JPS60108457A - Transparent impact-resistant resin composition - Google Patents

Transparent impact-resistant resin composition

Info

Publication number
JPS60108457A
JPS60108457A JP21409983A JP21409983A JPS60108457A JP S60108457 A JPS60108457 A JP S60108457A JP 21409983 A JP21409983 A JP 21409983A JP 21409983 A JP21409983 A JP 21409983A JP S60108457 A JPS60108457 A JP S60108457A
Authority
JP
Japan
Prior art keywords
weight
polymerization
graft copolymer
component
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21409983A
Other languages
Japanese (ja)
Inventor
Tsugio Asakawa
浅川 次男
Hiroshige Muraki
博成 村木
Mitsuo Abe
阿部 充雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP21409983A priority Critical patent/JPS60108457A/en
Publication of JPS60108457A publication Critical patent/JPS60108457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermoplastic resin composition having excellent transparency and impact resistance, by compounding a non-elastomeric resin polymer with two kinds of graft copolymers composed of a styrene-butadiene rubber polymer component and a resin component having equal refractive index. CONSTITUTION:A monomer mixture capable of forming a resin having equal refactive index to a styrene-butadiene rubber polymer in the presence of the styrene-butadiene rubber polymer, is polymerized by solution polymerization or bulk polymerization in the absence of a catalyst or in the presence of dicumyl peroxide catalyst until the polymerization ratio reaches 15-50(wt)%, and then subjected to the graft polymerization in the presence of t-butyl peroxyester to obtain a graft copolymer having a rubber content of 3-55%. The obtained graft copolymer (A) is compounded with (B) a graft copolymer (having a rubber content of 30-70%) obtained by the emulsion polymerization of a monomer mixture similar to the component A in the presence of a rubbery polymer latex similar to the component A and (C) a non-elastmeric resin polymer (free from rubber polymer) having equal refractive index to the components A and B. The amounts of the component B and C are adjusted to give a rubber component content of 5-30% in the whole composition, and a rubber content originated from the component A of 20-60% in the whole rubber components.

Description

【発明の詳細な説明】 本発明は加工性、透明性および耐衝撃性のすぐれた熱可
塑性樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermoplastic resin composition with excellent processability, transparency and impact resistance.

ポリスチレン樹脂は安価で高い透明性、硬度等の性質を
有すると共に加工性の優れた樹脂であシ広範囲の用途を
有するが、衝撃強度が低い欠点がある。又ポリメタクリ
ル酸メチル樹脂も高い透明性、光沢、優れた耐候性等の
性質を持っておシ、有機ガラスとして広く使用されてい
る。しかしながら加工性の悪さや、ポリスチレン樹脂と
同様に衝撃強度が低い欠点を有する。よってこれらの透
明樹脂は大きな衝撃強度を必要とする用途に用いる事が
出来なかった。
Polystyrene resin is inexpensive, has properties such as high transparency and hardness, and has excellent processability, and has a wide range of uses, but has the drawback of low impact strength. Polymethyl methacrylate resin also has properties such as high transparency, gloss, and excellent weather resistance, and is widely used as an organic glass. However, it has the drawbacks of poor processability and low impact strength like polystyrene resin. Therefore, these transparent resins could not be used in applications requiring high impact strength.

そこで、例えばポリスチレン樹脂に衝撃強度を与えるた
めに、ゴム状物質の存在下でスチレンを含む単量体を重
合して得られるノ・イインパク)yJ?リスチレンやA
BS樹脂などが開発された。ところがこれ等は不透明で
あり透明性を必要とする用途に制限を受ける。
Therefore, for example, in order to impart impact strength to polystyrene resin, a styrene-containing monomer is polymerized in the presence of a rubber-like substance. Listyrene and A
BS resin etc. were developed. However, these materials are opaque and are limited to applications that require transparency.

かかる耐衝撃性樹脂の透明性を改良する方法に関し従来
から種々検討されている。
Various methods of improving the transparency of such impact-resistant resins have been studied in the past.

従来から知られている透明耐衝撃性樹脂の製造方法は、
例えばゴム状重合体ラテックスに該ゴム状重合体と実質
的に等しい屈折率を有する樹脂を形成する組成の単量体
混合物を乳化重合する方法が知られているが、乳化重合
のさい乳化安定剤等を混入するため、透明性1色凋が劣
る欠点がある。
The conventionally known manufacturing method for transparent impact-resistant resin is
For example, a method is known in which a rubbery polymer latex is subjected to emulsion polymerization of a monomer mixture having a composition that forms a resin having a refractive index substantially equal to that of the rubbery polymer. etc., it has the disadvantage of poor transparency and fading of one color.

この欠点を改良するため、懸濁重合法あるいは塊状−懸
濁重合法で製造する方法が提案されているが衝撃強度と
透明性の両性質を満足させるものを作ることは非常に困
難であった〇 即ち、衝撃強度を満足させるものは、射出成形した場合
など成形品表面の荒れが大きく、表面が「すシガラス」
状となp光が表面で乱反射され透明性が悪くなる。表面
が「す9ガラス」状となる原因の1つとして、分散する
ゴム粒子径が大きい為、射出成形時にゴム粒子の変形が
大きく、その変形が緩和される時に金型密着面に於て、
ゴム粒子と樹脂層の界面で「でこぼこ」が生じそれが樹
脂表面からの反射光を散乱させ光沢の低下する原因と推
察される。
In order to improve this drawback, production methods using suspension polymerization or bulk-suspension polymerization have been proposed, but it has been extremely difficult to produce products that satisfy both impact strength and transparency. 〇In other words, products that satisfy the impact strength are those that have a rough surface such as those made by injection molding, and have a "sushi glass" surface.
The p-light is diffusely reflected on the surface, resulting in poor transparency. One of the reasons why the surface becomes "glass"-like is that the diameter of the dispersed rubber particles is large, so the rubber particles are deformed greatly during injection molding, and when the deformation is alleviated, on the mold contact surface,
It is assumed that "bumps" occur at the interface between the rubber particles and the resin layer, which scatters the reflected light from the resin surface and causes a decrease in gloss.

一方、透明性を満足させる樹脂を得るには、ゴムの分散
粒子径を非常に小さくしなければならず、その為十分な
衝撃強度が得られず、目的とする樹脂を得ることが期待
できない。
On the other hand, in order to obtain a resin that satisfies transparency, the dispersed particle size of the rubber must be made very small, and as a result, sufficient impact strength cannot be obtained, and it cannot be expected to obtain the desired resin.

本発明の目的は加工性がずれ、かつ良好な透明性と耐衝
撃性を備えた熱可塑性樹脂組成物を提供することにある
An object of the present invention is to provide a thermoplastic resin composition that has excellent processability and has good transparency and impact resistance.

