JPS60108179A - Consumable electrode type arc welding method - Google Patents

Consumable electrode type arc welding method

Info

Publication number
JPS60108179A
JPS60108179A JP21728883A JP21728883A JPS60108179A JP S60108179 A JPS60108179 A JP S60108179A JP 21728883 A JP21728883 A JP 21728883A JP 21728883 A JP21728883 A JP 21728883A JP S60108179 A JPS60108179 A JP S60108179A
Authority
JP
Japan
Prior art keywords
welding
current
arc
consumable electrode
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21728883A
Other languages
Japanese (ja)
Other versions
JPH044074B2 (en
Inventor
Takaaki Ogasawara
小笠原 隆明
Tokuji Maruyama
徳治 丸山
Masaharu Sato
佐藤 正晴
Yukio Toida
樋田 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21728883A priority Critical patent/JPS60108179A/en
Priority to US06/596,686 priority patent/US4546234A/en
Priority to EP84104601A priority patent/EP0133448B1/en
Priority to DE8484104601T priority patent/DE3479303D1/en
Publication of JPS60108179A publication Critical patent/JPS60108179A/en
Priority to US06/896,104 priority patent/USRE33330E/en
Publication of JPH044074B2 publication Critical patent/JPH044074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To reduce generation of a spatter by stabilizing a process for repeating a short circuit and an arc generation. CONSTITUTION:A titled method is related to a consumable electrode type arc welding method for repeating a short circuit and an arc generation between a consumable electrode and a base material. This method consists of a process for holding a welding current at the first current value of a comparatively low level when the consumable electrode and the base material are short-circuited, a process for holding the welding current at the second current value of a comparatively high level subsequently, a process for lowering the welding current to the third current value of a low level when a constricted part is generated in a molten part between the consumable electrode and the base material while the welding current is held at the second current value, a process for holding the welding current at the fourth current value of a comparatively high level when an arc is generated between the consumable electrode and the base material subsequently, and a process for holding the welding current at the fifth current value of a comparatively low level until the consumable electrode and the base material are short-circuited, and this series of processes are repeated.

Description

【発明の詳細な説明】 技術分野 本発明は、消耗電極と母相との間で短絡とアーク発生と
を繰り返す消耗電極式アーク溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a consumable electrode type arc welding method in which short circuits and arc generation are repeated between a consumable electrode and a parent phase.

従来技術 第1図は短絡とアーク発生とを交互に繰り返す消耗電極
式アーク溶接法の溶滴の形成と移行の過程を示しており
、1は消耗電極(以下、溶接ワイヤという)、2は溶接
ワイヤ1の先端に形成された溶滴、3はアーク、4は溶
融池すなわち母相である。(、)は溶滴2が溶融池4と
接触した短絡初期状態、(b)は溶滴2と溶融池4との
接触が確実となって溶滴2が溶融池4へ移行している短
絡中期状態、(c)は溶滴2が溶融池4側へ移行して溶
接ワイヤ1と;容融池4との間の溶滴2にくびれが生し
た短絡後期状態、(、J)は短絡が破れて溶接アーク3
が発生した瞬間、(e)は溶接ワイヤ1の先端か溶融し
て溶滴2が成長するアーク発生状態、m、 (8)は溶
滴2が溶融池4と短絡する直前のアーク発生状態を夫々
示し、(a)〜(8)の過程が繰り返し行なわれる。
Prior art Figure 1 shows the process of droplet formation and transfer in the consumable electrode arc welding method, which alternately repeats short circuit and arc generation, where 1 is the consumable electrode (hereinafter referred to as welding wire), 2 is the welding wire A droplet is formed at the tip of the wire 1, 3 is an arc, and 4 is a molten pool, that is, a parent phase. (,) is the initial state of a short circuit where the droplet 2 is in contact with the molten pool 4, and (b) is a short circuit where the contact between the droplet 2 and the molten pool 4 is ensured and the droplet 2 is moving to the molten pool 4. Mid-term state, (c) is a short circuit late state where the droplet 2 has moved to the molten pool 4 side and a constriction has formed in the droplet 2 between the welding wire 1 and the molten pool 4, (, J) is a short circuit is torn and welding arc 3
At the moment when the droplet 2 is generated, (e) is the arc generation state in which the tip of the welding wire 1 melts and the droplet 2 grows, m, (8) is the arc generation state immediately before the droplet 2 short-circuits with the molten pool 4. The steps (a) to (8) are repeated.

第2図は、リアクトルを併用した定電圧特性を有する従
来の溶接電源を用いた場合の溶接電流と溶接電圧の波形
を示している。この第2図において、波形」二の過程を
示す符号(、)〜(g)は第1図にボすl;′#滴の形
成と移行の過程(、)〜(8)に夫々対ノ5している。
FIG. 2 shows the waveforms of welding current and welding voltage when using a conventional welding power source having constant voltage characteristics that also uses a reactor. In this Figure 2, the symbols (,) to (g) indicating the process of waveform 2 are shown in Figure 1. 5.

