の製造方法について実施例を説明する
Examples of the method for manufacturing slabs according to the present invention will be described.

実施例1 1”東面火型連続鋳造法により製造された第1表に示1
含有成分、成分割合のアルミニウム合金鋳塊を使用し、
第2表に示す溶解条件で鋳塊表面よりエレクトロンビー
ムを照則して第1図に示す順序でSj、I塊や厚を、局
部的な急速111溶解および急速冷)、11凝固を連続
的に繰返し1行なって鋳塊を得た。
Example 1 1” 1 shown in Table 1 manufactured by east face type continuous casting method
Using aluminum alloy ingots with the same ingredients and proportions,
Under the melting conditions shown in Table 2, the electron beam was aimed at the ingot surface and the Sj, I lumps and thickness were measured in the order shown in Figure 1, localized rapid melting (111) and rapid cooling (111), and solidification (11) continuously. This process was repeated once to obtain an ingot.

第2図(a)は本発明に係る鋳片の製造方法により製造
さJlた50 ii 3系合金の金属組織を示す顕微鏡
′リー貞て′あり、第2図(1〕)は従来の連続鋳造法
によるり11 j: 、’4系合金の同しく顕微鏡写真
であり、第2図(8)の本発明に係る製造方法により製
造さJしたジノ塊は凝1−11速度が速いため、品出物
か微細化され、か−ン、結晶粒度1微細であるが、第2
図(b)の従来の金型鋳造、連続鋳造等の工業的製法に
より製造された鋳塊は、冷却速度が遅いので粗大な晶出
物か不均一に分布し、かつ、結晶粒度が非常に太きい。
Figure 2 (a) shows a microscope showing the metallographic structure of a J50 II 3 series alloy manufactured by the method for producing slabs according to the present invention, and Figure 2 (1) shows a conventional continuous metal structure. According to the casting method, 11j: This is also a micrograph of the '4 series alloy, and the Jino ingot manufactured by the manufacturing method according to the present invention shown in Figure 2 (8) has a high solidification rate. The grain size of the item is fine, and the grain size is 1 fine, but the grain size is 2 fine.
As shown in Figure (b), ingots manufactured by industrial manufacturing methods such as conventional mold casting and continuous casting have coarse crystallized substances that are unevenly distributed due to the slow cooling rate, and the crystal grain size is extremely large. Thick.

実施例2 工業的大型連続鋳造法により製造された第3表に示す含
有成分、成/Ir割合のアルミニウム合金鋳塊を使用し
、第4表に示す溶1亀イ条訃で′鋳Jllj、表面より
エレクトロンビームを照a・1シて第1図に示す順序で
鋳塊全厚を、局部的な急速両溶解および急速冷却凝固を
連続的に繰返し行なって鋳塊を得た。
Example 2 Using an aluminum alloy ingot manufactured by an industrial large-scale continuous casting method and having the ingredients and the Ir ratio shown in Table 3, it was cast with the melting die shown in Table 4. An ingot was obtained by sequentially repeating localized rapid melting and rapid cooling solidification over the entire thickness of the ingot in the order shown in FIG. 1 by illuminating the surface with an electron beam.

さらに、このようにして製造されtこfJJ塊を一般の
〕二業的熱処理を行なった。即ち、」1記で得られた鋳
塊(4<、) <、I LX 50 (、lu+X 8
 (、’) t) l)を2324系合金は48 (’
、1℃X24tlr、S l) 83系合金は57 t
’、) ”CX 2.4 Hrおよび7 !、17 S
系合金は450°C×υ目1+の均質化処理を行ない、
300−45 (1’Cの温度における熱間)1延によ
り8 +n+n厚の板厚とし、次いで、冷間圧延により
2 、5 +n+n厚とし、必要に応して351) =
 55 t) ’Cの温度の仕上は熱処理を行なった。
Furthermore, the thus produced JJ block was subjected to a conventional heat treatment. That is, the ingot (4<,) <, I LX 50 (, lu+X 8
(,') t) l) is 48 ('
, 1°C x 24tlr, S l) 83 series alloy is 57t
', ) "CX 2.4 Hr and 7!, 17 S
The alloy was homogenized at 450°C x υ 1+.
300-45 (hot rolling at a temperature of 1'C) to a thickness of 8 + n + n, then cold rolling to a thickness of 2,5 + n + n, as necessary 351) =
55 t) 'C temperature finishing was performed by heat treatment.