本発明に従って、 a)スチレン−ブタジェン系ゴム状重合体の存在下で、
該ゴム状重合体と実質的に等しい屈折率を有する樹脂を
形成しうる組成の単量体混合物を重合率15〜50重量
%まで触媒の不存在下又はジクミルパーオキサイドの存
在下で溶液重合あるいは塊状重合せしめ、次いで上記重
合系にt−ブチル・母−オキシエステルを添加し重合を
更に行なわせて得られるゴム状重合体成分3〜35重量
部及び樹脂状成分97〜65重量部を含有するグラフト
共重合体CA)、 b)上記〔A〕のゴム状重合体と実質的に等しい屈折率
を有するスチレン−ブタジェン系ゴム状重合体ラテック
スの存在下で、該ゴム状重合体と実質的に等しい屈折率
を有する樹脂を形成しうる組成の単量体混合物を乳化重
合して得られるゴム状重合体成分30−70重量部及び
樹脂状成分70〜30重量部を含有するグラフト共重合
体〔B〕及びC)上記グラフト共重合体[A]及び〔B
〕と実質的に等しい屈折率を有する非エラストマー性(
又は(5) ゴム状重合体を含有しない)樹脂質重合体〔C〕、とか
らなる配合組成物であって、その組成物中のゴム状重合
体成分の含有率が5〜30重量%であり、かつ全体のゴ
ム成分に対しグラフト共重合体〔A〕のゴム成分及びグ
ラフト共重合体〔B〕のゴム成分がそれぞれ20〜60
重量%及び80〜40重量%であることを特徴とする透
明耐衝撃性樹脂組成物が提供される。
According to the invention, a) in the presence of a styrene-butadiene rubbery polymer,
A monomer mixture having a composition capable of forming a resin having a refractive index substantially equal to that of the rubbery polymer is solution polymerized in the absence of a catalyst or in the presence of dicumyl peroxide to a polymerization rate of 15 to 50% by weight. Alternatively, it contains 3 to 35 parts by weight of a rubbery polymer component and 97 to 65 parts by weight of a resinous component obtained by bulk polymerization, then adding t-butyl mother oxyester to the above polymerization system and further polymerizing. b) in the presence of a styrene-butadiene-based rubbery polymer latex having a refractive index substantially equal to that of the rubbery polymer of [A] above; A graft copolymer containing 30 to 70 parts by weight of a rubbery polymer component and 70 to 30 parts by weight of a resinous component obtained by emulsion polymerization of a monomer mixture having a composition capable of forming a resin having a refractive index equal to [B] and C) The above graft copolymer [A] and [B
) having a refractive index substantially equal to
or (5) a resinous polymer [C] containing no rubbery polymer, and the content of the rubbery polymer component in the composition is 5 to 30% by weight. Yes, and the rubber component of the graft copolymer [A] and the rubber component of the graft copolymer [B] are each 20 to 60% of the total rubber component.
% by weight and from 80 to 40% by weight.

本発明において、グラフト共重合体[A]は最終組成物
の衝撃強度の向上に主として寄与し、またグラフト共重
合体CB)は主として光沢、透明性の改良に寄与する。
In the present invention, the graft copolymer [A] mainly contributes to improving the impact strength of the final composition, and the graft copolymer CB) mainly contributes to improving gloss and transparency.

光沢、透明性が改良される理由について推察すると、〔
A〕の分散された大きなゴム粒子の間に〔B〕の小さな
ゴム粒子が入って、金型密着面でのゴム粒子と樹脂層界
面の「でこぼこ」を小さくすることが表面光沢の向上に
つながり、その結果、透明性が良くなるものと考えられ
る。
Inferring the reason why gloss and transparency are improved, [
The small rubber particles of [B] are inserted between the large dispersed rubber particles of A] to reduce the "unevenness" at the interface between the rubber particles and the resin layer on the mold contact surface, which leads to an improvement in surface gloss. , it is thought that transparency will improve as a result.

しかしながら、このグラフト共重合体〔B〕はゴム含有
率及びrル含有率が[A)に比べて比較的高(6) いため〔A〕及びCBIの二成分のみの配合組成物では
加工性が良くない。
However, since this graft copolymer [B] has a relatively high rubber content and rubber content (6) compared to [A], processability is poor in a blended composition containing only two components of [A] and CBI. not good.

この加工性の悪さを改良するためグラフト共重合体〔A
〕及び〔B〕と実質的に等しい屈折率を有する非エラス
トマー性重合体〔C〕を第三成分として配合する必要が
ある。
In order to improve this poor processability, a graft copolymer [A
] and [B] and a non-elastomeric polymer [C] having substantially the same refractive index as the third component.

尚[A)及びCBIの二成分系組成物では加工性の改良
を図るべくグラフト共重合体〔A〕の組成や物性を変え
ても加工性の向上度合に比べ衝撃強度の低下割合が大き
く物性バランスの良いものが得られない。
In addition, in the two-component compositions of [A] and CBI, even if the composition and physical properties of the graft copolymer [A] are changed in order to improve processability, the impact strength decreases at a large rate compared to the degree of improvement in processability. I can't get a good balance.

又、CB)の組成や物性を変えても加工性の改良度合が
非常に小さい為、所望の物性のバランスを達成すること
は困難である。
Further, even if the composition and physical properties of CB) are changed, the degree of improvement in processability is very small, making it difficult to achieve a desired balance of physical properties.

以下、各共重合体樹脂に関し詳細に記述する。Each copolymer resin will be described in detail below.

■、グラフト共重合体[A] グラフト共重合体〔A〕で使用するスチレン−ブタジェ
ン系ゴム状重合体は、スチレンの結合含有量が10〜4
0重量%が好ましく、更に好ましくは20〜30重量%
である。スチレンの結合金量が多すぎると得られる最終
組成物の衝撃強度が劣り、また少なすぎると最終組成物
の透明性が得られ難く、透明性を得ようとすると加工性
、耐溶剤性及び熱安定性が悪くなる。
■, Graft copolymer [A] The styrene-butadiene rubbery polymer used in the graft copolymer [A] has a styrene bond content of 10 to 4.
Preferably 0% by weight, more preferably 20-30% by weight
It is. If the amount of styrene binder is too large, the impact strength of the final composition obtained will be poor, and if it is too small, it will be difficult to obtain transparency of the final composition, and if transparency is to be achieved, processability, solvent resistance and heat resistance will be affected. Stability deteriorates.

該ゴム状重合体の量はグラフト共重合体〔A〕中に3〜
35重量係で置板ことが好ましく、更に好ましくは5〜
25重量係で置板。ゴム状重合体の量が3重量板未満で
は最終組成物の加工性が劣り、35重量%をこえる場合
は最終組成物の衝撃強度や透明性が劣る。
The amount of the rubbery polymer in the graft copolymer [A] is 3 to 3.
It is preferable to place the plate with a weight ratio of 35, more preferably 5~
25 Weight staff placed a board. If the amount of the rubbery polymer is less than 3 weight %, the processability of the final composition will be poor, and if it exceeds 35 weight %, the impact strength and transparency of the final composition will be poor.

ゴム状重合体にグラフトする単量体としては、ゴム状重
合体と、実質的に等しい屈折率を有する樹脂を形成しう
る単量体もしくは単量体の混合物である。
The monomer grafted onto the rubbery polymer is a monomer or a mixture of monomers capable of forming a resin having a refractive index substantially equal to the rubbery polymer.

該単量体としてはその90重量%以上が芳香族ビニル化
合物と(メタ)アクリル酸エステルトカらなる単量体混
合物であることが好ましい。
The monomer is preferably a monomer mixture in which 90% by weight or more is an aromatic vinyl compound and a (meth)acrylic acid ester.

芳香族ビニル化合物としてはたとえばスチレン。An example of an aromatic vinyl compound is styrene.

α−メチルスチレン、p−メチルスチレン、O−メチル
スチレン、m−メチルスチレン、ビニルトルエンなどが
あげられ、これらの1種以上が使用できる。これらのう
ち好ましいものとしてスチレンがあげられる。(メタ)
アクリル酸エステルとしてはアクリル酸もしくはメタク
リル酸の炭素数1〜6のアルキルエステルが好ましく、
たとえばアクリル酸メチル、アクリル酸エチル、アクリ
ル酸プロピル、アクリル酸ブチル、メタクリル酸メチル
(MMA) 、メタクリル酸エチル、メタクリル酸プロ
ピル、メタクリル酸ブチルなどがあげられ、これらの1
秤以上が使用できる。これらのうちでは好ましbものと
してMMAがあげられる。
Examples include α-methylstyrene, p-methylstyrene, O-methylstyrene, m-methylstyrene, and vinyltoluene, and one or more of these can be used. Among these, styrene is preferred. (meta)
The acrylic ester is preferably an alkyl ester of acrylic acid or methacrylic acid having 1 to 6 carbon atoms,
Examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate (MMA), ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc.
More than a scale can be used. Among these, MMA is preferred.