この従来のlit接電源を用いた場合には、以下の(手
な問題か生じる。過程(a)では、溶滴2と溶融池パ1
との短絡の1M後にある時定数を有して溶接電流が増加
し始め、溶滴2と溶融池4との接触部Aの断面積か小さ
いとき、すなわち、)H滴2の溶融池4への移行か進ま
ないうちに溶接電流が犬とくなると、短絡が破れてアー
クが発生し、この時にスパッタを発生する。過程(C)
、 (d)では、溶滴2にくびれが生し、短絡が破れて
アークが再発生する。このアーク再発生時には電流値は
最も高い値となり、アークの反撥エネルギーにより、ス
パッタを多量に発生させるとともに、溶融池4を太き−
く振動させる。アーク発生後の過程(e)、 (r)で
は、前の短絡期間が長いときには溶接電流が増加し、曲
の短絡期間が短いときには溶接電流が減少する。
When this conventional lit power source is used, the following problems arise. In step (a), the droplet 2 and the molten pool 1
When the welding current begins to increase with a certain time constant 1M after the short circuit with If the welding current becomes too low before the welding progresses, the short circuit will break and an arc will occur, causing spatter. Process (C)
, (d), a constriction occurs in the droplet 2, the short circuit is broken, and the arc is generated again. When this arc re-occurs, the current value reaches its highest value, and the repulsion energy of the arc generates a large amount of spatter and causes the molten pool 4 to thicken.
make it vibrate. In steps (e) and (r) after arc generation, the welding current increases when the previous short-circuit period is long, and decreases when the short-circuit period of the song is short.

したがって、過程(e)、 (f)で形成される溶滴2
の大きさかばらっと、ときには、過程(g)において溶
滴が小さ過ぎると、溶接ワイヤ1の未溶融部が溶融池4
へ突っ込んで、溶接が著しく不安定になることがある。
Therefore, the droplet 2 formed in steps (e) and (f)
Sometimes, if the droplet is too small in step (g), the unmelted part of the welding wire 1 becomes the molten pool 4.
This may cause the weld to become extremely unstable.

また、過程(f)、 (g)で、溶滴2と溶融池4とを
短絡に近づけさらに短絡させるためには、溶接電流が小
さいことが必要である。しかるに、このと外の溶接電流
は、回路のインダクタンスLと等価抵抗Rに応じて、第
2図に示すように、e−Vtの値に比例して減少する。
Furthermore, in steps (f) and (g), the welding current needs to be small in order to bring the droplet 2 and the molten pool 4 close to short-circuiting and further short-circuiting them. However, this extra welding current decreases in proportion to the value of e-Vt, as shown in FIG. 2, depending on the inductance L and equivalent resistance R of the circuit.

このため、溶接ワイヤの送給速度が高く、従って、溶接
電流の平均値が高い場合には、過程(f)、 (g)に
おいて電流か高くなり、短絡が生じにくくなる。さらに
、溶接電源が定電圧特性であるため、アーク長が短くな
るにつれて電流が増JJIける。この結果、ますます短
絡が生じにくくなり、溶滴が大きく成長し、規則的な短
絡の周期が期待で゛きないはかりで゛なく、大粒のスパ
ッタか発生する。
Therefore, when the welding wire feeding speed is high and the average value of the welding current is high, the current becomes high in steps (f) and (g), making short circuits less likely to occur. Furthermore, since the welding power source has constant voltage characteristics, the current increases as the arc length becomes shorter. As a result, it becomes increasingly difficult for short circuits to occur, the droplets grow larger, the regular cycle of short circuits is not as expected, and large spatter particles are generated.

iへ一!!!j町−111!J 本発明は上記問題に鑑みてなされたものであり、その[
1的は、短絡とアーク発生とを繰り返す過程を安定化す
るとともに、スパッタの発生を減少させた消耗型(龜式
アーク溶接力法を提供する二とである。
One to i! ! ! J Town-111! J The present invention has been made in view of the above problems, and its [
The first is to stabilize the process of repeating short-circuiting and arc generation, and the second is to provide a consumable type (spill-type arc welding force method) that reduces the generation of spatter.

イ1耽の!i硯鷹 消耗電極と1;」月との間で短絡とアーク発生とを繰り
返4−消耗電匝式アーク溶接力法であって、消耗?IL
峰とt:月・4とか短絡すると、)8接電流を比較的低
レベルの第1の電流値に保りする過程と、続い′(溶接
電流を比較的高レベルの第2の電流値に保持する過程と
、溶接電流を第2の電流値を保持する間に消耗電極と母
材との間の溶融部にくびれが生しると、溶接電流を低レ
ベルの第3の電流値に低下させる過程と、続いて消耗電
極と母材との間にアークが発生すると、溶接電流を比較
的高レベルの第4の電流値に保持する過程と、続いて消
耗電極とは月とが短絡するまで溶接電流を比較的低−レ
ベルの第5の電流値に保持する過程とを有し上記一連の
過程を繰り返す。
Indulge yourself! Short circuit and arc generation are repeated between the consumable electrode and the 4-consumable electric arc welding force method, and is it consumable? IL
Peak and t: If there is a short circuit such as 4), the process of keeping the 8 welding current at the first current value, which is a relatively low level, and then the process of keeping the welding current at the second current value, which is a relatively high level. During the holding process and while the welding current is held at the second current value, if a constriction occurs in the fusion zone between the consumable electrode and the base metal, the welding current is reduced to a lower third current value. The process of holding the welding current at a relatively high fourth current value when an arc occurs between the consumable electrode and the base metal, and the consumable electrode and the base metal are then short-circuited. and a step of maintaining the welding current at a relatively low level of the fifth current value until the welding current reaches the fifth current value, and repeats the above series of steps.