(この場合加熱速度は天外い程、より微細な結晶粒が1
1トられる。)第3図(a)はこの実施例により製造さ
れた5083系合金の金属組織を示す顕微鏡写真で゛あ
り、第;(図(11)は従来の連続鋳造法による5 0
83系合金の同しく顕微鏡′JJ′真であり、第3図(
a)の本発明に係る製造ノミ法によるa4塊により製造
した板4・4は&(晶h +:+度か約7μと非常1こ
微細で、かつ、晶出物わ徽4:l11であるか、第3し
l(+1)の従来の連続鋳造法に、するダjJJt!、
より製造した板4・旧ま結晶粒度が19()μと用い。
(In this case, the heating rate is so high that the finer grains become 1
1 hit. ) Figure 3(a) is a micrograph showing the metal structure of the 5083 series alloy manufactured by this example, and Figure (11) is a micrograph showing the metallographic structure of the 5083 series alloy manufactured by this example.
83 series alloy is also a microscope 'JJ', as shown in Figure 3 (
The plates 4 and 4 manufactured from the A4 block by the manufacturing chisel method according to the present invention in a) are extremely fine with crystal h +: + degree of about 7μ, and crystallized material size is 4:111. Is there a way to do it in the conventional continuous casting method of the third step (+1)?
Plate 4 manufactured by the same method was used with a grain size of 19()μ.

実施例;( 工粟的入ji!I連続鋳造法により製造された第5表に
示す含有成分、成分割合のアルミニウム合汝鋳塊を使用
し、+5に1表に示す溶解条1′1で・鋳塊表面よリエ
レク10ンビー!、を照射して第1図に示1順序でS)
、+ !lJ、全厚を、局部的な急速再溶)祥および急
速冷」、11凝固を連続的に繰返し行なってpJ塊を得
た。
Example: (Using an aluminum ingot produced by the continuous casting method and having the ingredients and component ratios shown in Table 5, the melted strip 1'1 shown in Table 1 was added to +5.・Irradiate the ingot surface with 10 beams of RIELECT in the order shown in Figure 1.
,+! 1J, full thickness, local rapid remelting, rapid cooling, and 11 solidifications were continuously repeated to obtain a pJ mass.

さらに、このようにして製造された鋳塊を一般の1.¥
′的熟熱処理行なった。即ち、1−記で田られ/、:j
ij !lν’、(1,fl (l 1. X 5fl
 f、l +uX ’+i (l fl l )を24
(2,1L/>金は4 ii O’CX 24 lb、
5fl O、’4系介金はj3°7 +1−CX 2 
、・111「および°7 (,175系合金は=1:”
+(1’CX2・1山の均質化処理を行ない、=1 !
’l l) ’Cの7品度ににける熱間圧延により8 
+nml’7の板)ノとし、次いC1冷間圧延により2
 、5111111厚とし必要に応して、i i; +
1 ”Cの温度の什にげ熱処理を行なった。(、二の場
合加熱速度は太ぎい程、より事;°ンJ:lllなよ1
−1情第1Iが1;1られる。)1記44料の超塑性変
形時11を調査した結果を第゛7表に承引1、(加熱温
度:500°C,歪速度:2 X 1 f、) ’−”
+11111/ 5(IC)。
Furthermore, the ingot produced in this way is used as a general 1. ¥
’ A ripening heat treatment was performed. That is, 1-kidare/, :j
ij! lν', (1, fl (l 1.
f, l +uX '+i (l fl l ) to 24
(2,1L/> Gold is 4 ii O'CX 24 lb,
5fl O, '4 type intermediary is j3°7 +1-CX 2
,・111" and °7 (,175 series alloy = 1:"
+(1'CX2/1 mountain homogenization process, = 1!
'l l) '8 by hot rolling in 7 grades of 'C
+nml'7 plate) and then C1 cold rolling to 2
, 5111111 thickness and if necessary, i i; +
A heat treatment was carried out at a temperature of 1.
-1 information 1st I is 1;1. ) The results of investigating 11 during superplastic deformation of the 44 materials mentioned above are listed in Table 1. (Heating temperature: 500°C, strain rate: 2 x 1 f,) '-'
+11111/5 (IC).

従来の連続鋳造法による鋳塊より製造された板材は伸び
が低く、これに対し、本発明に係るGJj片の製造方法
に上り製造されtこυ4塊より製造した板祠は伸びか高
く、かつ、品出物か@細化されているためキャビティの
発生も少ない。
Boards manufactured from ingots by the conventional continuous casting method have low elongation, whereas the board manufactured using the method for manufacturing GJJ pieces according to the present invention from 4 ingots has high elongation, and , Since the product is thinner, there are fewer cavities.

なお、上記の本発明に係る鋳j11の製造方法における
説明は、主としてアルミニウムおよびアルミニウム合金
についてのちのであるか、その池の金属、例えは、11
11または銅合金、鉄または鉄合金、チタンまたはチタ
ン訃金或いはさらに他の金属にも適用することか1げ能
である。
It should be noted that the above description of the method for manufacturing cast J11 according to the present invention mainly refers to aluminum and aluminum alloys, or the metal of the pond, for example, J11.
11 or copper alloys, iron or iron alloys, titanium or titanium alloys, or even other metals.