芳香族ビニル化合物と(メタ)アクリル酸エステルの組
合せとしてはスチレンとMMAとを組合せたものが最も
好ましく、この両者の組成割合は、その共重合体の屈折
率がゴム状重合体の屈折率と(9) 実質的に同一になるように適宜変化させるととができる
The most preferred combination of aromatic vinyl compound and (meth)acrylic acid ester is a combination of styrene and MMA, and the composition ratio of the two is such that the refractive index of the copolymer is equal to the refractive index of the rubbery polymer. (9) They can be changed as appropriate so that they are substantially the same.

即ち、スチレン−ブタジェン系ゴムにおいては、スチレ
ンの結合比率が大きい背屈折率は大きくなり、またスチ
レン−MMA共重合体はスチレンの結合比率が大きい背
屈折率が大きい。
That is, in styrene-butadiene rubber, the dorsal refractive index is large when the bonding ratio of styrene is large, and the dorsal refractive index is large when the bonding ratio of styrene is large in the styrene-MMA copolymer.

例えば結合スチレン含量25重置板のスチレン−ブタジ
ェンゴムと同程度の屈折率(nD) *有するスチレン
−幌共重合体を得るためにはこの共重合体の結合スチレ
ン含量は約45重量係であシ、また結合スチレン含量4
0重置板のスチレン−ブタジェンゴムの場合にはスチレ
ン−■仏典重合体の結合スチレン含量は約57重量%で
ある。
For example, in order to obtain a styrene-hood copolymer having a refractive index (nD)* similar to that of styrene-butadiene rubber with a bonded styrene content of 25% by weight, the bound styrene content of this copolymer must be approximately 45% by weight. , and bound styrene content 4
In the case of a zero-layer styrene-butadiene rubber, the bound styrene content of the styrene-I Buddhist polymer is about 57% by weight.

前記単量体には芳香族ビニル化合物、(メタ)アクリル
酸エステル以外の単量体を10重重量板下含有させるこ
とができ、かがる単量体としては例えばアクリロニトリ
ルやメタクリルニトリルなどのシアン化ビニル化合物が
あげられる。
The monomer can contain a monomer other than aromatic vinyl compounds and (meth)acrylic acid esters, and examples of darkening monomers include cyanogens such as acrylonitrile and methacrylonitrile. Examples include vinyl compounds.

単量体として芳香族ビニル化合物と(メタ)アクリル酸
エステルとの混合物を使用した場合、該r1^) 混合物中の芳香族ビニル化合物の含有量は好ましくは2
5〜65重量%であシ、更に好ましくは35〜55重量
%であるが、これらの単量体組成比は使用するゴム状重
合体の屈折率にあわせて適宜選ばれる。
When a mixture of an aromatic vinyl compound and a (meth)acrylic acid ester is used as a monomer, the content of the aromatic vinyl compound in the mixture is preferably 2
The monomer composition is preferably 5 to 65% by weight, more preferably 35 to 55% by weight, and the composition ratio of these monomers is appropriately selected depending on the refractive index of the rubbery polymer used.

グラフト共重合体[A)を製造する方法としては、先ず
ゴム状重合体と単量体との混合溶液を110〜140℃
、好ましくは115〜135℃にて無触媒あるいはジク
ミルパーオキサイドの存在下で重合率(単量体の重合転
化率)が好ましくは15〜50重量%、更に好ましくは
20〜40重量%になるまで溶液重合又は塊状重合せし
め、次いでt−ブチル・臂−オキシエステルを添加して
重合を行いグラフト共重合体[A)を得る。
As a method for producing the graft copolymer [A), first, a mixed solution of a rubbery polymer and a monomer is heated at 110 to 140°C.
The polymerization rate (monomer polymerization conversion rate) is preferably 15 to 50% by weight, more preferably 20 to 40% by weight, preferably at 115 to 135°C without a catalyst or in the presence of dicumyl peroxide. Solution polymerization or bulk polymerization is carried out until then, followed by polymerization by adding t-butyl oxyester to obtain a graft copolymer [A].

ここで本発明の最も特徴とするところは、重合率が15
〜50重量%までの前段重合を無触媒あるいはジクミル
パ−オキサイドを添加して行い、次の後段重合でt−ブ
ナルバーオキシエステルを添加し継続重合する点にある
The most characteristic feature of the present invention is that the polymerization rate is 15
The first stage polymerization up to 50% by weight is carried out without a catalyst or with the addition of dicumyl peroxide, and in the next second stage polymerization, t-bunalbaroxyester is added and the polymerization is continued.

前段の重合率が15重量−未満で後段重合へ進めた場合
は、最終組成物の衝撃強度が劣る。反対に50重量%を
越える時には透明性が悪くな)好ましくない。又、重合
温度も上記の範囲外では衝撃強度、透明性、加工性等の
物性のバランスのとれたものが得られない。
If the polymerization rate in the first stage is less than 15% by weight and the process proceeds to the second stage polymerization, the impact strength of the final composition will be poor. On the other hand, when it exceeds 50% by weight, transparency deteriorates (unpreferably). Furthermore, if the polymerization temperature is outside the above range, a product with well-balanced physical properties such as impact strength, transparency, and processability cannot be obtained.

前段重合は無触媒あるいはジクミルパ−オキサイドを使
用して行うが、これ以外の有機過酸化物を用いた場合は
最終組成物の物性・々ランスをと9にくい。
The first stage polymerization is carried out without a catalyst or using dicumyl peroxide; however, if an organic peroxide other than this is used, the physical properties of the final composition will be difficult to achieve.

後段重合に於ては、触媒としてt−ブチルパーオキシエ
ステルを使用するが、他の有機過酸化物で重合を継続し
た場合にもやはシ、本発明の目的とする物性バランスの
とれた最終組成物の生成は困難である。
In the post-polymerization, t-butyl peroxyester is used as a catalyst, but if the polymerization is continued with other organic peroxides, it will no longer be possible to achieve a final product with well-balanced physical properties, which is the objective of the present invention. Producing the composition is difficult.

この様に本発明における重合条件、触媒などの特定の組
合せ以外ではいずれの場合にも満足な透明耐衝撃性樹脂
は得られ難い。
As described above, it is difficult to obtain a satisfactory transparent impact-resistant resin in any case other than the specific combination of polymerization conditions, catalyst, etc. in the present invention.

本発明で使用されるt−ブチルパーオキシエステルは分
解温度が95〜105℃の範囲で半減期10時間程度の
ものが好ましく特にt−ブチルパーオキシラウレート、
t−プチルパーオキシペンソエー)、t−7”チルパー
オキシイソプロビルカーポネl” * t−ブチル2−
エテル−ヘキシルカーボネートの中から選ばれた1種又
は2種以上が好適である。
The t-butyl peroxyester used in the present invention preferably has a decomposition temperature in the range of 95 to 105°C and a half-life of about 10 hours, particularly t-butyl peroxylaurate,
t-butylperoxypensoate), t-7"tylperoxyisopropyl carbonate" *t-butyl 2-
One or more selected from ether-hexyl carbonates are preferred.