発明の原理 以下、本発明の詳細な説明する。principle of invention The present invention will be explained in detail below.

本発明では、溶接ワイヤをノズルを介して所定速度で1
廿祠に対して送給する一方、上記ノズルからシールl’
ガスを噴射しつつ、溶接ワイヤと1との間で発生するア
ーク部分を包囲するとともに、溶接ワイヤとlit祠と
の開で短絡とアーク発生とを繰り返して溶接を行なう消
耗電極式アーク溶接法において、溶接電流を制御する。
In the present invention, the welding wire is passed through the nozzle at a predetermined speed.
While feeding to the
In a consumable electrode type arc welding method in which gas is injected to surround the arc generated between the welding wire and 1, and the welding is performed by repeatedly shorting and generating an arc by opening the welding wire and the lit shrine. , to control the welding current.

本発明者らは、短絡とアーク発生とを交互に繰り返す消
耗電極式アーク溶接法において、溶接電流の出力波形に
ついて種々検旧した結果、第3図に示す波形が最適であ
ることが分った。
The present inventors investigated various output waveforms of welding current in the consumable electrode arc welding method in which short circuits and arc generation are alternately repeated, and found that the waveform shown in Figure 3 is optimal. .

第3図は溶接電流と溶接電圧の波形を示しており、波形
」二の過程(a)〜(g)は上述の第1図に示す溶滴の
形成と移行の過程(、)〜(8)に夫々対応している。
Figure 3 shows the waveforms of welding current and welding voltage, and the processes (a) to (g) of waveform 2 are the processes (, ) to (8) of droplet formation and transfer shown in Figure 1 above. ).

溶接ワイヤ1と溶融池4との短絡の直後の過程(、)・
〜(b)では、溶接電流を低レベルである電流lDに保
持し、溶滴2と溶融池4との接触を強固にすることを1
)(L寓する溶接電流のピンチ力が溶滴2と溶融池4と
の接触部Aに働らかないようにする。、二の低レベルの
電流I、を保持する期間゛1′。
Process immediately after short circuit between welding wire 1 and molten pool 4 (,)・
In ~(b), the welding current is maintained at a low level of current LD to strengthen the contact between the droplet 2 and the molten pool 4.
) (Prevent the pinching force of the welding current from acting on the contact area A between the droplet 2 and the molten pool 4.) The period during which the low level current I is maintained.

は、1−、40ISeeであり、最適には1.5〜2.
5InSeeで゛ある。電流1.は、溶滴2と溶融池4
との接触部Aに電流ピンチ力が働かないようにするため
)こほできるたけ小さい方が望ましくなく、一般に1t
l t) A以下である。溶接ワイヤの送給速度が小さ
いときには、電流IOはさらに低い方が良いことが確認
された。
is 1-, 40ISee, optimally 1.5-2.
It is 5InSee. Current 1. are droplet 2 and molten pool 4
In order to prevent the current pinching force from acting on the contact part A with the
l t) A or less. It was confirmed that when the welding wire feeding speed is low, it is better to lower the current IO.

溶滴2と溶融池4との結合か強固になった過程(b)か
呟溶滴2の溶融池4への移行を促進するためにノユール
エネルギーとピンチ力を与える適当な高電流191)を
印加する。この高電流rspは、溶接ワイヤ1の未溶融
部分が溶融池4へ突っ込まないうちに溶滴2を溶融池4
へ移行させるとともに、移行の後に溶滴2にくびれを生
じさせるために印加されるものであり、この高電流1s
pが印加、されないと、溶接の過程は著しく不安定にな
る。
During the process (b) of the bond between the droplet 2 and the molten pool 4 becoming stronger, an appropriate high current 191 is applied to provide noule energy and pinching force to promote the transition of the droplet 2 to the molten pool 4. Apply. This high current rsp moves the droplet 2 into the molten pool 4 before the unmelted part of the welding wire 1 plunges into the molten pool 4.
This high current of 1 s is applied to cause the droplet 2 to move to
If p is not applied, the welding process becomes extremely unstable.