以」−説明したように、本発明に係るダj片の製造方法
は」1記の構成を有しているものであるか呟上業的方法
により製造された8Ij塊の結晶粒度を微細化し、さら
に、品出物の微細化を図ることができ、この鋳塊より製
造された板A=4、押出し祠によび鍛造材において6品
出物か微細で゛、がっ、結晶本(1度か微細なものかイ
(1られるという効果か′ある。
As explained above, the method for producing a 8I block according to the present invention has the structure set forth in 1. In addition, it is possible to make the product finer, and the plate A = 4 produced from this ingot, the extrusion mill, and the forged material have 6 fine products. Is it a degree or a minute effect?

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るm片の製造方法を説1り目−るた
めの斜1見図、第2図および第:)図は本発明に係る製
造方法と従来の製造法により製造された1ノ。 塊より作製された仮相の金属組織を示す顕微鏡写真であ
る。
Fig. 1 is a perspective view for explaining the manufacturing method of the m-piece according to the present invention, and Fig. 2 and Fig. Ta1 no. It is a micrograph showing the metal structure of a pseudophase made from a lump.

Claims (1)

【特許請求の範囲】[Claims] 金属および合金の鋳塊製造方法において、高エネルギー
密度の線束を鋳塊に照射して、局部的な山溶解および凝
固を連続的に行なわせることを特徴とするS)、r I
 ’+の製造方法。
A method for producing ingots of metals and alloys, characterized in that the ingot is irradiated with a beam of high energy density to cause continuous local melting and solidification of the piles S), r I
'+ manufacturing method.
JP21759883A 1983-11-18 1983-11-18 Production of billet Pending JPS60110826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21759883A JPS60110826A (en) 1983-11-18 1983-11-18 Production of billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21759883A JPS60110826A (en) 1983-11-18 1983-11-18 Production of billet

Publications (1)

Publication Number Publication Date
JPS60110826A true JPS60110826A (en) 1985-06-17

Family

ID=16706803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21759883A Pending JPS60110826A (en) 1983-11-18 1983-11-18 Production of billet

Country Status (1)

Country Link
JP (1) JPS60110826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061923A (en) * 2004-08-25 2006-03-09 Nippon Steel Corp Method for fusion-treating surface layer of metal material
CN111363990A (en) * 2020-03-25 2020-07-03 广东省工业分析检测中心 Heat treatment method of lead-free-cutting aluminum alloy extruded bar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623240A (en) * 1979-07-31 1981-03-05 Shin Kobe Electric Mach Co Ltd Manufacture of lead alloy sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623240A (en) * 1979-07-31 1981-03-05 Shin Kobe Electric Mach Co Ltd Manufacture of lead alloy sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061923A (en) * 2004-08-25 2006-03-09 Nippon Steel Corp Method for fusion-treating surface layer of metal material
JP4548715B2 (en) * 2004-08-25 2010-09-22 新日本製鐵株式会社 Method for melting surface layer of metal material
CN111363990A (en) * 2020-03-25 2020-07-03 广东省工业分析检测中心 Heat treatment method of lead-free-cutting aluminum alloy extruded bar

Similar Documents

Publication Publication Date Title
JP7022698B2 (en) BCC materials of titanium, aluminum, vanadium, and iron and products made from them
JPH07331364A (en) Thermomechanical treating method for product formed from approximate gamma-titaniun aluminide alloy
JPH07179974A (en) Aluminum alloy and its production
EP1851350B1 (en) Method for casting titanium alloy
Mosallanejad et al. In-situ alloying of a fine grained fully equiaxed Ti-based alloy via electron beam powder bed fusion additive manufacturing process
CN109468485A (en) A kind of preparation method of nanometer of endogenous TiC particle reinforced aluminum alloy plate
JPH01272750A (en) Production of expanded material of alpha plus beta ti alloy
JP3829164B2 (en) Semi-melt molding material manufacturing method
JPS60110826A (en) Production of billet
Elagin Ways of developing high-strength and high-temperature structural aluminum alloys in the 21st century
JPH06287661A (en) Production of smelted material of refractory metal
JP5605546B2 (en) α + β type titanium alloy, method for producing the same, and method for producing titanium alloy material
JPS61117258A (en) Manufacture of aluminum wire for bonding
JPS5826425B2 (en) Manufacturing method for high-strength aluminum alloy with excellent mechanical properties in the thickness direction
US3399084A (en) Method of making aluminum bronze articles
JPH0356295B2 (en)
JPS60149751A (en) Metal composition
Hong et al. Hot deformation behaviour and ledeburite refinement mechanism for hypoeutectoid low alloy white cast irons
US3484307A (en) Copper base alloy
JP2003138357A (en) Method of producing precast-formed billet of aluminum alloy for transportation apparatus
JPH05277656A (en) Thin plate of alloy containing ti3al group intermetallic compound and manufacture thereof
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
JPS6335760A (en) Manufacture of aluminum material excellent in resistance to heat and wear
JPH04124242A (en) Aluminum alloy excellent in wear resistance and its manufacture
JPH03294447A (en) Aluminum alloy material excellent in high temperature strength and its manufacture