後段重合に於ける重合温度は90−110℃の範囲が好
ましい。又、重合終了時の重合率は好ましくは50〜9
Off1%、更に好ましくは60〜80%である。50
重量%未満の場合は透明性が低下する傾向にある。逆に
90重針%を越えると高粘度になシ製造面での取扱いが
難しくなるばかシでなく高粘度の為か急激な分子量の増
大が起シ分子量コントロールが困難になるとともに生成
ポリマーの組成分布が広くなシ透明性の低下をきたす傾
向を示す。
The polymerization temperature in the latter stage polymerization is preferably in the range of 90-110°C. Moreover, the polymerization rate at the end of polymerization is preferably 50 to 9.
Off1%, more preferably 60 to 80%. 50
When the amount is less than % by weight, transparency tends to decrease. On the other hand, if it exceeds 90% heavy needles, the viscosity becomes high, making it difficult to handle in terms of production.Perhaps because of the high viscosity, a rapid increase in molecular weight occurs, making it difficult to control the molecular weight, and the composition of the resulting polymer. If the distribution is wide, it tends to cause a decrease in transparency.

本発明において重合にさいし溶媒を用いると七もできる
。かかる溶媒は、使用されるゴム状物質及び重合反応混
合物と相溶性がオシ、溶解および重合工程の全工程を通
じてゴム状物質および生成したグラフト共重合体を析出
させないものでおり、(13) 更にモノマー類と反応しないものであることが好ましい
。このような溶媒としては例えば、トルエン、エチルベ
ンゼン、ベンゼン、キンレン等の芳香族炭化水素を挙げ
ることができ、これらの1種又は2種以上を使用するこ
とができる。このような溶媒の使用量はゴム量、共重合
体の還元粘度等に左右されるが、通常仕込みニア″′ム
状共重合体と単を体の合計量100重量部に対して10
〜100重置部でら)好ましくは25〜75重量部であ
る。
In the present invention, seven methods can be achieved by using a solvent during polymerization. Such a solvent is one that is compatible with the rubbery material and polymerization reaction mixture used, does not precipitate the rubbery material and the resulting graft copolymer throughout the dissolution and polymerization process, and (13) furthermore, the monomer It is preferable that it does not react with other substances. Examples of such a solvent include aromatic hydrocarbons such as toluene, ethylbenzene, benzene, and quincylene, and one or more of these may be used. The amount of such a solvent used depends on the amount of rubber, the reduced viscosity of the copolymer, etc., but it is usually 10 parts by weight per 100 parts by weight of the total amount of the near-mu-like copolymer and monomer.
(~100 parts by weight), preferably 25 to 75 parts by weight.

またグラフト共重合体〔A〕中のゴム粒子径(コールメ
カランター法による重量平均粒子径)は0.7〜1.3
μが好ましく、更に好ましくは0.8〜1.2μである
。ゴム粒径が小さすぎると耐衝撃性が/jJ#)、また
大きすぎると透明性が劣る。
In addition, the rubber particle diameter (weight average particle diameter by Cole Mechanator method) in the graft copolymer [A] is 0.7 to 1.3.
μ is preferable, and more preferably 0.8 to 1.2 μ. If the rubber particle size is too small, the impact resistance will be poor (/jJ#), and if it is too large, the transparency will be poor.

B グラフト共重合体CB) グラフト共重合体CB)で使用するスチレン−ブタジェ
ン系ゴム状共重合体ラテックスは、グラフト共重合体[
A]の屈折率に実質的に一致する様に決められたモノマ
ー組成比で、ステアリン酸カリウム、ステアリン酸ナト
リウム、オレイン酸カリ(14) ウム、ロジン酸カリウム等、通常の乳化剤を用いた乳化
重合法により得られる。
B Graft copolymer CB) The styrene-butadiene rubbery copolymer latex used in graft copolymer CB) is a graft copolymer [
Emulsification polymerization using common emulsifiers such as potassium stearate, sodium stearate, potassium (14) oleate, potassium rosinate, etc., with a monomer composition ratio determined to substantially match the refractive index of A]. Obtained by law.

このとき、スチレン、ブタジェンの他にジビニルベンゼ
ン等の多官能性モノマーを使用し、分子間に橋かけを作
ると、グラフト共重合体CB)の特徴である配合組成物
の表面光沢の向上作用が一層効果的である。
At this time, if a polyfunctional monomer such as divinylbenzene is used in addition to styrene and butadiene to create a bridge between molecules, the effect of improving the surface gloss of the blended composition, which is a characteristic of graft copolymer CB), can be achieved. Even more effective.

この様にして得られた共重合体CB)の製造に使用する
デム状共重合体ラテックス(グラフト重合前)の平均粒
径(アルギン酸ソーダ法の重量平均測定法による)は、
好壕しくけ400〜2000X。
The average particle diameter (based on the weight average measurement method using the sodium alginate method) of the dem-like copolymer latex (before graft polymerization) used in the production of the copolymer CB) obtained in this way is:
Good trench depth 400-2000X.

更に好ましくは500〜1500Xである。本発明の目
的とする物性を得るためにはこの範囲の粒径が好ましい
More preferably, it is 500 to 1500X. In order to obtain the physical properties targeted by the present invention, the particle size is preferably within this range.

上記ゴム状重合体にグラフト重合する単量体としてはそ
の生成(共)重合体の屈折率がグラフト共重曾体〔A〕
と実質的に同等であることが必要である。かかる単量体
としてはグラフト共重合体(A)の場合と同様であシ、
芳香族ビニル化合物および(メタ)アクリル酸エステル
を90重量%以上含有した単量体が好ましい。
As for the monomer to be graft-polymerized to the above-mentioned rubbery polymer, the refractive index of the resulting (co)polymer is the graft copolymer [A]
It is necessary that the Such monomers may be the same as in the case of the graft copolymer (A),
A monomer containing 90% by weight or more of an aromatic vinyl compound and a (meth)acrylic acid ester is preferred.

芳香族ビニル化合物、(メタ)アクリル酸エステルとし
てはグラフト共重合体[A)で述べたものと同様の化合
物が使用でき、とくにスチレンと■法との混合物が好ま
しい。
As the aromatic vinyl compound and (meth)acrylic acid ester, the same compounds as those mentioned for the graft copolymer [A] can be used, and a mixture of styrene and method (2) is particularly preferred.

グラフト共重合体CB)は、前記ゴム状重合体の存在下
に、該ゴム状重合体と実質的に同程度の屈折率を有する
共重合体を形成しうる(組成の)単量体(混合物)を乳
化重合法によシダラフト重合することによって製造でき
る。乳化重合法としては特に限定されるものではなく、
公知の乳化グラフト重合法が使用できる。
The graft copolymer CB) is a mixture of monomers (of a composition) capable of forming, in the presence of the rubbery polymer, a copolymer having a refractive index substantially similar to that of the rubbery polymer. ) can be produced by cedar raft polymerization using an emulsion polymerization method. The emulsion polymerization method is not particularly limited,
Known emulsion graft polymerization methods can be used.

グラフト共重合体CB)中のゴム質重合体成分の官有量
は30〜70重量%が好ましく、更に好ましくは40〜
60重量%であシ、またゴム以外の成分である樹脂質成
分の含有量は70〜30重量%が好ましく、更に好まし
くは60〜40重量%である。ゴム質重合体成分の含有
量が70重量%をこえると、最終組成物の表面光沢の向
上効果が十分でなく、そのうえにプッが発生する場合も
あシ好ましくない。又、ゴム状共重合体成分が30重量
部未満であると、表面光沢の向上の効果が劣る。もし、
同等の表面光沢の向上効果を得ようとするためにはグラ
フト共重合体[B)の配合部数を多くせねばならず、そ
の為、最終組成物の加工性が悪くなシ好ましくない。
The organic content of the rubbery polymer component in the graft copolymer CB) is preferably 30 to 70% by weight, more preferably 40 to 70% by weight.
The content of resinous components other than rubber is preferably 70 to 30% by weight, more preferably 60 to 40% by weight. If the content of the rubbery polymer component exceeds 70% by weight, the effect of improving the surface gloss of the final composition will not be sufficient and, in addition, it may cause splatter, which is undesirable. Furthermore, if the amount of the rubbery copolymer component is less than 30 parts by weight, the effect of improving surface gloss will be poor. if,
In order to obtain the same effect of improving surface gloss, it is necessary to increase the amount of graft copolymer [B), which is undesirable because the processability of the final composition is poor.