高電流lsPを印加する期間は溶滴2にくびれが生しる
過程(c)までであるが、この期間は通常】〜5 m5
ecの開でばらつくので、予しめ設定することは不可能
である。しかし、溶滴のくびれを溶接ワイヤと母相間の
抵抗変化、電圧変化あるいは電流変化などにより検知し
て、短絡の状況に応じて、くびれか生したら高電流IS
Pの印加を終了するように、自動的に制御する必要があ
る。溶滴のくびれの検出は具体的にはたとえば溶接ワイ
ヤと母相との間の電圧\パの時間変化(微分値a!′)
が一定値ぺt を越えたことによって検出する。
The period during which the high current lsP is applied is until the process (c) in which a constriction occurs in the droplet 2, but this period is normally ~5 m5
Since it varies depending on the opening of ec, it is impossible to set it in advance. However, if the constriction of the droplet is detected by changes in resistance, voltage, or current between the welding wire and the parent phase, and if a constriction occurs, high current IS is detected depending on the short circuit situation.
It is necessary to automatically control the application of P to end. Specifically, the constriction of a droplet is detected by detecting, for example, the time change in the voltage between the welding wire and the parent phase (differential value a!').
It is detected when Pt exceeds a certain value.

溶滴2にくびれが発生した過程(c)において、溶接電
流を低レベルである電流IPAへ急激に減少させる。そ
して、過程(c)に続く過程(d)においてアークが発
生する。過程(C)1こおり・て電流を急激に減少させ
るのは、溶滴2のくびれ部すが破断してアークが発生し
た吟に溶滴2の一部が飛散するのを防ILするとともに
、アークが発生した瞬間に溶融池にアークにより加えら
れる圧力を弱めるためである。この圧力が強0と、溶融
池4力Cビ一ド外周に押され、ビート外観の均一性を損
なうばかりでなく、時には溶融池の一部を飛散させてス
パッタとなる場合がある。
In the process (c) when the droplet 2 is constricted, the welding current is rapidly reduced to a low level current IPA. Then, an arc occurs in step (d) following step (c). The purpose of rapidly reducing the current during process (C) 1 is to prevent part of the droplet 2 from scattering when the constriction of the droplet 2 breaks and an arc is generated, and This is to weaken the pressure applied by the arc to the molten pool at the moment the arc occurs. If this pressure is too strong, the molten pool is pushed against the outer periphery of the C bead, which not only impairs the uniformity of the bead appearance, but also sometimes causes part of the molten pool to scatter, resulting in spatter.

過程(ぐ)において、電流を低下させてしまうと、落滴
か破断せず、アークが再発生しなり・とり・う疑念か生
しるか、)8滴にくびれが生しると、後は表面張力とで
くびれ部は破断する。したがって、過程(b)において
は、溶滴2か表面張力と重力により破断ケる程度のくび
れか生しるまで高電流lSPを目1加[れば↓い。また
、吐レベルの電流II2八は、溶接ワイヤの送給速度な
どによっても左右されるか、20〜20 OAが望まし
い。電流1に八が207\以lζになると、アーク再発
生時にアークが消えるアーク切れが発生する可能性が増
し、また、2()旧\以上であると、スバ・ツタの発生
量が増JJIける。この電流ipとしては、理想的には
、アーク切れが発生しない電流値でできるだけ小さ重力
が良いわけであり、2OAに限定されるものではない。
If the current is lowered during the process (g), the drop will not break and the arc will re-occur. The constriction breaks due to surface tension. Therefore, in step (b), high current lSP is applied once until droplet 2 becomes constricted enough to break due to surface tension and gravity. Further, the discharge level current II28 may be influenced by the welding wire feeding speed, etc., and is preferably 20 to 20 OA. If the current is 1 to 8 to 207\ or more, the possibility of arc breakage occurring where the arc disappears when the arc re-occurs increases, and if the current is 2 () old\ or more, the amount of sorrel and ivy will increase.JJI Let's go. Ideally, the current ip should be as small as possible with a current value that does not cause arc breakage, and is not limited to 2OA.

過程(d)においてアークが発生すると、溶接電流を高
レベルである電流I^?まで増加させ、この高電流IA
pを過程(e)までの予しめ定められた期間保持する。
When an arc occurs in step (d), the welding current is reduced to a high level of current I^? This high current IA
p is held for a predetermined period until step (e).

過程(d)から過程(e)までの期間i:APは、次回
の短絡で溶融池へ移行させるための溶滴を溶接ワイヤ先
端に形成する期間である。この期間IQPにおいて溶滴
が所望の大外さになるように、期間”APと電流値■^
Pとを定める。この期間’l’APで溶接ワイヤと溶融
池との短絡が生しると、必要な溶滴が形成されないで短
絡するため、溶接ワイヤの未溶融部分が溶融池に入り、
アーク再発生に時間を要するとともに、溶接の安定性を
茗しく損なう。従って、期間TAPにおける電流IAP
は、短絡の発生を防止するのに充分である高レベルな電
流を用いる。
The period i:AP from step (d) to step (e) is a period during which droplets are formed at the tip of the welding wire to be transferred to the molten pool in the next short circuit. During this period "AP" and current value ■^ so that the droplet becomes the desired size at IQP.
Define P. If a short circuit occurs between the welding wire and the molten pool during this period 'l'AP, the necessary droplets will not be formed and the short will occur, so the unmelted part of the welding wire will enter the molten pool.
It takes time for the arc to re-generate, and the stability of welding is seriously impaired. Therefore, the current IAP during the period TAP
uses high levels of current that are sufficient to prevent short circuits from occurring.