またグラフト共重合体〔B〕中のゴム状グラフト成分の
平均の粒径(電子顕微鏡による重量平均測定方法)は好
ましくは500〜4. OOOX、更に好ましくは10
00〜3000Xである。これ以上の粒径になると表面
光沢の向上効果が悪くカる。
Further, the average particle size (weight average measurement method using an electron microscope) of the rubbery graft component in the graft copolymer [B] is preferably 500 to 4. OOOX, more preferably 10
00 to 3000X. If the particle size is larger than this, the effect of improving surface gloss will deteriorate.

■ 非ニジストマー性樹脂質重合体〔C〕重合体〔C〕
はグラフト共重合体〔A〕及び〔B〕と実質的に等しい
屈折率を有する樹脂を形成しうる組成の単量体(混合物
)を塊状、懸濁、又は溶液重合する事によシ得られる。
■ Non-distomeric resinous polymer [C] Polymer [C]
can be obtained by bulk, suspension, or solution polymerization of monomers (mixture) having a composition capable of forming a resin having a refractive index substantially equal to that of the graft copolymers [A] and [B]. .

かかる単量体としてはグラフト共重合体〔A〕に使用さ
れると同様のものが使用でき、芳香族ビニル化合物およ
び(メタ)アクリル酸エステルを主成分とした(好まし
くは90チ以上含有する)も(17) のが好ましい。芳香族ビニル化合物および(メタ)アク
リル酸エステルとしてはグラフト共重合体[A]にかん
して述べた化合物と同様のものが使用でき、スチレンお
よびMMAが好ましいものである。
As such monomers, those similar to those used in the graft copolymer [A] can be used, and the main components are aromatic vinyl compounds and (meth)acrylic acid esters (preferably containing 90 or more monomers). Also (17) is preferred. As the aromatic vinyl compound and the (meth)acrylic acid ester, the same compounds as those described for the graft copolymer [A] can be used, and styrene and MMA are preferred.

スチレンとMMAの単量体組成比はその生成重合体の屈
折率がグラフト共重合体のそれと実質的に同一になる様
選ばれる。
The monomer composition ratio of styrene and MMA is selected such that the refractive index of the resulting polymer is substantially the same as that of the graft copolymer.

この重合体〔りに要求される条件として加工性(Q値X
 10−3CC/、ec:高化式7 ロー テスp −
Processability (Q value
10-3CC/, ec: Koka formula 7 low test p -
.

200℃+ 30 k&/′cnI2+ 1mφ×2簡
)が配合されるグラフト共重合体(A)よシ高い事が必
要である。
200°C + 30 k&/'cnI2+ 1 mφ x 2 pieces) is required to be higher than the graft copolymer (A) to which it is blended.

〔C〕のQ値は15以上であることが好ましい。The Q value of [C] is preferably 15 or more.

前記した様にグラフト共重合体(A)は耐衝撃性におい
て非常にすぐれているが、表面の光沢が悪く透明性が低
下する。この[A)の透明性を改良するためグラフト共
重合体CB)を配合するが、このCB)の加工性が悪い
ため(A)と〔B〕の配合組成物は加工性が低下する。
As mentioned above, the graft copolymer (A) has excellent impact resistance, but the surface has poor gloss and transparency. In order to improve the transparency of this [A), a graft copolymer CB) is blended, but since this CB) has poor processability, the blended composition of (A) and [B] has poor processability.

[A)とCB)との組成物に重合体〔C〕を配合すると
組成物の加工性が著しく改良され目的とする樹脂が得ら
れる。
When the polymer [C] is blended into the composition of [A) and CB), the processability of the composition is significantly improved and the desired resin can be obtained.

(18) 重合体〔C〕を配合しない〔A〕と〔B〕のみの組成物
においては、例えばグラフト共重合体[A)のグラフト
相の分子量を小さくすることによシ加工性の改良を試み
ても加工性の向上割合に比して衝撃強贋の低下割合が大
きく、同時に透明性も悪くなるので、所望の物性のバラ
ンスのとれた組成物は得られない。また上記の場合[A
)の代シにグラフト共重合体CB)の加工性要因を変化
させても良好な物性バランスを有する組成物は得られな
い。
(18) In a composition containing only [A] and [B] without polymer [C], the processability can be improved by, for example, reducing the molecular weight of the graft phase of the graft copolymer [A). Even if such an attempt is made, the rate of decrease in impact strength is greater than the rate of improvement in processability, and at the same time, transparency deteriorates, making it impossible to obtain a composition with the desired balance of physical properties. Also, in the above case [A
Even if the processability factors of the graft copolymer CB) are changed in place of ), a composition having a good balance of physical properties cannot be obtained.

この様に加工性の良好な非ニジストマー性重合体〔C〕
を配合することによシ初めて本発明の目的が達成される
Non-disstomeric polymer [C] with good processability as described above
The object of the present invention can only be achieved by incorporating the following.

■ 配合組成物 以上の方法によって得られた実質的に等しい屈折率を有
するグラフト共重合体〔A〕とCB)及び重合体〔C〕
を、組成物中のゴム状重合体成分の含有率が5〜30%
、好ましくは10〜25重量%であシかつ全体のゴム成
分に対しグラフト共重合体〔B〕のゴム成分の割合が4
0〜80%、好ましくは50〜75重量%となる様配合
比率でブレンドする。このような組成比で[A) 、 
[B)及び〔C〕をパンツクリ−ミキサーあるいは押出
機等によって混合することによシ加工性のすぐれた透明
耐衝撃性樹脂組成物をうろことができる。ここでグラフ
ト共重合体[A) 、 [B)と重合体〔C〕の屈折率
をよシ近似させることによシ得られる配合組成物の透明
性が向上する。現想的には全く等しいことが望ましいが
、本発明では[A) 、 CB)及び〔C〕の屈折率η
Vの差が互いに±0.02.好ましくは±0.01更に
好ましくは±0゜005の範囲内を実質的に等しいと見
做される。
■ Graft copolymers [A] and CB) and polymers [C] having substantially the same refractive index obtained by the above method
, the content of the rubbery polymer component in the composition is 5 to 30%.
, preferably 10 to 25% by weight, and the ratio of the rubber component of the graft copolymer [B] to the total rubber component is 4% by weight.
The blending ratio is 0 to 80%, preferably 50 to 75% by weight. With such a composition ratio [A),
A transparent impact-resistant resin composition with excellent processability can be obtained by mixing [B) and [C] using a pant cream mixer or an extruder. By closely approximating the refractive indexes of the graft copolymers [A) and [B) and the polymer [C], the transparency of the resulting blended composition is improved. Ideally, it is desirable that the refractive index η of [A), CB) and [C] be completely equal, but in the present invention
The difference in V is ±0.02. Preferably, a range of ±0.01 and more preferably ±0°005 is considered to be substantially equal.

本発明において配合組成物のゴム含有率が596未満の
場合は耐衝撃性が劣シ、30%をこえると硬さや強度が
低下する。
In the present invention, if the rubber content of the compounded composition is less than 596%, the impact resistance will be poor, and if it exceeds 30%, the hardness and strength will decrease.

グラフト共重合体CB)中のゴム成分の比率が40重量
−未満の場合はその特徴である光沢(表面平滑性)や透
明性の改良効果が十分でなく、また80重it%を越え
る場合はグラフト共重合体[A)の配合比率が小さくな
る結果、耐衝撃性が劣る。
If the ratio of the rubber component in the graft copolymer CB) is less than 40% by weight, the effect of improving its characteristic gloss (surface smoothness) and transparency will not be sufficient, and if it exceeds 80% by weight, As a result, the blending ratio of the graft copolymer [A) becomes small, resulting in poor impact resistance.

又、重合体〔C〕の配合比率は目的とする最終組成物の
衝撃強度、加工性及び使用する重合体〔C〕の種類(m
成)によシ異なるが、通常10重量−以上の使用量で特
徴でおる加工性の改良効果が顕著になる。本発明の組成
物中の(C)の含有量は好ましくは10〜90重量%、
更に好ましくは10〜80重量%である。
In addition, the blending ratio of the polymer [C] depends on the impact strength and processability of the intended final composition and the type of polymer [C] used (m
The effect of improving workability, which is characterized by a usage amount of 10% by weight or more, usually becomes noticeable, although it varies depending on the composition). The content of (C) in the composition of the present invention is preferably 10 to 90% by weight,
More preferably, it is 10 to 80% by weight.

この様にして得られる本発明配合組成物は良好な加工性
及び透明性、優れた耐衝撃性、耐薬品性等の諸物件を同
時に満足するものである。
The blended composition of the present invention thus obtained satisfies various properties such as good processability and transparency, excellent impact resistance, and chemical resistance.

以下、実施しU、比較列によシ本発明をよシ具体的に説
明する。
Hereinafter, the present invention will be explained in detail with reference to implementation and comparison columns.

なお各種物性は以下の測定方法で行った。Note that various physical properties were measured using the following measurement methods.

衝撃強度: ASTM D−256、加工性:高化式フ
ローテスター、200℃+ 30 kg/cm2.1w
nφX2m全光線透過率及び曇価: ASTM D−1
003。
Impact strength: ASTM D-256, workability: Koka type flow tester, 200°C + 30 kg/cm2.1w
nφX2m total light transmittance and haze value: ASTM D-1
003.

硬度: ASTM D−785、光沢度: ASTM 
D−523実施例1 (1)グラフト共重合体[A]の製造 結合スチレン25%で屈折率ηD1.5375の(21
) スチレン−ブタジエン共重合ゴム1o部をスチレン36
部、メタクリル酸メチル54部、トルエン25部の混合
液に溶解した。この溶液を107攪拌機付オートクレー
ブに移しこれに第3級ドデシルメルカプタン0.3部を
加えた後、130℃に昇温し攪拌下で重合率が25係に
なるまで熱重合せしめた。次いで、この反応混合液を1
10cまで冷却した後、トルエン25部、t−ブチルz
f−オキシベンゾエート0.7部を加え100℃で重合
率が63%になるまで攪拌下で重合を継続した。重合率
が63優に達した時点で重合を停止し老化防止剤を加え
た後、オートクレーブよシ取シ出し水蒸気を吹き込んで
未反応単量体、溶媒を除去した。
Hardness: ASTM D-785, Glossiness: ASTM
D-523 Example 1 (1) Production of graft copolymer [A] (21
) 10 parts of styrene-butadiene copolymer rubber to 36 parts of styrene
1 part, 54 parts of methyl methacrylate, and 25 parts of toluene. This solution was transferred to an autoclave equipped with a 107 stirrer, 0.3 part of tertiary dodecyl mercaptan was added thereto, and the temperature was raised to 130° C. and thermal polymerization was carried out under stirring until the polymerization rate reached 25%. Then, this reaction mixture was diluted with 1
After cooling to 10c, 25 parts of toluene, t-butyl z
0.7 part of f-oxybenzoate was added and polymerization was continued at 100° C. under stirring until the polymerization rate reached 63%. When the polymerization rate reached 63%, the polymerization was stopped and an anti-aging agent was added.The autoclave was then taken out and steam was blown into the autoclave to remove unreacted monomers and solvent.

このものを細断した後、クラッシャーで粉砕し、乾燥後
、押出機でペレット化しグラフト共重合体[A)を得た
。[A)の屈折率η管は1.538であった。
This material was shredded, crushed with a crusher, dried, and pelletized with an extruder to obtain a graft copolymer [A]. The refractive index η tube of [A] was 1.538.

また[A)中のゴムの粒子径は約1μであった。Further, the particle size of the rubber in [A) was about 1 μm.

(2)グラフト共重合体[B)の製造 1ooIWt拌機付オートクレーブにスチレン26 N
 + 7” p シxン74部、第3級ドデシルメル(
22) カプタン0,2部、ステアリン酸カリ4.5部、リン酸
カリ1.3部、過硫酸力IJ 0.18部及び水150
部を仕込み45℃で24時間攪拌下で乳化重合を行った
。生成した乳化共重合体の粒径はs o OX。
(2) Production of graft copolymer [B) Styrene 26N was placed in an autoclave equipped with a 1ooIWt stirrer.
+ 7” p sixen 74 parts, tertiary dodecyl mel (
22) Captan 0.2 parts, potassium stearate 4.5 parts, potassium phosphate 1.3 parts, persulfate power IJ 0.18 parts, and water 150 parts
emulsion polymerization was carried out under stirring at 45° C. for 24 hours. The particle size of the produced emulsion copolymer is s o OX.

η2o5は1.537であった。該共重合体100重量
部(固形分)を60Jオートクレーブに入れ、これにメ
タクリル酸メチル30部、硫酸カリ0,4部。
η2o5 was 1.537. 100 parts by weight (solid content) of the copolymer was placed in a 60J autoclave, and 30 parts of methyl methacrylate and 0.4 parts of potassium sulfate were added thereto.

水300部(′:1′ム状ラテックスの含有水を含む)
を加え攪拌下に80℃で2時間保った。次いでこれにス
チレン40部、メタクリル酸メチル30部よシなる混合
液を10時間にわたυ一定速度で全量添加した。同時に
インゾロビルベンゼンノ1イドロノ4−オキサイド0.
4部、タデイウムホルムアルデヒド0.2部(水50部
に溶M)も一定速度で全量添加し80℃で攪拌下にてグ
ラフト共重合せしめた。さらにこれを80℃にて2時間
保った後、老化防止剤を加えグラフト共重合体ラテック
スを得た。このラテックスに2−の硫酸水溶液を加えて
重合体を凝固し、これを分離して、水洗、脱水。
300 parts of water (including water contained in ':1' sticky latex)
was added and kept under stirring at 80°C for 2 hours. Next, a mixture of 40 parts of styrene and 30 parts of methyl methacrylate was added thereto at a constant rate over 10 hours. At the same time, inzolovir benzene 1 idrono 4-oxide 0.
4 parts of tadium formaldehyde and 0.2 parts of tadium formaldehyde (M dissolved in 50 parts of water) were added at a constant rate, and graft copolymerization was carried out at 80° C. with stirring. After this was further maintained at 80° C. for 2 hours, an anti-aging agent was added to obtain a graft copolymer latex. A sulfuric acid aqueous solution of 2- is added to this latex to coagulate the polymer, which is separated, washed with water, and dehydrated.

乾燥してグラフト共重合体[B]を得た。CB)の屈折
率η。は1,5385であった。また[B]中のゴムの
粒子径は2000 iでおった。
After drying, a graft copolymer [B] was obtained. CB) refractive index η. was 1,5385. The particle size of the rubber in [B] was 2000 i.