この期間1′A−二おいて短絡を防止するのに充分な電
流IAPは、溶接ワイヤの送給速度に応じて変化し、例
えば、ワイヤ送給速度が5 、2 +a/m?+(平均
溶接電流18OA)のとぎには260A程度であり、ワ
イヤ送給速度が8 、4 m/m1n(平均溶接電流2
4 o l\)のときには340A程度である。
The current IAP sufficient to prevent a short circuit during this period 1'A-2 varies depending on the welding wire feeding speed; for example, if the wire feeding speed is 5, 2 + a/m? + (average welding current 18OA), it is about 260A, and the wire feeding speed is 8.4 m/m1n (average welding current 2
4 o l\), it is about 340A.

この電流IAPは、平均溶接電流より高いレベルでなけ
ればならない。また、この期間”’、At’において、
短絡を生じさせないためには、」−―述のように電流を
充分に高くすることもひとつの手段で゛あるか、アーク
長か短くなると電流が増加して短絡が生じにくくなる定
電圧特性1こすることも有効て゛ある。
This current IAP must be at a higher level than the average welding current. Also, during this period "', At',
In order to prevent short circuits from occurring, one way is to make the current sufficiently high as mentioned above.Also, as the arc length becomes shorter, the current increases and short circuits are less likely to occur due to constant voltage characteristics1. Rubbing is also effective.

この場か、電流が増加すると、アーク力が強くなり、且
つ、溶接ワイヤの燃え一トリ量を増加さザ、溶ll力と
溶融池との間隙を増加させる。
In this case, when the current increases, the arc force becomes stronger, and the amount of burnout of the welding wire increases, which increases the gap between the welding force and the molten pool.

期間1ハPにおいて溶滴が形成された後の過程(e)−
・(f)て′は、1ri2h2を溶融池4へできるだけ
早く短絡させるために溶接電流を1氏しベルの電流IA
Bに保つ、この場合、アーク長が短くなると電流が増加
する定電圧特性では、短絡か近づくと、電流か増加して
アーク力が大きくなり、このアーク力によって溶融池を
押圧するので、溶滴と溶融池との間隙を保って短絡が生
しにくい状況をつくることになる。従って、過程(e)
〜(f)では、アーク長が短くなっても電流値が不変で
ある略定電流特性とすることが望ましい。また、電流J
ABが高すぎると、短絡が発生しにくくなって溶滴が必
要以−に大きくなるとともに、短絡の周期か一定しない
ばかりではなく、大粒のスパッタの発生を助長する。
Process (e) after droplet formation in period 1haP
・(f) te' is a welding current of 1 °C in order to short-circuit 1ri2h2 to the molten pool 4 as soon as possible.
In this case, with constant voltage characteristics where the current increases as the arc length becomes shorter, when a short circuit approaches, the current increases and the arc force increases, and this arc force presses the molten pool, causing the droplets to This creates a situation where short circuits are less likely to occur by maintaining a gap between the molten metal and the molten pool. Therefore, process (e)
-(f), it is desirable to have substantially constant current characteristics in which the current value remains unchanged even if the arc length becomes short. Also, the current J
If AB is too high, it becomes difficult for short circuits to occur and the droplets become larger than necessary, and not only does the period of short circuits become inconsistent, but also promotes the generation of large spatter particles.

1このアーク発生時における低レベルの電流IABは、
短絡が生じる過程(g)まで保持される。
1 The low level current IAB when this arc occurs is:
This is maintained until step (g) when a short circuit occurs.

以上の5段階の状態は連続しており、この5段階の一連
の状態が繰り返される。そして、夫々の段階は互いに相
関関係を有しており、どのひとつの段階を除いても、ス
パッタの減少、良好なビード外観、良好なアークの安定
性の3つの条件を満足させることかで外ない。
The above five-stage states are continuous, and this series of five-stage states is repeated. Each stage has a correlation with each other, and even if you exclude any one stage, it is important to satisfy the following three conditions: reduced spatter, good bead appearance, and good arc stability. do not have.

■1 以下、本発明の一実施例を説明する。■1 An embodiment of the present invention will be described below.

3種類の実施例1,2.3に共通に用いた溶接条1′1
.は次のとおりである。
Welded strip 1'1 commonly used in three types of Examples 1 and 2.3
.. is as follows.

溶接ワイヤ : YCW−2,1,2φシールドガス:
 CO2,2Ufl/min溶接1uキJ:5S41.
板厚12mm溶接ノj法 :18接トーチを台申し保持
し、ビードオンプレート溶接を10分 間行なった。
Welding wire: YCW-2, 1, 2φ Shielding gas:
CO2, 2Ufl/min welding 1u J:5S41.
Plate thickness 12 mm welding method: An 18-touch torch was held at the stand position, and bead-on-plate welding was performed for 10 minutes.