(3)共重合体〔C〕の製造 攪拌機付101!オートクレーブにスチレン40部、メ
タクリル酸メチル60部、第3級ドデシルメルカプタン
0.2部を加えた後、130℃に昇温し攪拌下で重合率
が70%になるまで熱重合せしめた。重合率が70チに
達した時に重合を停止し取出した後、水蒸気を吹き込ん
で未反応単量体を除去した。このものを細断した後、ク
ラッシャーで粉砕し乾燥後、押出機でペレット化し共重
合体〔C〕を得た。〔C〕の屈折率η。は1.538で
あった。
(3) Production of copolymer [C] 101 with stirrer! After adding 40 parts of styrene, 60 parts of methyl methacrylate, and 0.2 parts of tertiary dodecyl mercaptan to an autoclave, the temperature was raised to 130°C and thermal polymerization was carried out under stirring until the polymerization rate reached 70%. When the polymerization rate reached 70%, the polymerization was stopped and the reactor was taken out, and unreacted monomers were removed by blowing in steam. This material was shredded, crushed with a crusher, dried, and pelletized with an extruder to obtain copolymer [C]. [C] refractive index η. was 1.538.

(4)組成物の製造 (11、(2)によって得られたグラフト共重合体〔A
〕。
(4) Production of composition (11, graft copolymer obtained by (2) [A
].

[IB)及び(3)によって得られた共重合体〔C〕を
それぞれ35/25/40部の配合比で混合し、とれを
押出機でペレット化した後、射出成形機で試験片を作成
し物性測定した結果を表−1に示した。同時に各共重合
体単独の物性も併記した。なおとの[A)、[B]、(
C〕の組成物の屈折率η智は1.538であった。
The copolymers [C] obtained in [IB) and (3) were mixed at a blending ratio of 35/25/40 parts, respectively, and the pellets were pelletized using an extruder, and then test pieces were created using an injection molding machine. The results of physical property measurements are shown in Table 1. At the same time, the physical properties of each copolymer alone are also listed. Naoto's [A), [B], (
The refractive index η of the composition C] was 1.538.

比較例1 実施例1(1)グラフト共重合体〔A〕の製造において
、スチレン−ブタジェン共重合ゴムを5部に、モノマー
を95部(モノマー比は同じ)に変えた。
Comparative Example 1 Example 1 (1) In the production of graft copolymer [A], the amount of styrene-butadiene copolymer rubber was changed to 5 parts, and the amount of monomer was changed to 95 parts (the monomer ratio was the same).

又、重合終了時の重合率を70%にした。これ以外の条
件は同一でグラフト共重合体〔A〕を得た。
Further, the polymerization rate at the end of polymerization was set to 70%. Graft copolymer [A] was obtained under the same conditions other than these.

(A)の屈折率は1.538でア−1)た。このグラフ
ト共重合体(A〕75部と実施例1と同一のグラフト共
重合体(B) 25部の2者を配合し、実施例1と同様
の方法で物性測定した結果を表−2に示した。
The refractive index of (A) was 1.538. 75 parts of this graft copolymer (A) and 25 parts of the same graft copolymer (B) as in Example 1 were mixed, and the physical properties were measured in the same manner as in Example 1. The results are shown in Table 2. Indicated.

比較例2 比較例1(1)グラフト共重合体〔A〕の製造において
、第3級ドデシルメルカグタンを0.5部とした。
Comparative Example 2 Comparative Example 1 (1) In the production of graft copolymer [A], 0.5 part of tertiary dodecyl mercagutan was used.

これ以外は比較例1と同一条件で樹脂組成物を得た。な
お〔A〕の屈折率は1.538であった。この物性結果
を表−2に示した。
A resin composition was obtained under the same conditions as Comparative Example 1 except for this. Note that the refractive index of [A] was 1.538. The physical property results are shown in Table-2.

表 −2 実施例2 (1)グラフト共重合体(A)の製造 実施例1(1)グラフト共重合体(Allの製造におい
て、前段重合を熱重合の代シにジクミルパーオキサイド
0.1部加え120℃で重合率が35%になるまで重合
せしめた。次いで後段重合段階で1−ブチルパーオキシ
ラウレ−トの代シにt−ブチルパーオキシラウレート0
.5mを加えて100℃で重合率が63%になるまで攪
拌下で重合を継続した。その他の条件は実施例1に準じ
た。
Table 2 Example 2 (1) Production of graft copolymer (A) Example 1 (1) In the production of graft copolymer (All), 0.1 dicumyl peroxide was used instead of thermal polymerization for the first stage polymerization. The polymerization was carried out at 120°C until the polymerization rate reached 35%.Next, in the latter polymerization stage, t-butylperoxylaurate was replaced with 0% of 1-butylperoxylaurate.
.. 5 m was added and polymerization was continued at 100° C. under stirring until the polymerization rate reached 63%. Other conditions were the same as in Example 1.

(2) グラフト共重合体〔B〕の製造実施例1(2)
グラフト共重合体CB)の製造において、スチレン−ブ
タジェンゴム状共重合体ラテックス(固形分)100重
量部に対する単量体混合物の量を100部から70部に
変えた。尚、単量体の添加順序は先ずメタクリル酸メチ
ル21部を添加して重合した後スチレン28部、メタク
リル酸21部を連続添加して重合した。その他の条件は
実施例1に準じた。
(2) Production Example 1 (2) of graft copolymer [B]
In the production of the graft copolymer CB), the amount of the monomer mixture was changed from 100 parts to 70 parts based on 100 parts by weight of the styrene-butadiene rubbery copolymer latex (solid content). The order of addition of the monomers was such that 21 parts of methyl methacrylate was first added and polymerized, and then 28 parts of styrene and 21 parts of methacrylic acid were successively added and polymerized. Other conditions were the same as in Example 1.

(3)共重合体〔C〕の製造 実施例1(3)共重合体〔C〕の製造において第3級ド
デシルメルカプタンの量全0,3部に変えた。その他の
条件は実施例1に準じた。
(3) Production of copolymer [C] Example 1 (3) In the production of copolymer [C], the total amount of tertiary dodecyl mercaptan was changed to 0.3 parts. Other conditions were the same as in Example 1.

(4)組成物の製造 グラフト共重合体[:A] 、 CB)及び共重合体〔
C〕の配合比をそれぞれ35/20/4 塁とした。こ
れ以外は実施例1とまったく同様の操作にょシ樹脂組成
物を得た。この組成物の物性結果を表−3に示した。な
おこの組成物の屈折$tAπは1.538であった。
(4) Production of composition Graft copolymer [:A], CB) and copolymer [
The mixing ratio of C] was set to 35/20/4 bases, respectively. Except for this, the procedure was exactly the same as in Example 1 to obtain a resin composition. The physical properties of this composition are shown in Table 3. The refraction $tAπ of this composition was 1.538.

比較例3 実施例2(1)グラフト共重合体(Allの製造におい
て、前段重合の重合率を13チとした。これ以外は実施
例2と同一条件で樹脂組成物金得た。この組成物の屈折
率η1は1・538であった。この組成物の物性結果を
表−3に示した。
Comparative Example 3 Example 2 (1) In the production of graft copolymer (All), the polymerization rate in the first stage polymerization was set to 13. A resin composition was obtained under the same conditions as in Example 2 except for this. The refractive index η1 of this composition was 1.538.The physical properties of this composition are shown in Table 3.

比較例4 実施例2(1)グラフト共重合体(A)の製造において
、前段重合の重合率を53チとした。これ以外は実施例
2と同一条件で樹脂組成物を得た。この組成物の屈折率
η・フは1゜538であった。この組成物の物性結果を
表−3に示した。
Comparative Example 4 In the production of the graft copolymer (A) in Example 2 (1), the polymerization rate in the first stage polymerization was set to 53. A resin composition was obtained under the same conditions as in Example 2 except for this. The refractive index η·f of this composition was 1°538. The physical properties of this composition are shown in Table 3.

表−3 実施例3 実施例2における組成物の製造において、グラフト共重
合体〔A〕/グラフト共重合体〔B〕/共重合体(C)
の配合比を変えた。その他の条件は実施例2と同様の操
作にょシ樹脂組成物を得た。この(30) 組成物の物性結果を表−4に示した。
Table 3 Example 3 In the production of the composition in Example 2, graft copolymer [A]/graft copolymer [B]/copolymer (C)
The blending ratio was changed. Other conditions were the same as in Example 2 to obtain a resin composition. The physical properties of this (30) composition are shown in Table 4.

比較例5 実施例3において〔A) 、 (B) 、 (C)の比
を変え組成物の全ゴム成分に対するグラフト共重合体〔
B〕のゴム成分の配合比率をそれぞれ24.6%。
Comparative Example 5 In Example 3, the ratio of [A), (B), and (C) was changed and the graft copolymer [total rubber components of the composition] was changed.
B] The blending ratio of the rubber components was 24.6%.

85.5%に変更した。この組成物の物性結果を表−4
に示した。
It was changed to 85.5%. Table 4 shows the physical properties of this composition.
It was shown to.

Claims (1)

【特許請求の範囲】 a)スチレン−ブタジェン系ゴム状重合体の存在下で、
該ゴム状重合体と実質的に等しい屈折率を有する樹脂を
形成しうる組成の単量体混合物を重合率15〜50重量
%まで触媒の不存在下又はジクミルノ4−オキサンドの
存在下で溶液重合あるいは塊状重合せしめ、次いで上記
重合系にt−プチルノや一オキシエステルを添加し重合
を更に行なわせて得られるゴム状重合体成分3〜35重
量部及び樹脂状成分97〜65重量部を含有するグラフ
ト共重合体〔A〕、 b)上記[A]のゴム状重合体と実質的に等しい屈折率
を有するスチレン−ブタジェン系ゴム状重合体ラテック
スの存在下で、該ゴム状重合体と実質的に等しい屈折率
を有する樹脂を形成しうる組成の単量体混合物を乳化重
合して得られるゴム状重合体成分30−70重量部及び
樹脂状成分70〜30重量部を含有するグラフト共重合
体[B)及び C)上記グラフト共重合体[A)及び[B)と実質的に
等しい屈折率を有する非エラストマー性(又はゴム状重
合体を含有しない)樹脂質重合体[C]とからなる配合
物であって、その組成物中のゴム状重合体成分の含有率
が5〜30重量%であ夛、かつ全体のゴム成分に対しグ
ラフト共重合体[A]のゴム成分及びグラフト共重合体
[B]のゴム成分がそれぞれ20〜60重量%及び80
〜40重量%であることを特徴とする透明耐衝撃性樹脂
組成物0
[Claims] a) In the presence of a styrene-butadiene rubbery polymer,
A monomer mixture having a composition capable of forming a resin having a refractive index substantially equal to that of the rubbery polymer is solution polymerized in the absence of a catalyst or in the presence of dicumyl-4-oxande to a polymerization rate of 15 to 50% by weight. Alternatively, it contains 3 to 35 parts by weight of a rubbery polymer component and 97 to 65 parts by weight of a resinous component obtained by bulk polymerization, then adding t-butyl or monooxyester to the above polymerization system and further polymerizing it. Graft copolymer [A], b) In the presence of a styrene-butadiene rubbery polymer latex having a refractive index substantially equal to that of the rubbery polymer of [A] above, A graft copolymer containing 30 to 70 parts by weight of a rubbery polymer component and 70 to 30 parts by weight of a resinous component obtained by emulsion polymerization of a monomer mixture having a composition capable of forming a resin having a refractive index equal to [B) and C) a non-elastomeric (or non-rubber-like polymer-free) resinous polymer [C] having a refractive index substantially equal to that of the graft copolymers [A) and [B)] A compound in which the content of the rubbery polymer component in the composition is 5 to 30% by weight, and the rubber component of the graft copolymer [A] and the graft copolymer are added to the total rubber component. The rubber components of the union [B] are 20 to 60% by weight and 80% by weight, respectively.
Transparent impact-resistant resin composition 0 characterized in that it is ~40% by weight
JP21409983A 1983-11-16 1983-11-16 Transparent impact-resistant resin composition Pending JPS60108457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21409983A JPS60108457A (en) 1983-11-16 1983-11-16 Transparent impact-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21409983A JPS60108457A (en) 1983-11-16 1983-11-16 Transparent impact-resistant resin composition

Publications (1)

Publication Number Publication Date
JPS60108457A true JPS60108457A (en) 1985-06-13

Family

ID=16650204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21409983A Pending JPS60108457A (en) 1983-11-16 1983-11-16 Transparent impact-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS60108457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498164B2 (en) 1998-05-16 2009-03-03 Applied Biosystems, Llc Instrument for monitoring nucleic acid sequence amplification reaction
US8557566B2 (en) 1998-05-16 2013-10-15 Applied Biosystems, Llc Instrument for monitoring polymerase chain reaction of DNA
US9671342B2 (en) 1998-05-16 2017-06-06 Life Technologies Corporation Instrument for monitoring polymerase chain reaction of DNA

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498164B2 (en) 1998-05-16 2009-03-03 Applied Biosystems, Llc Instrument for monitoring nucleic acid sequence amplification reaction
US8557566B2 (en) 1998-05-16 2013-10-15 Applied Biosystems, Llc Instrument for monitoring polymerase chain reaction of DNA
US8921098B2 (en) 1998-05-16 2014-12-30 Applied Biosystems, Llc Instrument for monitoring DNA replication
US9671342B2 (en) 1998-05-16 2017-06-06 Life Technologies Corporation Instrument for monitoring polymerase chain reaction of DNA
US9823195B2 (en) 1998-05-16 2017-11-21 Life Technologies Corporation Optical instrument comprising multi-notch beam splitter

Similar Documents

Publication Publication Date Title
US4397986A (en) Thermoplastic polyester blends
JPH03205411A (en) Thermoplastic copolymer, its production and thermoplastic resin composition containing same
JP3151481B2 (en) Method for producing rubber-modified copolymer resin and rubber-modified copolymer resin composition
US4631307A (en) Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
JP4105879B2 (en) Rubber-reinforced thermoplastic resin and rubber-reinforced thermoplastic resin composition
JPS6191248A (en) Thermoplastic molding composition having improved heat stress temperature
JPH1072512A (en) Rubber-modified copolymer resin composition and its preparation
JPS61163950A (en) Thermoplastic resin composition
JPH0320348A (en) Highly antioxidant polymer mixture
JPS60108457A (en) Transparent impact-resistant resin composition
JP3286550B2 (en) Rubber modified styrenic resin composition
US4395516A (en) Thermoplastic resin compositions comprising copolymer of unsaturated dicarboxylic acid anhydride and vinyl aromatic monomer, ABS, and methylmethacrylate polymer
JPH02185554A (en) Polymer alloy
JP2524367B2 (en) ABS molding composition with low residual butadiene content
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
JP2004339357A (en) Transparent rubber-modified polystyrene resin
JPH01113452A (en) Thermoplastic resin composition
JPS63189455A (en) Thermoplastic resin composition
JPH03258851A (en) Highly gloss resin composition
JPS63304042A (en) Heat-resistant thermoplastic polymer composition
JPS588716A (en) Production of transparent thermoplastic resin
JP2004307525A (en) Resin composition and its molded product
JPH0873693A (en) Rubber-modified copolymer resin composition
JPH05117464A (en) Aromatic vinyl resin composition
JPS63297449A (en) Matte thermoplastic resin composition