1−記以外の溶按条1’lであるワイヤ送給速度、−期
間Tp + ”’Apl電流ID l 15p+ ’R
AI IAPを実施例1,2.:(の夫々について第1
表に示す。また、第1表には:)種類の従来例1,7.
:(に−)ν・て溶接条l′1.C゛あるワイヤ送給速
度と平均電流を示す。
1-Wire feeding speed for melting strips 1'l other than those listed, -period Tp + "'Apl current ID l 15p+'R
AI IAP in Examples 1 and 2. :(For each of the first
Shown in the table. Table 1 also shows: Types of conventional examples 1, 7.
:(ni-)ν・te welding strip l'1. C indicates a certain wire feeding speed and average current.

評価の方法は、スパッタの発生量については10分間に
ノズルに(=1着したスパッタの重量を測泥し、アーク
の安定性についてはオシロスコープにより溶接電流波形
の安定性を観察した。さらに、ビード外観を観察した。
The evaluation method was to measure the amount of spatter generated by measuring the weight of the spatter that landed on the nozzle in 10 minutes, and to measure the stability of the arc by observing the stability of the welding current waveform using an oscilloscope. I observed the appearance.

この評価の結果を第2表に示す。第2表にはまた従来例
1,2.3につり・て実施例と同じ方法で評価を行なっ
た結果を示す。
The results of this evaluation are shown in Table 2. Table 2 also shows the results of evaluating Conventional Examples 1, 2, and 3 using the same method as in the Examples.

第2表 第・1図と第5図はオシロスコープによI)観al’l
した実施例2における溶接電流と溶接電圧の波形をボし
てJjす、第5図は第・1図より時間軸のスケールを小
さくしたと外の波形をnKケ。また、第6図と第7図は
A7rjスフーブにより観測した従来例21こむける溶
接電流と溶接電圧の波形を示しており、第°7図は第6
しは1月時間軸のスケールを小さくしたときの波形を示
す。
Table 2, Figures 1 and 5 are viewed using an oscilloscope.
The waveforms of the welding current and welding voltage in Example 2 are shown in Figure 5, and the scale of the time axis is made smaller than in Figure 1. In addition, Fig. 6 and Fig. 7 show the waveforms of welding current and welding voltage in the conventional example 21 observed with A7rj Shub, and Fig.
The figure shows the waveform when the scale of the January time axis is reduced.

第2表かCつ明らかなように、本発明による溶接方法の
実施例]、2.3のいずれにおいても、従来の方法に較
べてスパッタの発生量を115なし)し1/6に減少さ
せることができる。
As is clear from Tables 2 and 3, in both Examples and 2.3 of the welding method according to the present invention, the amount of spatter generated is reduced to 1/6 compared to the conventional method. be able to.

また、第・1図に示すように、本発明の方法による溶接
電流の波形の周期や波高値が規則的でほぼ一定であるこ
とは、短絡とアーク発生とが規則止しく繰り返えされ、
アークカ、アーク長、溶滴径。
Furthermore, as shown in FIG. 1, the period and peak value of the welding current waveform according to the method of the present invention are regular and almost constant, which means that short circuits and arcing occur regularly.
arc force, arc length, droplet diameter.

短絡状態並びに溶融池の状態かいずれも安定しているこ
とを示している。これは、本発明による方法を用いると
、スパッタの発生量を少なくするとともに、均一で美し
いビード外観の1られ、後処理工程を必要としない所謂
作業性か良好な溶接か行なえることの証明である。一方
、第6Mに示す従来の方法による溶接電流の波形か周期
や波高値が不規則であることは、短絡とアーク発生とか
規則正しく行なJノれす、アークカ、アーク長、溶滴径
などが変動することを示している。すなわち、従来の方
法では、アークの不安定と溶融池の乱れなどが生じ、ス
パッタの発生量が多くなるとともに、時として非常に大
きなアーク力が働いて溶融池を飛11りさせ、ヒート端
部にヒデ状の突出部が生し、ビード外観を損なうことな
どにより作業性を悪くする。
This shows that both the short circuit state and the molten pool state are stable. This proves that by using the method of the present invention, it is possible to reduce the amount of spatter, create a uniform and beautiful bead appearance, and perform welding with good workability and no post-processing steps. be. On the other hand, the irregularity of the waveform, period, and peak value of the welding current by the conventional method shown in No. 6M means that short circuits and arc generation occur regularly, and the arc force, arc length, droplet diameter, etc. It shows that it fluctuates. In other words, in the conventional method, the arc becomes unstable and the molten pool becomes turbulent, resulting in a large amount of spatter.In addition, a very large arc force sometimes acts, causing the molten pool to fly off, causing damage to the heated end. A hide-like protrusion forms on the surface of the bead, impairing the bead appearance and impairing workability.

なす3、天際には溶接状態の目視、アークnなどからも
、本発明の溶接方法においてはアークが安定しているこ
とか確認され、第=1図の溶接電流波形の状態と一致し
ている。
3. At the top, it was confirmed that the arc is stable in the welding method of the present invention by visual inspection of the welding state and by checking the arc n, etc., and it matches the state of the welding current waveform in Figure 1. .

介叫0効米 以」4説明したように、本発明においては、溶接ワイヤ
かI!i!□、Iと111絡すると溶接電流を比較的低
レベルな電、Aこと腰続いて/H接主電流比較的高レベ
ー ルな電;Aコと腰溶滴にくびれが生しると溶接電流
を1氏レベルな電流へ1氏下させ、アークか生しると溶
接電流を比較的高レベルな電流とし、続いて溶接ワイヤ
と1:月・]とか短絡するまで溶接電流を比較的低レベ
ルな電流とす□る上記一連の過程を繰り返4−ようにし
tこから、スパッタの発生量か少なく且つアークが安定
したビード外観が良好な溶接を11なうことかで・きる
。この結果、ノズルに111着した又バッタの除去作業
のために溶接を中断する回数が減少し、長時間の連続溶
接か可能となる。これはロボットなどによる自動溶接に
対して有効で・ある。また、又バッタの発生量が少ない
ので溶接加工を終了した後の製品に01着したスパッタ
の除去作業に時間がか)らず、さらに、ビード外観の不
良部にメ1するグラインダによる整形作業が4:要にな
ることなどから、経済上の直接効果があるばかりでなく
、溶接作業者の安全上にも寄与するなどの効果がある。
As explained above, in the present invention, welding wire or I! i! When connected with □, I and 111, the welding current is a relatively low level current, A and the main current are relatively high level current; The welding current is lowered to a 1°C level current by 1°C, and when an arc occurs, the welding current is set to a relatively high level current, and then the welding current is reduced to a relatively low level until a short circuit occurs with the welding wire. By repeating the above series of steps to obtain a stable current, welding with a small amount of spatter, a stable arc, and a good bead appearance can be achieved. As a result, the number of times welding is interrupted to remove grasshoppers deposited on the nozzle is reduced, and continuous welding for a long period of time becomes possible. This is effective for automatic welding by robots, etc. In addition, since the amount of locusts generated is small, it does not take much time to remove spatter that has adhered to the product after welding, and furthermore, it is easier to reshape defects in the bead appearance using a grinder. 4: Since it is a key component, it not only has a direct economic effect, but also contributes to the safety of welding workers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は消耗電極式アー・り溶接法の溶滴の形成と移行
の過程を示す図、第2図は従来の消耗電極式アーク溶接
法における溶接電流と溶接電圧の波形を示す図、13図
は本発明の方法を適用した消耗電極式アーク溶接法にお
ける溶接電流と溶接電圧の波形を示す図、第4図と第5
図はオシロスコープにより観測した実施例2における溶
接電流と溶接電圧の波形を示す図、第6図と第゛7図は
オシロスコープにより観測した従来例2における溶接電
流と溶接電圧の波形を示す図である。 l・・・溶接ワイヤ、2・・・溶滴、3・・・アーク、
・1・・・溶融池。 特d′1出願人 株式会社神戸製鋼Iy1代理 人 弁
理士 青 山 葆外2名 第3図 第5図 時間
Figure 1 is a diagram showing the process of droplet formation and migration in the consumable electrode type arc welding process, Figure 2 is a diagram showing the waveforms of welding current and welding voltage in the conventional consumable electrode type arc welding process, 13 Figures 4 and 5 are diagrams showing the waveforms of welding current and welding voltage in the consumable electrode arc welding method to which the method of the present invention is applied.
The figure is a diagram showing the waveforms of welding current and welding voltage in Example 2 observed with an oscilloscope, and Figures 6 and 7 are diagrams showing the waveforms of welding current and welding voltage in Conventional Example 2 observed with an oscilloscope. . l... Welding wire, 2... Droplet, 3... Arc,
・1... Molten pool. Special d'1 Applicant Kobe Steel Corporation Iy1 Agent Patent Attorney Aoyama Sogai 2 people Figure 3 Figure 5 Time

Claims (1)

【特許請求の範囲】[Claims] (1)消耗7に1歳を所定速度で1す月に刻して送給す
る一力、ノスルからシールドガスを噴射しつつ、消耗電
極とfil利との開で発生するアーク部分を包囲すると
ともに、消耗電極と11月との間で短絡とアーク発生と
を繰り返して溶接を行なう消耗電極式アーク溶接法であ
って、 消耗電除とjひ祠とが短絡Vると、溶接電流を比較的低
レベルの第1の電流値に保持する第1の過程と、この第
1の過程に続いて溶接電流を比較的高レベルの第2の電
流値に保持する第2の過程と、この第2の電流値を保持
する間に消耗電極と1廿祠との1111の溶融部にくび
れか生じると、溶接電流を低レベルの第3の電流値に低
トさせる第3の過程と、この第3の過程に続いて、消耗
電極と1廿祠との間にアークか発生すると溶接電流を比
較的高レベルの第4の電流値に保持する第4の過程と、
この第4の過程に続いて消耗電極と母ヰ4とが短絡する
まで溶接電流を比較的低レベルの第5の電流値に保持す
る第5の過程とを有し、上記第1ないし第5の一連の過
程を繰り返すことを特徴とする71Y耗電極式アーク溶
接方法。
(1) A force that feeds 1 year old at a predetermined speed every 1 month to 7 consumables, while injecting shield gas from the nostle, surrounds the arc generated by the opening between the consumable electrode and the filtrate. In addition, it is a consumable electrode type arc welding method in which welding is performed by repeatedly shorting and generating an arc between the consumable electrode and the electrode. a first step of holding the welding current at a first current value at a relatively low level; a second step of holding the welding current at a second current value of a relatively high level following this first step; If a constriction occurs in the 1111 fusion zone between the consumable electrode and the 1st weld while the current value of 2 is maintained, a third process is performed in which the welding current is lowered to a third current value of a low level, and this third process is performed. Following step 3, a fourth step of maintaining the welding current at a relatively high fourth current value when an arc occurs between the consumable electrode and the first wire;
This fourth step is followed by a fifth step of maintaining the welding current at a relatively low fifth current value until the consumable electrode and the mother wire 4 are short-circuited. 71Y consumable electrode type arc welding method characterized by repeating a series of steps.
JP21728883A 1983-08-11 1983-11-17 Consumable electrode type arc welding method Granted JPS60108179A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21728883A JPS60108179A (en) 1983-11-17 1983-11-17 Consumable electrode type arc welding method
US06/596,686 US4546234A (en) 1983-08-11 1984-04-04 Output control of short circuit welding power source
EP84104601A EP0133448B1 (en) 1983-08-11 1984-04-24 Output control of short circuit welding power source
DE8484104601T DE3479303D1 (en) 1983-08-11 1984-04-24 Output control of short circuit welding power source
US06/896,104 USRE33330E (en) 1983-08-11 1986-08-13 Output control of short circuit welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21728883A JPS60108179A (en) 1983-11-17 1983-11-17 Consumable electrode type arc welding method

Publications (2)

Publication Number Publication Date
JPS60108179A true JPS60108179A (en) 1985-06-13
JPH044074B2 JPH044074B2 (en) 1992-01-27

Family

ID=16701784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21728883A Granted JPS60108179A (en) 1983-08-11 1983-11-17 Consumable electrode type arc welding method

Country Status (1)

Country Link
JP (1) JPS60108179A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919728B2 (en) 2005-03-11 2011-04-05 Daihen Corporation Welding current controlling method in arc welding process using consumable electrode upon detection of constriction
JP2011516270A (en) * 2008-06-27 2011-05-26 リンカーン グローバル,インコーポレイテッド Method and system for increasing welding heat input during a short-circuit arc welding process
US9296057B2 (en) 2011-02-07 2016-03-29 Daihen Corporation Welding device and carbon dioxide gas shielded arc welding method
US11014186B2 (en) 2014-02-14 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Wire fed arc welding method having abnormal arc or abnormal short circuit welding steps

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770047B2 (en) * 2011-08-25 2015-08-26 株式会社ダイヘン Welding equipment
JP5912356B2 (en) * 2011-09-14 2016-04-27 株式会社ダイヘン Welding equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944952A (en) * 1972-09-05 1974-04-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944952A (en) * 1972-09-05 1974-04-27

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919728B2 (en) 2005-03-11 2011-04-05 Daihen Corporation Welding current controlling method in arc welding process using consumable electrode upon detection of constriction
JP2011516270A (en) * 2008-06-27 2011-05-26 リンカーン グローバル,インコーポレイテッド Method and system for increasing welding heat input during a short-circuit arc welding process
JP2013078800A (en) * 2008-06-27 2013-05-02 Lincoln Global Inc Method and system to increase heat input to weld during short-circuit arc welding process
US9296057B2 (en) 2011-02-07 2016-03-29 Daihen Corporation Welding device and carbon dioxide gas shielded arc welding method
US11014186B2 (en) 2014-02-14 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Wire fed arc welding method having abnormal arc or abnormal short circuit welding steps

Also Published As

Publication number Publication date
JPH044074B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
EP0133448B1 (en) Output control of short circuit welding power source
US20080264923A1 (en) Welding system and method with improved waveform
JP2005288542A (en) Electric arc pulse welder with short circuit control
JPS60108179A (en) Consumable electrode type arc welding method
JP4538520B2 (en) Gas shield arc brazing method for steel sheet
JP2000079479A (en) Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
WO2008137371A2 (en) Welding system and method with improved waveform
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
CA2351486C (en) Improved welding apparatus and method
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JPS60223661A (en) Arc welding method
JPS63152B2 (en)
JPH0377029B2 (en)
JPS59199176A (en) Method and device for controlling current of welding accompanying short circuit
WO2021235210A1 (en) Direct current arc welding control method
JP2002045964A (en) Arc welding method and arc welding apparatus
JPH0740050A (en) Tig welding method for galvanized steel sheet
JPH02290674A (en) Mig and mag pulse arc welding method
Maruyama et al. Waveform control in gas shielded arc welding
JPS6352994B2 (en)
JPS60106668A (en) Method for controlling output of power source for welding
JPS6320183A (en) High speed arc welding method
Dos Santos et al. Manufacturing Letters
JPH0260435B2 (en)